Research Article
BibTex RIS Cite

Effect of Liquid Crystal and Magnetic Field on The Thermoelectric Properties of Polythiophene/PEDOT Composite

Year 2021, Volume: 25 Issue: 3, 644 - 649, 30.12.2021
https://doi.org/10.19113/sdufenbed.896923

Abstract

Small heat sources such as body heat are sufficient to operate thermoelectric generators produced by using the Seebeck effect. Therefore, thermoelectric materials that convert small temperature difference into energy have become very important today. In this study, polythiophene (PTh) particles were synthesized in the presence and absence of magnetic field in the presence of liquid crystal for the first time, then PTh/PEDOT composites were synthesized by polymerizing 3,4-ethylenedioxy thiophene (EDOT) on PTh and their thermoelectric properties were investigated. Seebeck coefficient and electrical conductivity were measured from thin films of synthesized polymers and their power factors were calculated. While the magnetic field did not change the electrical conductivity much, the Seebeck coefficient increased the absolute value and reduced the particle sizes. The highest electrical conductivity, Seebeck coefficient and power factor values were taken from the PTHm sample synthesized under magnetic field with 0.6 S/cm, -540 µV/K and 17.5 µW/mK², respectively. FTIR, UV-vis. analysis and DLS measurement of PTh and PTh/PEDOT composites were made.

References

  • [1] Wei, Q., Mukaida, M., Kirihara, K., Naitoh, Y. Ishida, T. 2015. Recent progress on PEDOT-based thermoelectric materials. Materials, 8(2), 732-750.
  • [2] Dubey, N., Leclerc, M. 2011. Conducting polymers: efficient thermoelectric materials. Journal of Polymer Science Part B: Polymer Physics, 49(7), 467-475.
  • [3] Kim, G.H., Shao, L., Zhang, K., Pipe, K.P. 2013. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature materials, 12(8), 719-723.
  • [4] Ovik, R., Long, B.D., Barma, M. C., Riaz, M., Sabri, M.F.M., Said, S.M., Saidur, R. 2016. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable and sustainable energy reviews, 64, 635-659.
  • [5] Misra, S., Bharti, M., Singh, A., Debnath, A.K., Aswal, D.K., Hayakawa, Y. 2017. Nanostructured polypyrrole: enhancement in thermoelectric figure of merit through suppression of thermal conductivity. Materials Research Express, 4(8), 085007.
  • [6] Chatterjee, M.J., Banerjee, D., Chatterjee, K. 2016. Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material. Materials Research Express, 3(8), 085009.
  • [7] Kiran, R., Kumar, A., Chauhan, V.S., Kumar, R., Vaish, R. 2017. Engineered carbon nanotubes reinforced polymer composites for enhanced thermoelectric performance. Materials Research Express, 4(10), 105002.
  • [8] Wang, L., Jia, X., Wang, D., Zhu, G., Li, J. 2013. Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites. Synthetic Metals, 181, 79-85.
  • [9] Li, X., Liu, C., Wang, T., Wang, W., Wang, X., Jiang, Q., Xu, J. 2017. Preparation of 2D MoSe2/PEDOT: PSS composite and its thermoelectric properties. Materials Research Express, 4(11), 116410.
  • [10] Ao, W.Q., Wang, L., Li, J.Q., Pan, F., Wu, C.N. 2011. Synthesis and characterization of polythiophene/Bi2Te3 nanocomposite thermoelectric material. Journal of electronic materials, 40(9), 2027-2032.
  • [11] Du, Y., Cai, K. F., Shen, S.Z., An, B., Qin, Z., Casey, P. S. 2012. Influence of sintering temperature on thermoelectric properties of Bi 2 Te 3/Polythiophene composite materials. Journal of Materials Science: Materials in Electronics, 23(4), 870-876.
  • [12] Morad, M., Fadlallah, M.M., Hassan, M.A., Sheha, E. 2016. Evaluation of the effect of V2O5 on the electrical and thermoelectric properties of poly (vinyl alcohol)/graphene nanoplatelets nanocomposite. Materials Research Express, 3(3), 035015.
  • [13] Chen, Y., Zhao, Y., Liang, Z. 2015. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy & Environmental Science, 8(2), 401-422.
  • [14] Bharti, M., Singh, A., Samanta, S., Aswal, D.K. 2018. Conductive polymers: Creating their niche in thermoelectric domain. Progress in Materials Science, 93, 270-310.
  • [15] Jaymand, M., Hatamzadeh, M., Omidi, Y. 2015. Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress in synthesis and applications. Progress in Polymer Science, 47, 26-69.
  • [16] Das, S., Chatterjee, D.P., Ghosh, R., Nandi, A.K. 2015. Water soluble polythiophenes: preparation and applications. RSC Advances, 5(26), 20160-20177.
  • [17] Ryu, H.W., Kim, Y.S., Kim, J.H., Cheong, I.W. 2014. Direct synthetic route for water-dispersible polythiophene nanoparticles via surfactant-free oxidative polymerization. Polymer, 55(3), 806-812.
  • [18] Lee, J.M., Lee, S.J., Jung, Y.J., Kim, J.H. 2008. Fabrication of nano-structured polythiophene nanoparticles in aqueous dispersion. Current Applied Physics, 8(6), 659-663.
  • [19] Lee, S.J., Lee, J.M., Cheong, I.W., Lee, H., Kim, J.H. 2008. A facile route of polythiophene nanoparticles via Fe3+‐catalyzed oxidative polymerization in aqueous medium. Journal of Polymer Science Part A: Polymer Chemistry, 46(6), 2097-2107.
  • [20] Wang, Z., Wang, Y., Xu, D., Kong, E.S.W., Zhang, Y. 2010. Facile synthesis of dispersible spherical polythiophene nanoparticles by copper (II) catalyzed oxidative polymerization in aqueous medium. Synthetic Metals, 160(9-10), 921-926.
  • [21] Chiriac, A.P., Neamtu, I., Simionescu, C.I. 2000. Polymerisation in a magnetic field: 12. A comparative study regarding some properties of poly (acrylamide) synthesised in a magnetic field. Polymer testing, 19(4), 405-413.
  • [22] Chiriac, A. and Simionescu, C. 2000. Magnetic field polymerisation. Progress in Polymer Science, 25(2), 219-258.
  • [23] Bag, D.S. and Maiti, S. 1998. Polymerization under magnetic field—II. Radical polymerization of acrylonitrile, styrene and methyl methacrylate. Polymer, 39(3), 525-531.
  • [24] Vedeneev, A., Khudyakov, I.V., Golubkova, N.A., Kuzmin, V.A., Irinyi, G. 1990. External magnetic field effect on the dye-photoinitiated polymerization of acrylamide. Journal of the Chemical Society, Faraday Transactions, 86(21), 3545-3549.
  • [25] Steiner, U.E., Ulrich, T. 1989 Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 8(1), 51-147.
  • [26] Yang, R., Wang, S., Zhao, K., Li, Y., Li, C., Xia, Y., Liu, Y. 2017. Comparison of oxidation polymerization methods of thiophene in aqueous medium and its mechanism. Polymer Science, Series B, 59(1), 16-27.
  • [27] Huner, K. 2021. Thermoelectric Properties of ex-situ PTH/PEDOT Composites. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(4), 783-791.
  • [28] Huner, K., Karaman, F. 2018. The effect of external magnetic field on the thermoelectric properties of polythiophene. Materials Research Express, 6(1), 015302.
  • [29] McCullough, R.D. 1998. The chemistry of conducting polythiophenes. Advanced Materials, 10(2), 93-116.
  • [30] Kelkar, D., Chourasia, A., 2013. Electrical and Magnetic Conduction Properties of Polythiophene Doped with FeCl3, Macromolecular Symposia, 327(1), 45-53.
  • [31] Kadac, K., Nowaczyk, J. 2016. Polythiophene nanoparticles in aqueous media. Journal of Applied Polymer Science, 133(23), 43495-43505.
  • [32] Li, Y., Du, Y., Dou, Y., Cai, K., Xu, J. 2017. PEDOT-based thermoelectric nanocomposites–A mini-review. Synthetic Metals, 226, 119-128.
  • [33] Moses, D., Chen, J., Denenstein, A., Kaveh, M., Chung, T.C., Heeger, A.J., Park, Y.W. 1981. Inter-soliton electron hopping transport in trans-(CH)x. Solid State Communications, 40(11), 1007-1010.
  • [34] Ma, W., Shi, K., Wu, Y., Lu, Z. Y., Liu, H.Y., Wang, J. Y., Pei, J. 2016. Enhanced molecular packing of a conjugated polymer with high organic thermoelectric power factor. ACS Applied Materials & İnterfaces, 8(37), 24737-24743.

Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi

Year 2021, Volume: 25 Issue: 3, 644 - 649, 30.12.2021
https://doi.org/10.19113/sdufenbed.896923

Abstract

Seebeck etkisinden yararlanılarak üretilen termoelektrik jeneratörleri çalıştırmak için vücut ısısı gibi küçük ısı kaynakları yeterlidir. Bu nedenle, küçük sıcaklık farkını enerjiye çeviren termoelektrik malzemeler günümüzde oldukça önemli hale gelmiştir. Bu çalışmada, ilk defa sıvı kristal varlığında, manyetik alanlı ve manyetik alansız ortamda önce politiyofen (PTh) partikülleri daha sonra PTh üzerine 3,4-etilendioksi tiyofen (EDOT) polimerleştirilerek PTh/PEDOT kompozitleri sentezlenmiş ve termoelektrik özellikleri incelenmiştir. Sentezlenen polimerlerin ince filmlerinden Seebeck katsayısı ve elektriksel iletkenlik ölçülüp güç faktörleri hesaplanmıştır. Manyetik alan, elektriksel iletkenliği çok fazla değiştirmezken, Seebeck katsayısını mutlak değer olarak arttırmış ve partikül büyüklüklerini küçültmüştür. En yüksek elektriksel iletkenlik, Seebeck katsayısı ve güç faktörü değerleri sırasıyla, 0,6 S/cm, -540 µV/K ve 17,5 µW/mK² ile manyetik alan altında sentezlenen PThm örneğinden alınmıştır. Elde edilen PTh ve PTh/PEDOT kompozitlerin FTIR, UV-vis. analizi ve DLS ölçümü yapılmıştır.

References

  • [1] Wei, Q., Mukaida, M., Kirihara, K., Naitoh, Y. Ishida, T. 2015. Recent progress on PEDOT-based thermoelectric materials. Materials, 8(2), 732-750.
  • [2] Dubey, N., Leclerc, M. 2011. Conducting polymers: efficient thermoelectric materials. Journal of Polymer Science Part B: Polymer Physics, 49(7), 467-475.
  • [3] Kim, G.H., Shao, L., Zhang, K., Pipe, K.P. 2013. Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nature materials, 12(8), 719-723.
  • [4] Ovik, R., Long, B.D., Barma, M. C., Riaz, M., Sabri, M.F.M., Said, S.M., Saidur, R. 2016. A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery. Renewable and sustainable energy reviews, 64, 635-659.
  • [5] Misra, S., Bharti, M., Singh, A., Debnath, A.K., Aswal, D.K., Hayakawa, Y. 2017. Nanostructured polypyrrole: enhancement in thermoelectric figure of merit through suppression of thermal conductivity. Materials Research Express, 4(8), 085007.
  • [6] Chatterjee, M.J., Banerjee, D., Chatterjee, K. 2016. Composite of single walled carbon nanotube and sulfosalicylic acid doped polyaniline: a thermoelectric material. Materials Research Express, 3(8), 085009.
  • [7] Kiran, R., Kumar, A., Chauhan, V.S., Kumar, R., Vaish, R. 2017. Engineered carbon nanotubes reinforced polymer composites for enhanced thermoelectric performance. Materials Research Express, 4(10), 105002.
  • [8] Wang, L., Jia, X., Wang, D., Zhu, G., Li, J. 2013. Preparation and thermoelectric properties of polythiophene/multiwalled carbon nanotube composites. Synthetic Metals, 181, 79-85.
  • [9] Li, X., Liu, C., Wang, T., Wang, W., Wang, X., Jiang, Q., Xu, J. 2017. Preparation of 2D MoSe2/PEDOT: PSS composite and its thermoelectric properties. Materials Research Express, 4(11), 116410.
  • [10] Ao, W.Q., Wang, L., Li, J.Q., Pan, F., Wu, C.N. 2011. Synthesis and characterization of polythiophene/Bi2Te3 nanocomposite thermoelectric material. Journal of electronic materials, 40(9), 2027-2032.
  • [11] Du, Y., Cai, K. F., Shen, S.Z., An, B., Qin, Z., Casey, P. S. 2012. Influence of sintering temperature on thermoelectric properties of Bi 2 Te 3/Polythiophene composite materials. Journal of Materials Science: Materials in Electronics, 23(4), 870-876.
  • [12] Morad, M., Fadlallah, M.M., Hassan, M.A., Sheha, E. 2016. Evaluation of the effect of V2O5 on the electrical and thermoelectric properties of poly (vinyl alcohol)/graphene nanoplatelets nanocomposite. Materials Research Express, 3(3), 035015.
  • [13] Chen, Y., Zhao, Y., Liang, Z. 2015. Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy & Environmental Science, 8(2), 401-422.
  • [14] Bharti, M., Singh, A., Samanta, S., Aswal, D.K. 2018. Conductive polymers: Creating their niche in thermoelectric domain. Progress in Materials Science, 93, 270-310.
  • [15] Jaymand, M., Hatamzadeh, M., Omidi, Y. 2015. Modification of polythiophene by the incorporation of processable polymeric chains: Recent progress in synthesis and applications. Progress in Polymer Science, 47, 26-69.
  • [16] Das, S., Chatterjee, D.P., Ghosh, R., Nandi, A.K. 2015. Water soluble polythiophenes: preparation and applications. RSC Advances, 5(26), 20160-20177.
  • [17] Ryu, H.W., Kim, Y.S., Kim, J.H., Cheong, I.W. 2014. Direct synthetic route for water-dispersible polythiophene nanoparticles via surfactant-free oxidative polymerization. Polymer, 55(3), 806-812.
  • [18] Lee, J.M., Lee, S.J., Jung, Y.J., Kim, J.H. 2008. Fabrication of nano-structured polythiophene nanoparticles in aqueous dispersion. Current Applied Physics, 8(6), 659-663.
  • [19] Lee, S.J., Lee, J.M., Cheong, I.W., Lee, H., Kim, J.H. 2008. A facile route of polythiophene nanoparticles via Fe3+‐catalyzed oxidative polymerization in aqueous medium. Journal of Polymer Science Part A: Polymer Chemistry, 46(6), 2097-2107.
  • [20] Wang, Z., Wang, Y., Xu, D., Kong, E.S.W., Zhang, Y. 2010. Facile synthesis of dispersible spherical polythiophene nanoparticles by copper (II) catalyzed oxidative polymerization in aqueous medium. Synthetic Metals, 160(9-10), 921-926.
  • [21] Chiriac, A.P., Neamtu, I., Simionescu, C.I. 2000. Polymerisation in a magnetic field: 12. A comparative study regarding some properties of poly (acrylamide) synthesised in a magnetic field. Polymer testing, 19(4), 405-413.
  • [22] Chiriac, A. and Simionescu, C. 2000. Magnetic field polymerisation. Progress in Polymer Science, 25(2), 219-258.
  • [23] Bag, D.S. and Maiti, S. 1998. Polymerization under magnetic field—II. Radical polymerization of acrylonitrile, styrene and methyl methacrylate. Polymer, 39(3), 525-531.
  • [24] Vedeneev, A., Khudyakov, I.V., Golubkova, N.A., Kuzmin, V.A., Irinyi, G. 1990. External magnetic field effect on the dye-photoinitiated polymerization of acrylamide. Journal of the Chemical Society, Faraday Transactions, 86(21), 3545-3549.
  • [25] Steiner, U.E., Ulrich, T. 1989 Magnetic field effects in chemical kinetics and related phenomena. Chemical Reviews, 8(1), 51-147.
  • [26] Yang, R., Wang, S., Zhao, K., Li, Y., Li, C., Xia, Y., Liu, Y. 2017. Comparison of oxidation polymerization methods of thiophene in aqueous medium and its mechanism. Polymer Science, Series B, 59(1), 16-27.
  • [27] Huner, K. 2021. Thermoelectric Properties of ex-situ PTH/PEDOT Composites. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 21(4), 783-791.
  • [28] Huner, K., Karaman, F. 2018. The effect of external magnetic field on the thermoelectric properties of polythiophene. Materials Research Express, 6(1), 015302.
  • [29] McCullough, R.D. 1998. The chemistry of conducting polythiophenes. Advanced Materials, 10(2), 93-116.
  • [30] Kelkar, D., Chourasia, A., 2013. Electrical and Magnetic Conduction Properties of Polythiophene Doped with FeCl3, Macromolecular Symposia, 327(1), 45-53.
  • [31] Kadac, K., Nowaczyk, J. 2016. Polythiophene nanoparticles in aqueous media. Journal of Applied Polymer Science, 133(23), 43495-43505.
  • [32] Li, Y., Du, Y., Dou, Y., Cai, K., Xu, J. 2017. PEDOT-based thermoelectric nanocomposites–A mini-review. Synthetic Metals, 226, 119-128.
  • [33] Moses, D., Chen, J., Denenstein, A., Kaveh, M., Chung, T.C., Heeger, A.J., Park, Y.W. 1981. Inter-soliton electron hopping transport in trans-(CH)x. Solid State Communications, 40(11), 1007-1010.
  • [34] Ma, W., Shi, K., Wu, Y., Lu, Z. Y., Liu, H.Y., Wang, J. Y., Pei, J. 2016. Enhanced molecular packing of a conjugated polymer with high organic thermoelectric power factor. ACS Applied Materials & İnterfaces, 8(37), 24737-24743.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Keziban Hüner 0000-0001-7235-6338

Tuğba Güntav This is me 0000-0001-5056-7011

Publication Date December 30, 2021
Published in Issue Year 2021 Volume: 25 Issue: 3

Cite

APA Hüner, K., & Güntav, T. (2021). Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(3), 644-649. https://doi.org/10.19113/sdufenbed.896923
AMA Hüner K, Güntav T. Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi. J. Nat. Appl. Sci. December 2021;25(3):644-649. doi:10.19113/sdufenbed.896923
Chicago Hüner, Keziban, and Tuğba Güntav. “Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal Ve Manyetik Alanın Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no. 3 (December 2021): 644-49. https://doi.org/10.19113/sdufenbed.896923.
EndNote Hüner K, Güntav T (December 1, 2021) Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25 3 644–649.
IEEE K. Hüner and T. Güntav, “Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi”, J. Nat. Appl. Sci., vol. 25, no. 3, pp. 644–649, 2021, doi: 10.19113/sdufenbed.896923.
ISNAD Hüner, Keziban - Güntav, Tuğba. “Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal Ve Manyetik Alanın Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/3 (December 2021), 644-649. https://doi.org/10.19113/sdufenbed.896923.
JAMA Hüner K, Güntav T. Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi. J. Nat. Appl. Sci. 2021;25:644–649.
MLA Hüner, Keziban and Tuğba Güntav. “Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal Ve Manyetik Alanın Etkisi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 25, no. 3, 2021, pp. 644-9, doi:10.19113/sdufenbed.896923.
Vancouver Hüner K, Güntav T. Politiyofen/PEDOT Kompozitinin Termoelektrik Özelliklerine Sıvı Kristal ve Manyetik Alanın Etkisi. J. Nat. Appl. Sci. 2021;25(3):644-9.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.