Review
BibTex RIS Cite

İklim Değişikliğinin Bitki Fungal Patojenleri Üzerindeki Etkileri

Year 2025, Volume: 20 Issue: 1, 17 - 24, 30.06.2025
https://doi.org/10.54975/isubuzfd.1606818

Abstract

Son yıllarda etkilerinin daha çok hissedildiği iklim değişikliği tüm dünyada farklı etkilere neden olmaktadır. Tüm canlılar gibi bitkiler de bu değişiklikten ciddi şekilde etkilenmektedir. Sıcaklık, nem ve karbondioksit gibi mikroorganizma gelişimini direkt olarak etkileyen faktörler göz önüne alındığında, bitki ve toprak mikroorganizma faunasında değişkenlik gözlemlenebilmesi muhtemeldir. Funguslar, bitki patojenleri arasında en baskın gruptur ve atmosferik koşullardan oldukça etkilenirler. Ayrıca fungusların ortam koşullarına hızlı bir şekilde adapte olabilmesi ile yeni ya da daha virülent ırklar ortaya çıkabilmektedir. Bu konuda tüm dünyada iklim değişikliği senaryoları oluşturularak gelecekteki durum tahmin edilmekte ve önlem alma trendi bulunmaktadır. Bu derleme makalenin amacı, iklim değişikliğinin bitki fungal patojenleri üzerindeki etkileri konusunda yürütülen ve bilgi içeren çalışmaları bir araya getirmek, bu konuda çalışan araştırıcılara ışık tutmak, farkındalık yaratmak ve kaynak oluşturmaktır.

References

  • Agrios, G. N. (2004). Plant pathology, 5th edn. Elsevier, London, 922p.
  • Alkhalifah, D. H. M., Damra, E., Melhem, M. B., & Hozzein, W. N. (2023). Fungus under a changing climate: modeling the current and future global distribution of Fusarium oxysporum using geographical information system data. Microorganisms, 11(2), 468. http://dx.doi.org/10.3390/microorganisms11020468
  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–44. http://dx.doi.org/10.1016/j.tree.2004.07.021
  • Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197-202. http://dx.doi.org/10.1016/j.pbi.2019.12.006
  • Aydoğdu, G. (2020). İklim Değişikliği ve Tarımsal Uygulamalar Etkileşimi. Ondokuz Mayıs Üniversitesi İnsan Bilimleri Dergisi, 1(1), 43 – 61.
  • Baştaş, K. K. (2021). Impacts of Climate Changes on Plant-Beneficial Microorganism Interactions. Turkish Journal of Agriculture-Food Science and Technology, 9, 2594-2603.
  • Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi, (2002). http://iklim.cob.gov.tr/iklim/AnaSayfa/BMIDCS.aspx?sflang=tr (Erişim: 01.10. 2024).
  • Boyer, J.S. (1995). Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annual Review of Phytopathology, 33, 251–74. http://dx.doi.org/10.1146/annurev.py.33.090195.001343
  • Butterworth, M.H., Semenov, M.A., Barnes, A., Moran, D., West, J.S., & Fitt, B.D.L. (2010). North-South divide; contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 7, 123-130. http://dx.doi.org/10.1098/rsif.2009.0111
  • Can, A. & Baygüven, B. (2004). Sera Gazları Emisyon Envanteri Çalışma Grubu Taslak Raporu. TÜİK, Çevre İstatistikleri Şubesi, Ankara.
  • Chakraborty, S. & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14. http://dx.doi.org/10.1111/j.1365-3059.2010.02411.x
  • Chakraborty, S. (2013). Migrate or evolve: options for plant pathogens under climate change. Global Change Biology, 19(7), 1985-2000IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. http://dx.doi.org/10.1111/gcb.12205 Chitarra, W., Siciliano, I., Ferrocino, I., Gullino, M.L., & Garibaldi, A. (2015). Effect of elevated atmospheric CO2 and temperature on the disease severity of rocket plants caused by Fusarium wilt under phytotron conditions. PLoS ONE, 10(10):e0140769. http://dx.doi.org/10.1371/journal.pone.0140769
  • Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., & Berthomé, R. (2021). Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist, 229(2), 712-734. http://dx.doi.org/10.1111/nph.16965
  • Dixon, G. R. (2012). Climate change–impact on crop growth and food production, and plant pathogens. Canadian Journal of Plant Pathology, 34(3), 362-379. http://dx.doi.org/10.1080/07060661.2012.701233
  • Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., & Mcelrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320-330. http://dx.doi.org/10.1111/j.1365-2486.2009.01978.x
  • Elad, Y., & Pertot, I. (2014). Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99-139. http://dx.doi.org/10.1080/15427528.2014.865412
  • Evans, N., Baierl, A., Semenov, M.A., Gladders, P., & Fitt, B.D.L. (2008). Range and severity of a plant disease increased by global warming. Journal of Royal Society Interface, 5, 525-531. http://dx.doi.org/10.1098/rsif.2007.1136
  • Gange, A.C., Ganage, E.G., Spvd.,s, T.H., & Boddy, L. (2007). Rapid and recent changes in fungal fruiting patterns. Science, 316 (5821), 71. http://dx.doi.org/10.1126/science.1137489
  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review Of Phytopathology, 44, 489-509. http://dx.doi.org/10.1146/annurev.phyto.44.070505.143420
  • Ghini, R., Hamada, E., & Bettiol, W. (2008). Climate change and plant disease. Scientia Agricola (Piracicaba, Brazil), 65, 98-107. http://dx.doi.org/10.1590/S0103-90162008000700015
  • Grulke, N. E. (2011). The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytologist 189, 8–11. http://dx.doi.org/10.1111/j.1469-8137.2010.03568.x
  • Hunjan, M. S., & Lore, J. S. (2020). Climate change: Impact on plant pathogens, diseases, and their management. Crop Protection Under Changing Climate, 85-100. http://dx.doi.org/10.1007/978-3-030-46111-9_4
  • Intergovernmental Panel on Climate Change. (2019). IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  • IPCC. (2007). Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • IPCC. (2008). Climate change and water, Intergovernmental panel on climate change technical report IV.
  • Jat, M. K., & Ahir, R. R. (2013). Effect of temperature, relative humidity and pH on mycelial growth and sporulation of Fusarium solani causing root rot of Indian Aloe (Aloe barbadensis MILL.). Journal of Plant Science Research, 29 (2),181.
  • Juroszek, P., Racca, P., Link, S., Farhumand, J., & Kleinhenz, B. (2020). Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 69(2), 179-193. http://dx.doi.org/10.1111/ppa.13119
  • Kaur, G., Singh, H., Maurya, S., Kumar, C., & Kumar, A. (2023). Current scenario of climate change and its impact on plant diseases. Plant Science Today, 10(4), 163-171. http://dx.doi.org/10.14719/pst.2479
  • Klopfenstein, N. B., Kim, M.-S., Hanna, J. W., Richardson, B.A., & Lundquist, J. (2009). Approaches to predicting potential impacts of climate change on forest disease: an example with Armillaria root disease. USDA Forest Service, Rocky Mountain Research Station, RMRS-RP-76, pp.
  • Lodha, S., & Mawar. R. (2020). Population dynamics of Macrophomina phaseolina in relation to disease management: A review. Journal of Phytopathology, 168,1–17. http://dx.doi.org/10.1111/jph.12854
  • Manici, L. M., Bregaglio, S., Fumagalli, D., & Donatelli, M. (2014). Modelling soil borne fungal pathogens of arable crops under climate change. International Journal of Biometeorology, 58, 2071-2083. http://dx.doi.org/10.1007/s00484-014-0808-6
  • McElrone, A.J., Sherald J.L., & Forseth, I.N. (2001). Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia infected by Xylella fastidiosa. Plant Disease 85, 1160–4. http://dx.doi.org/10.1094/PDIS.2001.85.11.1160
  • Miraglia, M., Marvin, H. J. P., Kleter, G. A., Battilani, P., Brera, C., Coni, E., ... & Vespermann, A. (2009). Climate change and food safety: an emerging issue with special focus on Europe. Food and Chemical Toxicology, 47(5), 1009-1021. http://dx.doi.org/10.1016/j.fct.2009.02.005
  • Nnadi, N. E., & Carter, D. A. (2021). Climate change and the emergence of fungal pathogens. PLoS Pathogens, 17(4), e1009503. http://dx.doi.org/10.1371/journal.ppat.1009503
  • Pandey, A. K., & Basandrai, A. K. (2021). Will Macrophomina phaseolina spread in legumes due to climate change? A critical review of current knowledge. Journal of Plant Diseases and Protection, 128(1), 9-18. http://dx.doi.org/10.1007/s41348-020-00374-2
  • Paterson, R. R. M., & Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International 43, 1902–14. http://dx.doi.org/10.1016/j.foodres.2009.07.010
  • Pathak, R., Singh, S. K., Tak, A., & Gehlot, P. (2018). Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosciences Biotechnology Research Asia, 15(3), 529-540. http://dx.doi.org/10.13005/bbra/2658
  • Peng, Z., Liu, Y., Qi, J., Gao, H., Li, X., Tian, Q., ... & Jiao, S. (2023). The climate‐driven distribution and response to global change of soil‐borne pathogens in agroecosystems. Global Ecology and Biogeography, 32(5), 766-779. http://dx.doi.org/10.1111/geb.13662
  • Rai, A., Irulappan, V., & Senthil-Kumar, M. (2022). Dry root rot of chickpea: a disease favored by drought. Plant Disease, 106(2), 346-356. http://dx.doi.org/10.1094/PDIS-07-21-1410-FE
  • Raza, M. M., & Bebber, D. P. (2022). Climate change and plant pathogens. Current Opinion in Microbiology, 70, 102233. http://dx.doi.org/10.1016/j.mib.2022.102233
  • Rienth, M., Vigneron, N., Walker, R. P., Castellarin, S. D., Sweetman, C., Burbidge, C. A., ... & Darriet, P. (2021). Modifications of grapevine berry composition induced by main viral and fungal pathogens in a climate change scenario. Frontiers in Plant Science, 12, 717223. http://dx.doi.org/10.3389/fpls.2021.717223
  • Rosenzweig, C. & Tubiello, F. N. (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change, 12, 855-873. http://dx.doi.org/10.1007/s11027-007-9103-8
  • Santini, A., & Ghelardini, L. (2015). Plant pathogen evolution and climate change. CABI Reviews, 1-8. http://dx.doi.org/10.1079/PAVSNNR201510035
  • Serrano, M. S., Romero, M. Á., Homet, P., & Gómez-Aparicio, L. (2022). Climate change impact on the population dynamics of exotic pathogens: The case of the worldwide pathogen Phytophthora cinnamomi. Agricultural and Forest Meteorology, 322, 109002. http://dx.doi.org/10.1016/j.agrformet.2022.109002
  • Sharma, M. (2016). Emerging disease scenario in pulses under climate change. Pulses Challenges and Opportunities under Changing Climatic Scenario.[Dixit, GP, Singh, J. and Singh, NP (ed.)], ISPRD, Kanpur, Uttar Pradesh, India, 138-146.
  • Sharma, M., Mangala, U.N., Krishnamurthy, M., Vadez, V., & Pande, S. (2010). Drought and dry root of chickpea. In: Proceedings of the 5th International Food Legumes Research Conference (IFLRC V) and 7th European Conference on Grain Legumes (AEP VII), Antalya, Turkey.
  • Siebold, M., & von Tiedemann, A. (2012). Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology, 5, 62–72. http://dx.doi.org/10.1016/j.funeco.2011.04.003
  • Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21(10), 640-656. http://dx.doi.org/10.1038/s41579-023-00900-7
  • Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., ... & Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. http://dx.doi.org/10.1126/science.1256688
  • Vary, Z., Mullins, E., McElwain, J. C., & Doohan, F. M. (2015). The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Global Change Biology, 21(7), 2661-2669. http://dx.doi.org/10.1111/gcb.12899
  • Wahdan, S. F. M., Hossen, S., Tanunchai, B., Schädler, M., Buscot, F., & Purahong, W. (2020). Future climate significantly alters fungal plant pathogen dynamics during the early phase of wheat litter decomposition. Microorganisms, 8, 908. http://dx.doi.org/10.3390/microorganisms8060908
  • Watt, M. S., Ganley, R. J., Kriticos, D. J., & Manning, L. K. (2011). Dothistroma needle blight and pitch canker: the current and future potential distribution of two important diseases of Pinus species. Canadian Journal of Forest Research, 41, 412–424. http://dx.doi.org/10.1139/X10-204

Effects of Climate Change on Plant Fungal Pathogens

Year 2025, Volume: 20 Issue: 1, 17 - 24, 30.06.2025
https://doi.org/10.54975/isubuzfd.1606818

Abstract

Climate change, the effects of which have been felt more in recent years, causes different effects all over the world. Like all living things, plants are seriously affected by this change. Considering the factors that directly affect microorganism development, such as temperature, humidity and carbon dioxide, it is possible to observe variability in the plant and soil microorganism fauna. Fungi are the most dominant group among plant pathogens and are highly affected by atmospheric conditions. In addition, new or more virulent strains may emerge as fungi can quickly adapt to environmental conditions. In this regard, climate change scenarios are created all over the world to predict the future situation and there is a trend to take precautions. The purpose of this review article is to bring together informative studies on the effects of climate change on plant fungal pathogens, to shed light on researchers working on this subject, to raise awareness and to create resources.

References

  • Agrios, G. N. (2004). Plant pathology, 5th edn. Elsevier, London, 922p.
  • Alkhalifah, D. H. M., Damra, E., Melhem, M. B., & Hozzein, W. N. (2023). Fungus under a changing climate: modeling the current and future global distribution of Fusarium oxysporum using geographical information system data. Microorganisms, 11(2), 468. http://dx.doi.org/10.3390/microorganisms11020468
  • Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–44. http://dx.doi.org/10.1016/j.tree.2004.07.021
  • Anderson, R., Bayer, P. E., & Edwards, D. (2020). Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56, 197-202. http://dx.doi.org/10.1016/j.pbi.2019.12.006
  • Aydoğdu, G. (2020). İklim Değişikliği ve Tarımsal Uygulamalar Etkileşimi. Ondokuz Mayıs Üniversitesi İnsan Bilimleri Dergisi, 1(1), 43 – 61.
  • Baştaş, K. K. (2021). Impacts of Climate Changes on Plant-Beneficial Microorganism Interactions. Turkish Journal of Agriculture-Food Science and Technology, 9, 2594-2603.
  • Birleşmiş Milletler İklim Değişikliği Çerçeve Sözleşmesi, (2002). http://iklim.cob.gov.tr/iklim/AnaSayfa/BMIDCS.aspx?sflang=tr (Erişim: 01.10. 2024).
  • Boyer, J.S. (1995). Biochemical and biophysical aspects of water deficits and the predisposition to disease. Annual Review of Phytopathology, 33, 251–74. http://dx.doi.org/10.1146/annurev.py.33.090195.001343
  • Butterworth, M.H., Semenov, M.A., Barnes, A., Moran, D., West, J.S., & Fitt, B.D.L. (2010). North-South divide; contrasting impacts of climate change on crop yields in Scotland and England. Journal of the Royal Society Interface, 7, 123-130. http://dx.doi.org/10.1098/rsif.2009.0111
  • Can, A. & Baygüven, B. (2004). Sera Gazları Emisyon Envanteri Çalışma Grubu Taslak Raporu. TÜİK, Çevre İstatistikleri Şubesi, Ankara.
  • Chakraborty, S. & Newton, A. C. (2011). Climate change, plant diseases and food security: an overview. Plant Pathology, 60, 2–14. http://dx.doi.org/10.1111/j.1365-3059.2010.02411.x
  • Chakraborty, S. (2013). Migrate or evolve: options for plant pathogens under climate change. Global Change Biology, 19(7), 1985-2000IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. http://dx.doi.org/10.1111/gcb.12205 Chitarra, W., Siciliano, I., Ferrocino, I., Gullino, M.L., & Garibaldi, A. (2015). Effect of elevated atmospheric CO2 and temperature on the disease severity of rocket plants caused by Fusarium wilt under phytotron conditions. PLoS ONE, 10(10):e0140769. http://dx.doi.org/10.1371/journal.pone.0140769
  • Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., & Berthomé, R. (2021). Fight hard or die trying: when plants face pathogens under heat stress. New Phytologist, 229(2), 712-734. http://dx.doi.org/10.1111/nph.16965
  • Dixon, G. R. (2012). Climate change–impact on crop growth and food production, and plant pathogens. Canadian Journal of Plant Pathology, 34(3), 362-379. http://dx.doi.org/10.1080/07060661.2012.701233
  • Eastburn, D. M., Degennaro, M. M., Delucia, E. H., Dermody, O., & Mcelrone, A. J. (2010). Elevated atmospheric carbon dioxide and ozone alter soybean diseases at SoyFACE. Global Change Biology, 16, 320-330. http://dx.doi.org/10.1111/j.1365-2486.2009.01978.x
  • Elad, Y., & Pertot, I. (2014). Climate change impacts on plant pathogens and plant diseases. Journal of Crop Improvement, 28, 99-139. http://dx.doi.org/10.1080/15427528.2014.865412
  • Evans, N., Baierl, A., Semenov, M.A., Gladders, P., & Fitt, B.D.L. (2008). Range and severity of a plant disease increased by global warming. Journal of Royal Society Interface, 5, 525-531. http://dx.doi.org/10.1098/rsif.2007.1136
  • Gange, A.C., Ganage, E.G., Spvd.,s, T.H., & Boddy, L. (2007). Rapid and recent changes in fungal fruiting patterns. Science, 316 (5821), 71. http://dx.doi.org/10.1126/science.1137489
  • Garrett, K. A., Dendy, S. P., Frank, E. E., Rouse, M. N., & Travers, S. E. (2006). Climate change effects on plant disease: Genomes to ecosystems. Annual Review Of Phytopathology, 44, 489-509. http://dx.doi.org/10.1146/annurev.phyto.44.070505.143420
  • Ghini, R., Hamada, E., & Bettiol, W. (2008). Climate change and plant disease. Scientia Agricola (Piracicaba, Brazil), 65, 98-107. http://dx.doi.org/10.1590/S0103-90162008000700015
  • Grulke, N. E. (2011). The nexus of host and pathogen phenology: understanding the disease triangle with climate change. New Phytologist 189, 8–11. http://dx.doi.org/10.1111/j.1469-8137.2010.03568.x
  • Hunjan, M. S., & Lore, J. S. (2020). Climate change: Impact on plant pathogens, diseases, and their management. Crop Protection Under Changing Climate, 85-100. http://dx.doi.org/10.1007/978-3-030-46111-9_4
  • Intergovernmental Panel on Climate Change. (2019). IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Geneva, Switzerland: Intergovernmental Panel on Climate Change.
  • IPCC. (2007). Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • IPCC. (2008). Climate change and water, Intergovernmental panel on climate change technical report IV.
  • Jat, M. K., & Ahir, R. R. (2013). Effect of temperature, relative humidity and pH on mycelial growth and sporulation of Fusarium solani causing root rot of Indian Aloe (Aloe barbadensis MILL.). Journal of Plant Science Research, 29 (2),181.
  • Juroszek, P., Racca, P., Link, S., Farhumand, J., & Kleinhenz, B. (2020). Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathology, 69(2), 179-193. http://dx.doi.org/10.1111/ppa.13119
  • Kaur, G., Singh, H., Maurya, S., Kumar, C., & Kumar, A. (2023). Current scenario of climate change and its impact on plant diseases. Plant Science Today, 10(4), 163-171. http://dx.doi.org/10.14719/pst.2479
  • Klopfenstein, N. B., Kim, M.-S., Hanna, J. W., Richardson, B.A., & Lundquist, J. (2009). Approaches to predicting potential impacts of climate change on forest disease: an example with Armillaria root disease. USDA Forest Service, Rocky Mountain Research Station, RMRS-RP-76, pp.
  • Lodha, S., & Mawar. R. (2020). Population dynamics of Macrophomina phaseolina in relation to disease management: A review. Journal of Phytopathology, 168,1–17. http://dx.doi.org/10.1111/jph.12854
  • Manici, L. M., Bregaglio, S., Fumagalli, D., & Donatelli, M. (2014). Modelling soil borne fungal pathogens of arable crops under climate change. International Journal of Biometeorology, 58, 2071-2083. http://dx.doi.org/10.1007/s00484-014-0808-6
  • McElrone, A.J., Sherald J.L., & Forseth, I.N. (2001). Effects of water stress on symptomatology and growth of Parthenocissus quinquefolia infected by Xylella fastidiosa. Plant Disease 85, 1160–4. http://dx.doi.org/10.1094/PDIS.2001.85.11.1160
  • Miraglia, M., Marvin, H. J. P., Kleter, G. A., Battilani, P., Brera, C., Coni, E., ... & Vespermann, A. (2009). Climate change and food safety: an emerging issue with special focus on Europe. Food and Chemical Toxicology, 47(5), 1009-1021. http://dx.doi.org/10.1016/j.fct.2009.02.005
  • Nnadi, N. E., & Carter, D. A. (2021). Climate change and the emergence of fungal pathogens. PLoS Pathogens, 17(4), e1009503. http://dx.doi.org/10.1371/journal.ppat.1009503
  • Pandey, A. K., & Basandrai, A. K. (2021). Will Macrophomina phaseolina spread in legumes due to climate change? A critical review of current knowledge. Journal of Plant Diseases and Protection, 128(1), 9-18. http://dx.doi.org/10.1007/s41348-020-00374-2
  • Paterson, R. R. M., & Lima, N. (2010). How will climate change affect mycotoxins in food? Food Research International 43, 1902–14. http://dx.doi.org/10.1016/j.foodres.2009.07.010
  • Pathak, R., Singh, S. K., Tak, A., & Gehlot, P. (2018). Impact of climate change on host, pathogen and plant disease adaptation regime: a review. Biosciences Biotechnology Research Asia, 15(3), 529-540. http://dx.doi.org/10.13005/bbra/2658
  • Peng, Z., Liu, Y., Qi, J., Gao, H., Li, X., Tian, Q., ... & Jiao, S. (2023). The climate‐driven distribution and response to global change of soil‐borne pathogens in agroecosystems. Global Ecology and Biogeography, 32(5), 766-779. http://dx.doi.org/10.1111/geb.13662
  • Rai, A., Irulappan, V., & Senthil-Kumar, M. (2022). Dry root rot of chickpea: a disease favored by drought. Plant Disease, 106(2), 346-356. http://dx.doi.org/10.1094/PDIS-07-21-1410-FE
  • Raza, M. M., & Bebber, D. P. (2022). Climate change and plant pathogens. Current Opinion in Microbiology, 70, 102233. http://dx.doi.org/10.1016/j.mib.2022.102233
  • Rienth, M., Vigneron, N., Walker, R. P., Castellarin, S. D., Sweetman, C., Burbidge, C. A., ... & Darriet, P. (2021). Modifications of grapevine berry composition induced by main viral and fungal pathogens in a climate change scenario. Frontiers in Plant Science, 12, 717223. http://dx.doi.org/10.3389/fpls.2021.717223
  • Rosenzweig, C. & Tubiello, F. N. (2007). Adaptation and mitigation strategies in agriculture: an analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change, 12, 855-873. http://dx.doi.org/10.1007/s11027-007-9103-8
  • Santini, A., & Ghelardini, L. (2015). Plant pathogen evolution and climate change. CABI Reviews, 1-8. http://dx.doi.org/10.1079/PAVSNNR201510035
  • Serrano, M. S., Romero, M. Á., Homet, P., & Gómez-Aparicio, L. (2022). Climate change impact on the population dynamics of exotic pathogens: The case of the worldwide pathogen Phytophthora cinnamomi. Agricultural and Forest Meteorology, 322, 109002. http://dx.doi.org/10.1016/j.agrformet.2022.109002
  • Sharma, M. (2016). Emerging disease scenario in pulses under climate change. Pulses Challenges and Opportunities under Changing Climatic Scenario.[Dixit, GP, Singh, J. and Singh, NP (ed.)], ISPRD, Kanpur, Uttar Pradesh, India, 138-146.
  • Sharma, M., Mangala, U.N., Krishnamurthy, M., Vadez, V., & Pande, S. (2010). Drought and dry root of chickpea. In: Proceedings of the 5th International Food Legumes Research Conference (IFLRC V) and 7th European Conference on Grain Legumes (AEP VII), Antalya, Turkey.
  • Siebold, M., & von Tiedemann, A. (2012). Potential effects of global warming on oilseed rape pathogens in Northern Germany. Fungal Ecology, 5, 62–72. http://dx.doi.org/10.1016/j.funeco.2011.04.003
  • Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21(10), 640-656. http://dx.doi.org/10.1038/s41579-023-00900-7
  • Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., ... & Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. http://dx.doi.org/10.1126/science.1256688
  • Vary, Z., Mullins, E., McElwain, J. C., & Doohan, F. M. (2015). The severity of wheat diseases increases when plants and pathogens are acclimatized to elevated carbon dioxide. Global Change Biology, 21(7), 2661-2669. http://dx.doi.org/10.1111/gcb.12899
  • Wahdan, S. F. M., Hossen, S., Tanunchai, B., Schädler, M., Buscot, F., & Purahong, W. (2020). Future climate significantly alters fungal plant pathogen dynamics during the early phase of wheat litter decomposition. Microorganisms, 8, 908. http://dx.doi.org/10.3390/microorganisms8060908
  • Watt, M. S., Ganley, R. J., Kriticos, D. J., & Manning, L. K. (2011). Dothistroma needle blight and pitch canker: the current and future potential distribution of two important diseases of Pinus species. Canadian Journal of Forest Research, 41, 412–424. http://dx.doi.org/10.1139/X10-204
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering (Other), Phytopathology, Plant Protection (Other)
Journal Section Review
Authors

Gürkan Başbağcı 0000-0002-4107-1134

Publication Date June 30, 2025
Submission Date December 24, 2024
Acceptance Date May 16, 2025
Published in Issue Year 2025 Volume: 20 Issue: 1

Cite

APA Başbağcı, G. (2025). İklim Değişikliğinin Bitki Fungal Patojenleri Üzerindeki Etkileri. Ziraat Fakültesi Dergisi, 20(1), 17-24. https://doi.org/10.54975/isubuzfd.1606818

24611

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.                                                          32607