Research Article
BibTex RIS Cite

Farklı Toprak Sıcaklıklarının Tarla Kapasitesindeki Toprağın CO2 Üretimine Etkisi

Year 2021, Volume: 16 Issue: 2, 200 - 206, 17.12.2021

Abstract

Bu çalışmada, deneme başlangıcında doygunluğun %60’ına ulaşıncaya kadar sulanan bir toprak örneğinin, farklı sıcaklıklardaki CO2 emisyonunda meydana gelen değişimleri saptamak amacıyla saksı denemesi yapılmıştır. Denemede saksıların yerleştirildiği düzeneğin sıcaklıkları (uygulamalar) 40, 36 ve 32 °C’ye sabitlenmiş, ayrıca oda sıcaklığında kontrol saksıları da denemeye alınmıştır. Her ölçüm (kayıt) öncesi saksılardan eksilen suyun tekrar saksılara ilave edilmesi şeklinde eşit nem koşulları sağlanmıştır. Zamana bağlı olarak toprak sıcaklığında, toprak neminde, CO2 emisyonunda ve buharlaşmada meydana gelen değişimler başlangıçtan itibaren 9. güne kadar günlük kayıtlar alınarak izlenmiştir.
Deneme sonucunda, saksıların yer aldığı ortama uygulanan sıcaklık ile toprak sıcaklığı arasında fark olduğu, uygulanan sıcaklığın toprağa aynı seviyede geçmediği saptanmıştır. Buna karşın 40 °C, 36 °C, 32 °C ve oda sıcaklığı uygulamaları arasında sırasıyla 3.9, 3.4 ve 3.9 °C sıcaklık farkı oluşmuştur. Kayıt başlangıcında uygulanan suyun buharlaşma hızı sıcaklıkla birlikte artmıştır. Deneme sonunda uygulamalara bağlı olarak saptanan ortalama toprak CO2 emisyonları 40, 36, 32 ve kontrol uygulamaları için sırasıyla 0.355, 0.432, 0.410 ve 0.380 g m-2 h-1 olarak belirlenirken ortalama değerlere göre sadece 40 ve 36 uygulaması arasında P=0.05 önem düzeyinde fark bulunmuştur. H2O emisyonları 40, 36, 32 ve kontrol uygulamaları için sırasıyla 19.7, 18.9, 15.5 ce 13.2 g m-2 h-1 bulunduğu ve aralarındaki farkın önemli (P=0.05) olduğu saptanmıştır.

References

  • Akbolat D, Ekinci K, Bozkurt YE, Kumbul BS (2018). The influence of soil and air temperature on soil carbon dioxide emission in farmland. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 13 (1): 89-94.
  • Akbolat D, Evrendilek F, Coskan A, Ekinci K (2009). Quantifying soil respiration in response to shortterm tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica Section B– Soil and Plant Science, 59: 50-56.
  • Akbolat, D, Coşkan A (2020). Farklı Toprak Sıcaklıkları ile Azalan Toprak Nem İçeriğinin CO2 Üretimine Etkisi. Journal of the Faculty of Agriculture Volume 15, Issue 2, Page 192-198
  • Allison, D, Wallenstein MD. and Bradford MA (2010). Soil carbon response to warming dependent on microbial physiology. Nature Geosci. 3:336-340.
  • Chapman SJ, Thurlow M (1996). The influence of climate on CO2 and CH4 emissions from organic soils. Agricultural Forest Meteorology, 79: 205–217.
  • Davidson E, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4: 217-227.
  • Davidson EA, Janssens IA, & Luo Y (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12(2), 154-164.
  • EPA (2019). https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. (erişim_23.09.2021).
  • Evans SE, Burke IC (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16: 20-33.
  • Haddaway N R, Hedlund K, Jackson LE, Katterer T, Lugato E, Thomsen IK, Jorgensen HB, Isberg PE. (2016). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5 (1): 1-8
  • Jabro JD, Sainju U, Stevens WB, Evans RG (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management, 88(4): 1478-1484.
  • Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150: 107-127.
  • Lee J, Hopmans JW, Van-Kessel C, King AP, Evatt KJ, Louie D, Rolston DE, Six J (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agr. Ecosystems & Environment, 129(4): 378-390.
  • Lehnert M (2013). The soil temperature regime in the urban and suburban landscapes of Olomouc, Czech Republic. Moravian Geographical Reports, 21(3), 27-36.
  • Mariko S, Urano T, Asanuma J (2007). Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. Journal of Hydrology, 333(1): 118-123.
  • Onwuka BM (2016). Effects of soil temperature on Some Soil properties and plant growth. Scholarly Journal of Agricultural Science Vol. 6(3), pp. 89-93.
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current science, 82(5): 510-517.
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current science, 82(5): 510-517.
  • Shrestha RK, Lal R, Penrose C (2009). Greenhouse gas emissions and global warming potential of reclaimed forest and grassland soils. Journal of Environmental Quality, 38: 426-436.
  • Yerli C, Şahin Ü, Çakmakcı T, Tüfenkçi Ş (2019). Effects of Agricultural Applications on CO2 Emission and Ways to Reduce. Turkish Journal of Agriculture-Food Science

Effect of Different Soil Temperatures on CO2 Formation of Soil at Field Capacity

Year 2021, Volume: 16 Issue: 2, 200 - 206, 17.12.2021

Abstract

In this study, a pot experiment was carried out in order to determine the changes in CO2 emission at different temperatures of soil that irrigated at the beginning of the experiment until it reaches 60% of the saturation. In the experiment, the temperatures of the system in which the pots were placed (applications) were fixed at 40, 36 and 32 °C, and control pots at room temperature were also included in the experiment. Equal humidity conditions were ensured by adding the water as much as evaporated to the pots before each measurement (recording). Changes in soil temperature, soil moisture, CO2 emission and evaporation depending on time were monitored by taking daily records from the beginning to the 9th day of experiment.
Result revealed that there were differences between the temperatures applied to the environment where the pots are located and the soil temperature, and the applied temperature did not reach the soil at the same level. On the other hand, temperature difference of 3.9, 3.4 and 3.9 °C between 40 °C, 36 °C, 32 °C and room temperature was achieved, respectively. The evaporation rate of the applied water was increased with increasing temperature. At the end of the experiment, the mean CO2 emissions were determined as 0.355, 0.432, 0.410 and 0.380 g m-2 h-1 for 40, 36, 32 °C and control applications, respectively. The only significant difference (P=0.05) by means of averages observed between 40 and 36 °C applications. H2O emissions found to be 19.7, 18.9, 15.5 and 13.2 g m-2 h-1 for 40, 36, 32 °C and control applications, respectively and the differences among applications were significant (P=0.05).

References

  • Akbolat D, Ekinci K, Bozkurt YE, Kumbul BS (2018). The influence of soil and air temperature on soil carbon dioxide emission in farmland. Süleyman Demirel Üniversitesi Ziraat Fakültesi Dergisi, 13 (1): 89-94.
  • Akbolat D, Evrendilek F, Coskan A, Ekinci K (2009). Quantifying soil respiration in response to shortterm tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica Section B– Soil and Plant Science, 59: 50-56.
  • Akbolat, D, Coşkan A (2020). Farklı Toprak Sıcaklıkları ile Azalan Toprak Nem İçeriğinin CO2 Üretimine Etkisi. Journal of the Faculty of Agriculture Volume 15, Issue 2, Page 192-198
  • Allison, D, Wallenstein MD. and Bradford MA (2010). Soil carbon response to warming dependent on microbial physiology. Nature Geosci. 3:336-340.
  • Chapman SJ, Thurlow M (1996). The influence of climate on CO2 and CH4 emissions from organic soils. Agricultural Forest Meteorology, 79: 205–217.
  • Davidson E, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4: 217-227.
  • Davidson EA, Janssens IA, & Luo Y (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12(2), 154-164.
  • EPA (2019). https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. (erişim_23.09.2021).
  • Evans SE, Burke IC (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16: 20-33.
  • Haddaway N R, Hedlund K, Jackson LE, Katterer T, Lugato E, Thomsen IK, Jorgensen HB, Isberg PE. (2016). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5 (1): 1-8
  • Jabro JD, Sainju U, Stevens WB, Evans RG (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management, 88(4): 1478-1484.
  • Johnson JMF, Franzluebbers AJ, Weyers SL, Reicosky DC (2007). Agricultural opportunities to mitigate greenhouse gas emissions. Environmental Pollution, 150: 107-127.
  • Lee J, Hopmans JW, Van-Kessel C, King AP, Evatt KJ, Louie D, Rolston DE, Six J (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agr. Ecosystems & Environment, 129(4): 378-390.
  • Lehnert M (2013). The soil temperature regime in the urban and suburban landscapes of Olomouc, Czech Republic. Moravian Geographical Reports, 21(3), 27-36.
  • Mariko S, Urano T, Asanuma J (2007). Effects of irrigation on CO2 and CH4 fluxes from Mongolian steppe soil. Journal of Hydrology, 333(1): 118-123.
  • Onwuka BM (2016). Effects of soil temperature on Some Soil properties and plant growth. Scholarly Journal of Agricultural Science Vol. 6(3), pp. 89-93.
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current science, 82(5): 510-517.
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current science, 82(5): 510-517.
  • Shrestha RK, Lal R, Penrose C (2009). Greenhouse gas emissions and global warming potential of reclaimed forest and grassland soils. Journal of Environmental Quality, 38: 426-436.
  • Yerli C, Şahin Ü, Çakmakcı T, Tüfenkçi Ş (2019). Effects of Agricultural Applications on CO2 Emission and Ways to Reduce. Turkish Journal of Agriculture-Food Science
There are 20 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research
Authors

Davut Akbolat 0000-0002-4999-0901

Ali Coşkan 0000-0001-5473-3515

Publication Date December 17, 2021
Submission Date October 5, 2021
Acceptance Date October 27, 2021
Published in Issue Year 2021 Volume: 16 Issue: 2

Cite

APA Akbolat, D., & Coşkan, A. (2021). Farklı Toprak Sıcaklıklarının Tarla Kapasitesindeki Toprağın CO2 Üretimine Etkisi. Ziraat Fakültesi Dergisi, 16(2), 200-206.

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607