Research Article
BibTex RIS Cite

3D Baskı ile Üretilen Polimer Kompozit Malzemelerin Termal Performansının Simülasyonu ve Optimizasyonu

Year 2025, Volume: 29 Issue: 2, 493 - 501, 25.08.2025
https://doi.org/10.19113/sdufenbed.1739031

Abstract

Bu çalışmada, 3B baskı teknolojisi kullanılarak üretilen ABS, PLA ve TPU polimer kompozit malzemelerin yüksek sıcaklık koşullarındaki termal performanslarının simülasyon ve deneysel yöntemlerle incelenmesi amaçlanmıştır. SolidWorks yazılımı kullanılarak gerçekleştirilen kararlı durum ve geçiş analizleri, malzemelerin sıcaklık dağılımını, termal stresini ve deformasyon davranışını değerlendirmiştir. Bulgular, sıcaklık değişimlerinin polimerlerin mekanik dayanıklılığını doğrudan etkilediğini ve kritik stres konsantrasyonlarının malzemenin hizmet ömrünü kısaltabileceğini göstermektedir. Özellikle TPU daha yüksek deformasyon seviyeleri sergilerken, PLA'nın belirgin sıcaklık gradyanlarına duyarlı olduğu ve ABS'nin daha düzgün bir stres dağılımı gösterdiği bulunmuştur. Optimizasyon önerileri, üretim parametrelerinde ve tasarımda yapılan iyileştirmelerin termal stresleri %15-25 oranında azaltabileceğini göstermektedir. Bu sonuçlar, polimer kompozitlerin endüstriyel uygulamalarında daha dayanıklı ve uzun ömürlü tasarımlar geliştirmek için değerli bilgiler sağlamaktadır.

References

  • [1] Gibson, I., Rosen, D. W., Stucker, B. 2015. Additive Manufacturing Technologies. 2nd. Springer. Heidelberg, 500s.
  • [2] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen. 2017. The role of additive manufacturing in the era of industry 4.0. Proc Manuf, 11, 545-554.
  • [3] K.V. Srinivasan, A. Manimaran, M. Arulprakasajothi, M. Revanth, V.A. Arolkar. 2019. Design and Development of Porous Regenerator for Stirling Cryocooler Using Additive Manufacturing. Thermal Science and Engineering Progress, 11, 195-203.
  • [4] Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620–628.
  • [5] Ichakpa, M., Goodyear, M., Duthie, J., Duthie, M., Wisely, R., MacPherson, A., Keyte, J., Pancholi, K., & Njuguna, J. (2023). Investigation on Mechanical and Thermal Properties of 3D Printed Polyamide 6, Graphene Oxide and Glass Fibre Reinforced Composites under Dry, Wet and High Temperature Conditions. Journal of Composites Science, 7(6), 227.
  • [6] Strong, A. B. 2008. Plastics Materials and processing. 3rd edition. Pearson Education. Canada, 917s.
  • [7] Khan, R., Newaz, G., Andrews, E. 2018. Thermo-mechanical performance of polymer composites: A review. Composite Structures, 202, 10–22.
  • [8] Zhou, W., Wu, Y., Wang, C. 2020. Thermal performance of 3D printed polymer composites under varying temperature conditions. Polymer Testing, 88, 106517.
  • [9] Hoffman, D. 2020. Engineering design with SOLIDWORKS 2020. SDC Publications. USA, 816s.
  • [10] ASTM International. (2014). ASTM D638-14: Standard test method for tensile properties of plastics. ASTM International. https://www.astm.org/ (Erişim Tarihi: 10.03.2025)
  • [11] Gómez-Gras, G., Jerez-Mesa, R., Travieso-Rodríguez, J. A., Lluma-Fuentes, J. 2018. Fatigue performance of fused filament fabrication PLA specimens. Materials & Design, 140, 278–285.
  • [12] X. Wang, M. Jiang, Z.W. Zhou, J.H. Gou, D. Hui. 2017. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng, 110, 442-458. [13] Ulkır, O. (2023). Production of piezoelectric cantilever using MEMS-based layered manufacturing technology. Optik, 277, 170472.
  • [14] A.A. D'Amico, A. Debaie, A.M. Peterson. 2017.Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modelling. Rapid. Prototyp. J., 23, 943-953.
  • [15] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen. 2016. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci., 59, 41-85.
  • [16] H. Prajapati, D. Ravoori, R.L. Woods, A. Jain. 2018. Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Additive Manufacturing, 21, 84-90.
  • [17] Smith, J., Brown, L., & Zhao, Y. (2021). Thermal behavior of polymer composites under radiative environments. Polymer Testing, 99, 107234.

Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing

Year 2025, Volume: 29 Issue: 2, 493 - 501, 25.08.2025
https://doi.org/10.19113/sdufenbed.1739031

Abstract

This study aims to investigate the thermal performance of ABS, PLA, and TPU polymer composite materials produced using 3D printing technology under high-temperature conditions through simulation and experimental methods. Steady-state and transient analyses conducted using SolidWorks software evaluated the materials' temperature distribution, thermal stress, and deformation behavior. The findings indicate that temperature variations directly influence the mechanical durability of polymers and that critical stress concentrations may shorten the material's service life. Notably, TPU exhibited higher deformation levels, while PLA was found to be sensitive to pronounced temperature gradients, and ABS demonstrated a more uniform stress distribution. Optimization recommendations suggest that improvements in production parameters and design can reduce thermal stresses by 15-25%. These results provide valuable insights for developing more durable and long-lasting designs in industrial applications of polymer composites.

References

  • [1] Gibson, I., Rosen, D. W., Stucker, B. 2015. Additive Manufacturing Technologies. 2nd. Springer. Heidelberg, 500s.
  • [2] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen. 2017. The role of additive manufacturing in the era of industry 4.0. Proc Manuf, 11, 545-554.
  • [3] K.V. Srinivasan, A. Manimaran, M. Arulprakasajothi, M. Revanth, V.A. Arolkar. 2019. Design and Development of Porous Regenerator for Stirling Cryocooler Using Additive Manufacturing. Thermal Science and Engineering Progress, 11, 195-203.
  • [4] Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620–628.
  • [5] Ichakpa, M., Goodyear, M., Duthie, J., Duthie, M., Wisely, R., MacPherson, A., Keyte, J., Pancholi, K., & Njuguna, J. (2023). Investigation on Mechanical and Thermal Properties of 3D Printed Polyamide 6, Graphene Oxide and Glass Fibre Reinforced Composites under Dry, Wet and High Temperature Conditions. Journal of Composites Science, 7(6), 227.
  • [6] Strong, A. B. 2008. Plastics Materials and processing. 3rd edition. Pearson Education. Canada, 917s.
  • [7] Khan, R., Newaz, G., Andrews, E. 2018. Thermo-mechanical performance of polymer composites: A review. Composite Structures, 202, 10–22.
  • [8] Zhou, W., Wu, Y., Wang, C. 2020. Thermal performance of 3D printed polymer composites under varying temperature conditions. Polymer Testing, 88, 106517.
  • [9] Hoffman, D. 2020. Engineering design with SOLIDWORKS 2020. SDC Publications. USA, 816s.
  • [10] ASTM International. (2014). ASTM D638-14: Standard test method for tensile properties of plastics. ASTM International. https://www.astm.org/ (Erişim Tarihi: 10.03.2025)
  • [11] Gómez-Gras, G., Jerez-Mesa, R., Travieso-Rodríguez, J. A., Lluma-Fuentes, J. 2018. Fatigue performance of fused filament fabrication PLA specimens. Materials & Design, 140, 278–285.
  • [12] X. Wang, M. Jiang, Z.W. Zhou, J.H. Gou, D. Hui. 2017. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng, 110, 442-458. [13] Ulkır, O. (2023). Production of piezoelectric cantilever using MEMS-based layered manufacturing technology. Optik, 277, 170472.
  • [14] A.A. D'Amico, A. Debaie, A.M. Peterson. 2017.Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modelling. Rapid. Prototyp. J., 23, 943-953.
  • [15] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen. 2016. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci., 59, 41-85.
  • [16] H. Prajapati, D. Ravoori, R.L. Woods, A. Jain. 2018. Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Additive Manufacturing, 21, 84-90.
  • [17] Smith, J., Brown, L., & Zhao, Y. (2021). Thermal behavior of polymer composites under radiative environments. Polymer Testing, 99, 107234.
There are 16 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Articles
Authors

Selim Bacak 0000-0002-9640-2893

Publication Date August 25, 2025
Submission Date July 9, 2025
Acceptance Date August 22, 2025
Published in Issue Year 2025 Volume: 29 Issue: 2

Cite

APA Bacak, S. (2025). Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 493-501. https://doi.org/10.19113/sdufenbed.1739031
AMA Bacak S. Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. J. Nat. Appl. Sci. August 2025;29(2):493-501. doi:10.19113/sdufenbed.1739031
Chicago Bacak, Selim. “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, no. 2 (August 2025): 493-501. https://doi.org/10.19113/sdufenbed.1739031.
EndNote Bacak S (August 1, 2025) Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 493–501.
IEEE S. Bacak, “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”, J. Nat. Appl. Sci., vol. 29, no. 2, pp. 493–501, 2025, doi: 10.19113/sdufenbed.1739031.
ISNAD Bacak, Selim. “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (August2025), 493-501. https://doi.org/10.19113/sdufenbed.1739031.
JAMA Bacak S. Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. J. Nat. Appl. Sci. 2025;29:493–501.
MLA Bacak, Selim. “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 29, no. 2, 2025, pp. 493-01, doi:10.19113/sdufenbed.1739031.
Vancouver Bacak S. Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. J. Nat. Appl. Sci. 2025;29(2):493-501.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

All published articles in the journal can be accessed free of charge and are open access under the Creative Commons CC BY-NC (Attribution-NonCommercial) license. All authors and other journal users are deemed to have accepted this situation. Click here to access detailed information about the CC BY-NC license.