Determination of The Antifungal Capacity of Kefir Components Against Spoilage Fungi
Year 2024,
Volume: 19 Issue: 2, 94 - 104, 31.12.2024
Tugba Kök Taş
,
Kübra Küçüksoku
,
Nilüfer Sena Aydoğdu
,
Meryem Ateş
Abstract
The purpose of this study is to investigate the potential alternative use of kefir and its derived components in the biocontrol of fungi that cause economic losses during the harvesting and storage of fruits. The antifungal properties of kefir and its derived components (the non-protein liquid fraction of kefir, kefiran, and yeast cells isolated from kefir) were examined using the disk diffusion method, and the minimum inhibitory concentration (MIC) against naturally occurring fungi during the storage of hazelnuts, oranges, and apples were determined. Fungal isolates obtained from different fruits were identified as Aspergillus niger, Penicillium digitatum, and Penicillium expansum through 18S rRNA Polymerase Chain Reaction. The inhibition zones of A. niger, P. digitatum, and P. expansum were evaluated using the disk diffusion method. The minimum inhibitory concentrations (MICs) for kefir against A. niger, P. digitatum, and P. italicum were found to be 0.4, 0.2, and 0.25 µg mL-1, respectively. The effectiveness of these applications was analyzed using a technique known as TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution). With the development of the results of this study, alternative biocontrol applications using kefir and its components could be developed to prevent fungi-related microbial spoilage, providing an alternative to chemical treatments.
Ethical Statement
As the authors of this study, we confirm that we do not have any ethics committee approval.
Supporting Institution
SDU Bap
Project Number
Suleyman Demirel University Project 4870-YL2-17
Thanks
This work was supported by the financial support for this work from Scientific Research Commission at Suleyman Demirel University Project 4870-YL2-17 is gratefully acknowledged.
References
- Al-Mohammadi, A.R., Ibrahim, R.A., Moustafa, A.H., Ismaiel, A.A., Abou Zeid, A., & Enan, G. (2021). Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules, 26(9), 2635. https://doi.org/10.3390/molecules26092635
- Ansarifar, E., Shahidi, F., Mohebbi, M., Razavi, S. M., & Ansarifar, J. (2015). A new technique to evaluate the effect of chitosan on properties of deep-fried Kurdish cheese nuggets by TOPSIS. LWT-food Science and Technology, 62(2), 1211-1219. https://doi.org/10.1016/j.lwt.2015.01.051
- Azizkhani, M., Saris, P. E. J., & Baniasadi, M. (2021). An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. Journal of Food Measurement and Characterization, 15, 406-415. https://doi.org/10.1007/s11694-020-00645-4
- Bazioli, J.M., Belinato, J.R., Costa, J.H., Akiyama, D.Y., Pontes, J.G.D.M., Kupper, K.C., & Fill T.P.. (2019). Biological control of citrus postharvest phytopathogens. Toxins, 11(8), 460. https://doi.org/10.3390/toxins11080460
- Buonsenso, F., Schiavon G., & Spadaro D. (2023). Efficacy and Mechanisms of Action of Essential Oils' Vapours against Blue Mould on Apples Caused by Penicillium expansum. International Journal of Molecular Sciences, 24(3), 2900. doi: 10.3390/ijms24032900
- Caro, A., & León A. (2014). Fungal Growth Inhibition of Aspergillus ochraceus with “Panela” Fermented with Water Kefir Grains. Vitae Colombia, 21(3), 191-200
- Cerioni, L., de los Ángeles Lazarte, M., Villegas, J. M., Rodríguez-Montelongo, L., & Volentini, S. I. (2013). Inhibition of Penicillium expansum by an oxidative treatment. Food microbiology, 33(2), 298-301. https://doi.org/10.1016/j.fm.2012.09.011
- Chen, P. (2019). Effects of normalization on the entropy-based TOPSIS method. Expert Systems with Applications, 136, 33-41. https://doi.org/10.1016/j.eswa.2019.06.035
- Duran, F. E., Özdemir, N., Güneşer, O., & KökTaş, T. (2022). Prominent strains of kefir grains in the formation of volatile compound profile in milk medium; the role of Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lentilactobacillus kefiri and Lentilactobacillus parakefiri. European Food Research and Technology, 248(4), 975-989. doi: 10.1007/s00217-021-03936-2.
- Erdogan, F. S., Ozarslan, S., Guzel-Seydim, Z. B., & Kök Taş, T. (2019). The effect of kefir produced from natural kefir grains on the intestinal microbial populations and antioxidant capacities of Balb/c mice. Food Research International, 115, 408-413. https://doi.org/10.1016/j.foodres.2018.10.080
- Fouad, M. T., Moustafa, A., Hussein, L., Romeilah, R., & Gouda, M. (2015). In-vitro antioxidant and antimicrobial activities of selected fruit and vegetable juices and fermented dairy products commonly consumed in Egypt. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(2), 541-550.
- Gamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & Peláez, A. L. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85-92 https://doi.org/10.1016/j.ijfoodmicro.2016.06.038
- Gamba, R.R., C. Ni Colo, M. Correa, A.L., & Astoreca, T.M. Alconada Magliano, G. De Antoni and Á. León Peláez. (2015). Antifungal activity against Aspergillus parasiticus of supernatants from whey permeates fermented with kéfir grains. Advances in Microbiology 5:6. DOI: 10.4236/aim.2015.56049
- Gonda, M., Garmendia, G., Rufo, C., León Peláez, Á., Wisniewski, M., Droby, S., & Vero, S. (2019). Biocontrol of Aspergillus flavus in ensiled sorghum by water kefir microorganisms. Microorganisms, 7(8), 253. https://doi.org/10.3390/microorganisms7080253
- González-Estrada, R., F. Blancas-Benítez, B. Montaño-Leyva, C. reno-Hernández, L.D.C. Romero-Islas, J. Romero-Islas., & P. Gutierrez-Martinez. (2018). A review: Study on the Postharvest Decay Control of Fruit by Trichoderma. Trichoderma-The Most Widely Used Fungicide.
- González-Orozco, B. D., García-Cano, I., Jiménez-Flores, R., & Alvárez, V. B. (2022). Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. Journal of Dairy Science, 105(5), 3703-3715. https://doi.org/10.3168/jds.2021-21382
- Guerrero, V., Guigon, C., Berlanga, D., & D. Ojeda. (2014). Complete control of Penicillium expansum on apple fruit using a combination of antagonistic yeast Candida oleophila. Chilean journal of agricultural research, 74(4), 427-431. http://dx.doi.org/10.4067/S0718-58392014000400008
- Gul, O., Atalar, I., Mortas, M., Saricaoglu F.T., & Yazıcı, F.(2018). Application of TOPSIS methodology to determine optimum hazelnut cake concentration and high pressure homogenization condition for hazelnut milk production based on physicochemical, structural and sensory properties. Journal of Food Measurement and Characterization, 12, 2404-2415.
- Halıcı, M.G., & Güllü M. (2024). A macrofungus taxon that is commonly eaten by the folk in Central Anatolia but never reported from Türkiye: Agaricus pequinii (Boud.) Konrad & Maubl. Biological Diversity and Conservation 17(1), 1-6. DOI: 10.46309/biodicon.2023.1252319
- Kim, D.H., Jeong, D., Kim, H., Kang, I.B., Chon, J.W., Song, K.Y., & Seo, K.H.. (2016). Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean journal for food science of animal resources, 36(6), 787. doi: 10.5851/kosfa.2016.36.6.787
- Koç, İ., ,Yardım, E.N., Çelik, A., Mendeş, M., Mirtagioğlu H., & Namlı A.. (2018). Fındık Kabuklarından Elde Edilmiş Odun Sirkesinin in vitro Şartlarında Küf Etmenlerine Karşı Antifungal Etkisinin Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 296-300. https://doi.org/10.17798/bitlisfen.425809
- Koçak, Ç., Çubuk Demiralay, E., Özarslan, S., Aydoğdu N.S., & Kök Taş, T. (2021). Determination of Monosaccharide Composition of Kefiran using HPLC. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 71(1), 49-59. Doi: 10.15567/Mljekarstvo.2021.0105
- Lakshmi, T. S., MaryPramela, A., & Iyer, P. (2017). Anti-microbial, anti-fungal and anti-carcinogenic properties of coconut milk kefir. Int. J. Home Sci, 3, 365-369.
- Londero, A., León, A., Diosma, G., De Antoni, G., Abraham, A., & Garrote G.. (2014). Fermented Whey as Poultry Feed Additive to Prevent Fungal Contamination. Journal of the Science of Food and Agriculture, 94(15), 3189-3194. http://dx.doi.org/10.1002/jsfa.6669
- Mesías, F.J., Martín, A., & Hernández, A. (2021). Consumers’ growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit. Food Research International, 150, 110749. https://doi.org/10.1016/j.foodres.2021.110749.
- Miao, J., Guo, H., Ou, Y., Liu, G., Fang, X., Liao, Z., Ke, C., Chen, Y., Zhao, L., & Cao Y.. (2014). Purification and Characterization of Bacteriocin F1, a Novel Bacteriocin Produced by Lactobacillus paracasei subsp. Tolerans FX-6 from Tibetan Kefir, a Traditional Fermented Milk from Tibet, China. Food Control, 42, 48-53. http://dx.doi.org/10.1016/j.foodcont.2014.01.041
- Moradi, Z., & Kalanpour, N. (2019). Kefiran, a branched polysaccharide: Preparation, properties and applications: A review. Carbohydrate polymers, 223, 115100. https://doi.org/10.1016/j.carbpol.2019.115100
- Moure, M. C., Pérez Torrado, R., Garmendia, G., Vero, S., Querol, A., Alconada, T., & León Peláez, Á. (2023). Characterization of kefir yeasts with antifungal capacity against Aspergillus species. International Microbiology, 26(2), 361-370. https://doi.org/10.1007/s10123-022-00296-z
- Oliveira, A. P., dos Santos, G. A., Nomura, C. S., & Naozuka, J. (2019). Elemental chemical composition of products derived from kefir fermented milk. Journal of Food Composition and Analysis, 78, 86-90. https://doi.org/10.1016/j.jfca.2019.02.00
- Purutoğlu, K., İspirli, H., Yüzer, M.O., Serencam, H., & Dertli E. (2020). Diversity and functional characteristics of lactic acid bacteria from traditional kefir grains. International Journal of Dairy Technology. 73(1) https://doi.org/10.1111/1471-0307.12633.
- Sharifi, M., Moridnia, A., Mortazavi, D., Salehi, M., Bagheri, M., & Sheikhi, A. (2017). Kefir: a powerful probiotics with anticancer properties. Medical Oncology, 34, 1-7. DOI 10.1007/s12032-017-1044-9
- Taheur, F.B., Mansour, C., & Chaie, K. (2020). Inhibitory efect of kefr on Aspergillus growth and mycotoxin production. Euro-Mediterranean Journal for Environmental Integration, 5, 1-8. https://doi.org/10.1007/s41207-020-0141-x
- Talebanpour, R., & Javadi, M. (2015). Decision-making for flexible manufacturing systems using DEMATEL and SAW. Decision Science Letters, 4(3), 363-372.
- Wang, J., Vanga, S.K., Saxena, R., Orsat V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 41. https://doi.org/10.3390/cli6020041
- Zhimo, V.Y., Biasi, A, Kumar, A., Feygenberg, O., Salim, S., Vero S., & Droby, S. (2020). Yeasts and Bacterial Consortia from Kefir Grains Are Effective Biocontrol Agents of Postharvest Diseases of Fruits. Microorganisms, 8(3), 428. https://doi.org/10.3390/microorganisms8030428
Kefir Bileşenlerinin Bozulma Küflerine Karşı Antifungal Kapasitesi
Year 2024,
Volume: 19 Issue: 2, 94 - 104, 31.12.2024
Tugba Kök Taş
,
Kübra Küçüksoku
,
Nilüfer Sena Aydoğdu
,
Meryem Ateş
Abstract
Bu çalışmanın amacı, kefir ve ondan elde edilen bileşenlerin, meyvelerin hasat ve depolanması sırasında ekonomik kayıplara yol açan küflerin biyokontrolünde alternatif kullanım potansiyelini araştırmaktır. kefir ve kefirden elde edilen bileşenler (kefirin protein olmayan sıvısı, kefiran ve kefirden izole edilen maya hücreleri) antifungal özelliklerinin etkisi disk difüzyon ile araştırılmış ve fındık, portakal ve elmanın depolanması sırasında doğal olarak üreyen küflere karşı minimum inhibitör konsantrasyon belirlenmiştir. Farklı meyvelerden elde edilen küf izolatları 18S RNA Polimeraz Zincir Reaksiyonu ile Aspergillus niger, Penicillium digitatum ve Penicillium expansum olarak tanımlanmıştır. A.niger, P. digitatum ve P. expansum küflerin inhibisyon zonları disk difüzyon yöntemi ile değerlendirilmiştir. Kefirin A. niger, P. digitatum ve P. italicum için minimum inhibitör konsantrasyonları (MIC) sırasıyla 0.4, 0.2 ve 0.25 µg mL-1 olmuştur. Bu uygulamaların etkinliği, TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution) analizi olarak bilinen teknik kullanılarak gerçekleştirilmiştir. Bu çalışmanın sonuçlarının geliştirilmesi ile, küf kaynaklı mikrobiyal bozulmaların önlenmesi için kefir ve kefirden elde edilen bileşikler kullanılarak kimyasal uygulamalara alternatif biyokontrol uygulamaları geliştirilmesi önerilir.
Project Number
Suleyman Demirel University Project 4870-YL2-17
References
- Al-Mohammadi, A.R., Ibrahim, R.A., Moustafa, A.H., Ismaiel, A.A., Abou Zeid, A., & Enan, G. (2021). Chemical Constitution and Antimicrobial Activity of Kefir Fermented Beverage. Molecules, 26(9), 2635. https://doi.org/10.3390/molecules26092635
- Ansarifar, E., Shahidi, F., Mohebbi, M., Razavi, S. M., & Ansarifar, J. (2015). A new technique to evaluate the effect of chitosan on properties of deep-fried Kurdish cheese nuggets by TOPSIS. LWT-food Science and Technology, 62(2), 1211-1219. https://doi.org/10.1016/j.lwt.2015.01.051
- Azizkhani, M., Saris, P. E. J., & Baniasadi, M. (2021). An in-vitro assessment of antifungal and antibacterial activity of cow, camel, ewe, and goat milk kefir and probiotic yogurt. Journal of Food Measurement and Characterization, 15, 406-415. https://doi.org/10.1007/s11694-020-00645-4
- Bazioli, J.M., Belinato, J.R., Costa, J.H., Akiyama, D.Y., Pontes, J.G.D.M., Kupper, K.C., & Fill T.P.. (2019). Biological control of citrus postharvest phytopathogens. Toxins, 11(8), 460. https://doi.org/10.3390/toxins11080460
- Buonsenso, F., Schiavon G., & Spadaro D. (2023). Efficacy and Mechanisms of Action of Essential Oils' Vapours against Blue Mould on Apples Caused by Penicillium expansum. International Journal of Molecular Sciences, 24(3), 2900. doi: 10.3390/ijms24032900
- Caro, A., & León A. (2014). Fungal Growth Inhibition of Aspergillus ochraceus with “Panela” Fermented with Water Kefir Grains. Vitae Colombia, 21(3), 191-200
- Cerioni, L., de los Ángeles Lazarte, M., Villegas, J. M., Rodríguez-Montelongo, L., & Volentini, S. I. (2013). Inhibition of Penicillium expansum by an oxidative treatment. Food microbiology, 33(2), 298-301. https://doi.org/10.1016/j.fm.2012.09.011
- Chen, P. (2019). Effects of normalization on the entropy-based TOPSIS method. Expert Systems with Applications, 136, 33-41. https://doi.org/10.1016/j.eswa.2019.06.035
- Duran, F. E., Özdemir, N., Güneşer, O., & KökTaş, T. (2022). Prominent strains of kefir grains in the formation of volatile compound profile in milk medium; the role of Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lentilactobacillus kefiri and Lentilactobacillus parakefiri. European Food Research and Technology, 248(4), 975-989. doi: 10.1007/s00217-021-03936-2.
- Erdogan, F. S., Ozarslan, S., Guzel-Seydim, Z. B., & Kök Taş, T. (2019). The effect of kefir produced from natural kefir grains on the intestinal microbial populations and antioxidant capacities of Balb/c mice. Food Research International, 115, 408-413. https://doi.org/10.1016/j.foodres.2018.10.080
- Fouad, M. T., Moustafa, A., Hussein, L., Romeilah, R., & Gouda, M. (2015). In-vitro antioxidant and antimicrobial activities of selected fruit and vegetable juices and fermented dairy products commonly consumed in Egypt. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 6(2), 541-550.
- Gamba, R. R., Caro, C. A., Martínez, O. L., Moretti, A. F., Giannuzzi, L., De Antoni, G. L., & Peláez, A. L. (2016). Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas. International Journal of Food Microbiology, 235, 85-92 https://doi.org/10.1016/j.ijfoodmicro.2016.06.038
- Gamba, R.R., C. Ni Colo, M. Correa, A.L., & Astoreca, T.M. Alconada Magliano, G. De Antoni and Á. León Peláez. (2015). Antifungal activity against Aspergillus parasiticus of supernatants from whey permeates fermented with kéfir grains. Advances in Microbiology 5:6. DOI: 10.4236/aim.2015.56049
- Gonda, M., Garmendia, G., Rufo, C., León Peláez, Á., Wisniewski, M., Droby, S., & Vero, S. (2019). Biocontrol of Aspergillus flavus in ensiled sorghum by water kefir microorganisms. Microorganisms, 7(8), 253. https://doi.org/10.3390/microorganisms7080253
- González-Estrada, R., F. Blancas-Benítez, B. Montaño-Leyva, C. reno-Hernández, L.D.C. Romero-Islas, J. Romero-Islas., & P. Gutierrez-Martinez. (2018). A review: Study on the Postharvest Decay Control of Fruit by Trichoderma. Trichoderma-The Most Widely Used Fungicide.
- González-Orozco, B. D., García-Cano, I., Jiménez-Flores, R., & Alvárez, V. B. (2022). Invited review: Milk kefir microbiota—Direct and indirect antimicrobial effects. Journal of Dairy Science, 105(5), 3703-3715. https://doi.org/10.3168/jds.2021-21382
- Guerrero, V., Guigon, C., Berlanga, D., & D. Ojeda. (2014). Complete control of Penicillium expansum on apple fruit using a combination of antagonistic yeast Candida oleophila. Chilean journal of agricultural research, 74(4), 427-431. http://dx.doi.org/10.4067/S0718-58392014000400008
- Gul, O., Atalar, I., Mortas, M., Saricaoglu F.T., & Yazıcı, F.(2018). Application of TOPSIS methodology to determine optimum hazelnut cake concentration and high pressure homogenization condition for hazelnut milk production based on physicochemical, structural and sensory properties. Journal of Food Measurement and Characterization, 12, 2404-2415.
- Halıcı, M.G., & Güllü M. (2024). A macrofungus taxon that is commonly eaten by the folk in Central Anatolia but never reported from Türkiye: Agaricus pequinii (Boud.) Konrad & Maubl. Biological Diversity and Conservation 17(1), 1-6. DOI: 10.46309/biodicon.2023.1252319
- Kim, D.H., Jeong, D., Kim, H., Kang, I.B., Chon, J.W., Song, K.Y., & Seo, K.H.. (2016). Antimicrobial activity of kefir against various food pathogens and spoilage bacteria. Korean journal for food science of animal resources, 36(6), 787. doi: 10.5851/kosfa.2016.36.6.787
- Koç, İ., ,Yardım, E.N., Çelik, A., Mendeş, M., Mirtagioğlu H., & Namlı A.. (2018). Fındık Kabuklarından Elde Edilmiş Odun Sirkesinin in vitro Şartlarında Küf Etmenlerine Karşı Antifungal Etkisinin Belirlenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 7(2), 296-300. https://doi.org/10.17798/bitlisfen.425809
- Koçak, Ç., Çubuk Demiralay, E., Özarslan, S., Aydoğdu N.S., & Kök Taş, T. (2021). Determination of Monosaccharide Composition of Kefiran using HPLC. Mljekarstvo: časopis za unaprjeđenje proizvodnje i prerade mlijeka, 71(1), 49-59. Doi: 10.15567/Mljekarstvo.2021.0105
- Lakshmi, T. S., MaryPramela, A., & Iyer, P. (2017). Anti-microbial, anti-fungal and anti-carcinogenic properties of coconut milk kefir. Int. J. Home Sci, 3, 365-369.
- Londero, A., León, A., Diosma, G., De Antoni, G., Abraham, A., & Garrote G.. (2014). Fermented Whey as Poultry Feed Additive to Prevent Fungal Contamination. Journal of the Science of Food and Agriculture, 94(15), 3189-3194. http://dx.doi.org/10.1002/jsfa.6669
- Mesías, F.J., Martín, A., & Hernández, A. (2021). Consumers’ growing appetite for natural foods: Perceptions towards the use of natural preservatives in fresh fruit. Food Research International, 150, 110749. https://doi.org/10.1016/j.foodres.2021.110749.
- Miao, J., Guo, H., Ou, Y., Liu, G., Fang, X., Liao, Z., Ke, C., Chen, Y., Zhao, L., & Cao Y.. (2014). Purification and Characterization of Bacteriocin F1, a Novel Bacteriocin Produced by Lactobacillus paracasei subsp. Tolerans FX-6 from Tibetan Kefir, a Traditional Fermented Milk from Tibet, China. Food Control, 42, 48-53. http://dx.doi.org/10.1016/j.foodcont.2014.01.041
- Moradi, Z., & Kalanpour, N. (2019). Kefiran, a branched polysaccharide: Preparation, properties and applications: A review. Carbohydrate polymers, 223, 115100. https://doi.org/10.1016/j.carbpol.2019.115100
- Moure, M. C., Pérez Torrado, R., Garmendia, G., Vero, S., Querol, A., Alconada, T., & León Peláez, Á. (2023). Characterization of kefir yeasts with antifungal capacity against Aspergillus species. International Microbiology, 26(2), 361-370. https://doi.org/10.1007/s10123-022-00296-z
- Oliveira, A. P., dos Santos, G. A., Nomura, C. S., & Naozuka, J. (2019). Elemental chemical composition of products derived from kefir fermented milk. Journal of Food Composition and Analysis, 78, 86-90. https://doi.org/10.1016/j.jfca.2019.02.00
- Purutoğlu, K., İspirli, H., Yüzer, M.O., Serencam, H., & Dertli E. (2020). Diversity and functional characteristics of lactic acid bacteria from traditional kefir grains. International Journal of Dairy Technology. 73(1) https://doi.org/10.1111/1471-0307.12633.
- Sharifi, M., Moridnia, A., Mortazavi, D., Salehi, M., Bagheri, M., & Sheikhi, A. (2017). Kefir: a powerful probiotics with anticancer properties. Medical Oncology, 34, 1-7. DOI 10.1007/s12032-017-1044-9
- Taheur, F.B., Mansour, C., & Chaie, K. (2020). Inhibitory efect of kefr on Aspergillus growth and mycotoxin production. Euro-Mediterranean Journal for Environmental Integration, 5, 1-8. https://doi.org/10.1007/s41207-020-0141-x
- Talebanpour, R., & Javadi, M. (2015). Decision-making for flexible manufacturing systems using DEMATEL and SAW. Decision Science Letters, 4(3), 363-372.
- Wang, J., Vanga, S.K., Saxena, R., Orsat V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 41. https://doi.org/10.3390/cli6020041
- Zhimo, V.Y., Biasi, A, Kumar, A., Feygenberg, O., Salim, S., Vero S., & Droby, S. (2020). Yeasts and Bacterial Consortia from Kefir Grains Are Effective Biocontrol Agents of Postharvest Diseases of Fruits. Microorganisms, 8(3), 428. https://doi.org/10.3390/microorganisms8030428