Araştırma Makalesi
BibTex RIS Kaynak Göster

3D Baskı ile Üretilen Polimer Kompozit Malzemelerin Termal Performansının Simülasyonu ve Optimizasyonu

Yıl 2025, Cilt: 29 Sayı: 2, 493 - 501, 25.08.2025
https://doi.org/10.19113/sdufenbed.1739031

Öz

Bu çalışmada, 3B baskı teknolojisi kullanılarak üretilen ABS, PLA ve TPU polimer kompozit malzemelerin yüksek sıcaklık koşullarındaki termal performanslarının simülasyon ve deneysel yöntemlerle incelenmesi amaçlanmıştır. SolidWorks yazılımı kullanılarak gerçekleştirilen kararlı durum ve geçiş analizleri, malzemelerin sıcaklık dağılımını, termal stresini ve deformasyon davranışını değerlendirmiştir. Bulgular, sıcaklık değişimlerinin polimerlerin mekanik dayanıklılığını doğrudan etkilediğini ve kritik stres konsantrasyonlarının malzemenin hizmet ömrünü kısaltabileceğini göstermektedir. Özellikle TPU daha yüksek deformasyon seviyeleri sergilerken, PLA'nın belirgin sıcaklık gradyanlarına duyarlı olduğu ve ABS'nin daha düzgün bir stres dağılımı gösterdiği bulunmuştur. Optimizasyon önerileri, üretim parametrelerinde ve tasarımda yapılan iyileştirmelerin termal stresleri %15-25 oranında azaltabileceğini göstermektedir. Bu sonuçlar, polimer kompozitlerin endüstriyel uygulamalarında daha dayanıklı ve uzun ömürlü tasarımlar geliştirmek için değerli bilgiler sağlamaktadır.

Kaynakça

  • [1] Gibson, I., Rosen, D. W., Stucker, B. 2015. Additive Manufacturing Technologies. 2nd. Springer. Heidelberg, 500s.
  • [2] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen. 2017. The role of additive manufacturing in the era of industry 4.0. Proc Manuf, 11, 545-554.
  • [3] K.V. Srinivasan, A. Manimaran, M. Arulprakasajothi, M. Revanth, V.A. Arolkar. 2019. Design and Development of Porous Regenerator for Stirling Cryocooler Using Additive Manufacturing. Thermal Science and Engineering Progress, 11, 195-203.
  • [4] Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620–628.
  • [5] Ichakpa, M., Goodyear, M., Duthie, J., Duthie, M., Wisely, R., MacPherson, A., Keyte, J., Pancholi, K., & Njuguna, J. (2023). Investigation on Mechanical and Thermal Properties of 3D Printed Polyamide 6, Graphene Oxide and Glass Fibre Reinforced Composites under Dry, Wet and High Temperature Conditions. Journal of Composites Science, 7(6), 227.
  • [6] Strong, A. B. 2008. Plastics Materials and processing. 3rd edition. Pearson Education. Canada, 917s.
  • [7] Khan, R., Newaz, G., Andrews, E. 2018. Thermo-mechanical performance of polymer composites: A review. Composite Structures, 202, 10–22.
  • [8] Zhou, W., Wu, Y., Wang, C. 2020. Thermal performance of 3D printed polymer composites under varying temperature conditions. Polymer Testing, 88, 106517.
  • [9] Hoffman, D. 2020. Engineering design with SOLIDWORKS 2020. SDC Publications. USA, 816s.
  • [10] ASTM International. (2014). ASTM D638-14: Standard test method for tensile properties of plastics. ASTM International. https://www.astm.org/ (Erişim Tarihi: 10.03.2025)
  • [11] Gómez-Gras, G., Jerez-Mesa, R., Travieso-Rodríguez, J. A., Lluma-Fuentes, J. 2018. Fatigue performance of fused filament fabrication PLA specimens. Materials & Design, 140, 278–285.
  • [12] X. Wang, M. Jiang, Z.W. Zhou, J.H. Gou, D. Hui. 2017. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng, 110, 442-458. [13] Ulkır, O. (2023). Production of piezoelectric cantilever using MEMS-based layered manufacturing technology. Optik, 277, 170472.
  • [14] A.A. D'Amico, A. Debaie, A.M. Peterson. 2017.Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modelling. Rapid. Prototyp. J., 23, 943-953.
  • [15] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen. 2016. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci., 59, 41-85.
  • [16] H. Prajapati, D. Ravoori, R.L. Woods, A. Jain. 2018. Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Additive Manufacturing, 21, 84-90.
  • [17] Smith, J., Brown, L., & Zhao, Y. (2021). Thermal behavior of polymer composites under radiative environments. Polymer Testing, 99, 107234.

Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing

Yıl 2025, Cilt: 29 Sayı: 2, 493 - 501, 25.08.2025
https://doi.org/10.19113/sdufenbed.1739031

Öz

This study aims to investigate the thermal performance of ABS, PLA, and TPU polymer composite materials produced using 3D printing technology under high-temperature conditions through simulation and experimental methods. Steady-state and transient analyses conducted using SolidWorks software evaluated the materials' temperature distribution, thermal stress, and deformation behavior. The findings indicate that temperature variations directly influence the mechanical durability of polymers and that critical stress concentrations may shorten the material's service life. Notably, TPU exhibited higher deformation levels, while PLA was found to be sensitive to pronounced temperature gradients, and ABS demonstrated a more uniform stress distribution. Optimization recommendations suggest that improvements in production parameters and design can reduce thermal stresses by 15-25%. These results provide valuable insights for developing more durable and long-lasting designs in industrial applications of polymer composites.

Kaynakça

  • [1] Gibson, I., Rosen, D. W., Stucker, B. 2015. Additive Manufacturing Technologies. 2nd. Springer. Heidelberg, 500s.
  • [2] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen. 2017. The role of additive manufacturing in the era of industry 4.0. Proc Manuf, 11, 545-554.
  • [3] K.V. Srinivasan, A. Manimaran, M. Arulprakasajothi, M. Revanth, V.A. Arolkar. 2019. Design and Development of Porous Regenerator for Stirling Cryocooler Using Additive Manufacturing. Thermal Science and Engineering Progress, 11, 195-203.
  • [4] Alamri, H., & Low, I. M. (2012). Mechanical properties and water absorption behaviour of recycled cellulose fibre reinforced epoxy composites. Polymer Testing, 31(5), 620–628.
  • [5] Ichakpa, M., Goodyear, M., Duthie, J., Duthie, M., Wisely, R., MacPherson, A., Keyte, J., Pancholi, K., & Njuguna, J. (2023). Investigation on Mechanical and Thermal Properties of 3D Printed Polyamide 6, Graphene Oxide and Glass Fibre Reinforced Composites under Dry, Wet and High Temperature Conditions. Journal of Composites Science, 7(6), 227.
  • [6] Strong, A. B. 2008. Plastics Materials and processing. 3rd edition. Pearson Education. Canada, 917s.
  • [7] Khan, R., Newaz, G., Andrews, E. 2018. Thermo-mechanical performance of polymer composites: A review. Composite Structures, 202, 10–22.
  • [8] Zhou, W., Wu, Y., Wang, C. 2020. Thermal performance of 3D printed polymer composites under varying temperature conditions. Polymer Testing, 88, 106517.
  • [9] Hoffman, D. 2020. Engineering design with SOLIDWORKS 2020. SDC Publications. USA, 816s.
  • [10] ASTM International. (2014). ASTM D638-14: Standard test method for tensile properties of plastics. ASTM International. https://www.astm.org/ (Erişim Tarihi: 10.03.2025)
  • [11] Gómez-Gras, G., Jerez-Mesa, R., Travieso-Rodríguez, J. A., Lluma-Fuentes, J. 2018. Fatigue performance of fused filament fabrication PLA specimens. Materials & Design, 140, 278–285.
  • [12] X. Wang, M. Jiang, Z.W. Zhou, J.H. Gou, D. Hui. 2017. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng, 110, 442-458. [13] Ulkır, O. (2023). Production of piezoelectric cantilever using MEMS-based layered manufacturing technology. Optik, 277, 170472.
  • [14] A.A. D'Amico, A. Debaie, A.M. Peterson. 2017.Effect of layer thickness on irreversible thermal expansion and interlayer strength in fused deposition modelling. Rapid. Prototyp. J., 23, 943-953.
  • [15] H. Chen, V.V. Ginzburg, J. Yang, Y. Yang, W. Liu, Y. Huang, L. Du, B. Chen. 2016. Thermal conductivity of polymer-based composites: fundamentals and applications. Prog. Polym. Sci., 59, 41-85.
  • [16] H. Prajapati, D. Ravoori, R.L. Woods, A. Jain. 2018. Measurement of anisotropic thermal conductivity and inter-layer thermal contact resistance in polymer fused deposition modeling (FDM). Additive Manufacturing, 21, 84-90.
  • [17] Smith, J., Brown, L., & Zhao, Y. (2021). Thermal behavior of polymer composites under radiative environments. Polymer Testing, 99, 107234.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Selim Bacak 0000-0002-9640-2893

Yayımlanma Tarihi 25 Ağustos 2025
Gönderilme Tarihi 9 Temmuz 2025
Kabul Tarihi 22 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 2

Kaynak Göster

APA Bacak, S. (2025). Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 493-501. https://doi.org/10.19113/sdufenbed.1739031
AMA Bacak S. Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2025;29(2):493-501. doi:10.19113/sdufenbed.1739031
Chicago Bacak, Selim. “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 2 (Ağustos 2025): 493-501. https://doi.org/10.19113/sdufenbed.1739031.
EndNote Bacak S (01 Ağustos 2025) Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 2 493–501.
IEEE S. Bacak, “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 2, ss. 493–501, 2025, doi: 10.19113/sdufenbed.1739031.
ISNAD Bacak, Selim. “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/2 (Ağustos2025), 493-501. https://doi.org/10.19113/sdufenbed.1739031.
JAMA Bacak S. Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:493–501.
MLA Bacak, Selim. “Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 2, 2025, ss. 493-01, doi:10.19113/sdufenbed.1739031.
Vancouver Bacak S. Simulation and Optimization of the Thermal Performance of Polymer Composite Materials Produced by 3d Printing. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(2):493-501.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.