Research Article
BibTex RIS Cite

Comparison of Mechanical Properties of Aged All-Ceramic Materials

Year 2023, Volume: 10 Issue: 2, 457 - 461, 21.08.2023
https://doi.org/10.15311/selcukdentj.1202624

Abstract

Background: Our research aimed to compare the biaxial flexural strength of glass ceramic and two different monolithic zirconias after aging, examine the fracture surfaces with scanning electron microscopy (SEM) and perform elemental analysis with energy dispersive spectroscopy (EDS).
Methods: Two types of monolithic CAD/CAM materials (Katana UTML and Prettau Anterior) and a lithium disilicate material (IPS emax Press) were selected for this study. All samples were aged with a thermal cycle of 10000 cycles. The biaxial flexural strength of the disc specimens was determined using the three-ball piston test and a universal testing machine. Biaxial flexural strengths were compared for each group (n = 10). All fractured samples were examined by SEM and elemental analyzes were performed with EDS. Data were analyzed by 1-way ANOVA and Tukey post hoc (p<0.05).
Results: Prettau Anterior showed a statistically significant difference between the other groups (p<0.05). Following Prettau Anterior (1141.81 MPa), IPS Emax Press (278.86 MPa) and Katana UTML (216.14 MPa) showed biaxial flexural strength, respectively.
Conclusion: Compared to the other materials evaluated, Prettau Anterior had much higher biaxial flexural strength. Katana UTML and IPS emax Press show similar strength over the long term. It is seen that the chemical structure of the materials has an effect on the mechanical capacity.
KEYWORDS: Biaxial Flexural Strength, Lithium Disilicate Glass-Ceramic, Monolithic Zirconia

Supporting Institution

Necmettin Erbakan University Scientific Research Projects Coordinatorship

Project Number

161924002

Thanks

The research was financially supported. We would like to thank Necmettin Erbakan University Scientific Research Projects Coordinatorship for their support of this study with project number 161924002.

References

  • 1. Studart AR, Filser F, Kocker P, Gauckler LJ. Invitro life time of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695-705.
  • 2. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Effect of loading method on the fracture mechanics of two layered all-ceramic restorative systems. Dent Mater 2007;23:952- 9.
  • 3. Drummond JL, King TJ, Bapna MS, Koperski RD. Mechanical property evaluation of pressable restorative ceramics. Dent Mater 2000;16:226-33.
  • 4. Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont 2002;15(4):339-46.
  • 5. Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dental Materials 2005;21(5):476-82.
  • 6. Moqbel NM, Al-Akhali M, Wille S, Kern M. Influence of aging on biaxial flexural strength and hardness of translucent 3Y-TZP. Materials 2019;13(1)27.
  • 7. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont 1995;8:239-46.
  • 8. Lughi V, Sergo V, Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry, Dent. Mater 2010;26:807–20.
  • 9. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature1975;258 703–4,
  • 10. Chevalier J, Olagnon C, Fantozzi G. Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue, J. Am. Ceram. Soc 1999;82:3129-38.
  • 11. Haraguchi K, Sugano N, Nishii T, Miki H, Oka K, Yoshikawa H. Phase transformation of a zirconia ceramic head after total hip arthroplasty, J. Bone Joint Surg 2001;83:996-1000.
  • 12. Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater 2004;16:3988–94.
  • 13. Yoshimura M, Noma T, Kawabata K, Somiya S. Role of water on the degradation process of Y-TZP, J. Mater. Sci. Lett 1987;6:465–7.
  • 14. Amaral M, Valandro LF, Bottino MA, Souza RO. Low-temperature degradation of a Y-TZP ceramic after surface treatments. J. Biomed. Mater. Res. Part B Appl. Biomater 2013;101;1387–92.
  • 15. Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc 2000;83:461–87.
  • 16. Flinn BD, de Groot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J. Prosthet. Dent 2012;108:223–30.
  • 17. Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics 1981;3:489–93.
  • 18. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HA. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7:858–65.
  • 19. Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry 2012;21(5):353-62.
  • 20. Jeong HY, Lee HY, Choi YS. Mechanical properties of hybrid CAD/CAM materials after aging treatments. Ceramics International 2018;44:19217-26.
  • 21. Hantsche H. Comparison of basic principles of the surface-specific analytical methods: AES/SAM, ESCA (XPS), SIMS and ISS with X-ray microanalysis, and some applications in research and industry. Scanning. 1989;11:257-80.
  • 22. El-Araby A, Talic Y. The effect of thermocycling on the adhesion of self-etching adhesives on dental enamel and dentin, J Contemp Dent Pract 2007;8(2):17-24.
  • 23. ISO-standards ISO 6872 Dental Ceramic. Brussels: European Committee for Standardization; 1998.
  • 24. Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S, et al. Impact of sandblasting on the flexural strength of highly translucent zirconia. Journal of the Mechanical Behavior of Biomedical Materials 2021;115:104268.
  • 25. Schmitter M, Mueller D, Rues S. In vitro chipping behaviour of all-ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM-produced veneer with manually layered veneer. J Oral Rehabil 2013;40(7):519-25.
  • 26. Muñoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dentist 2017;63:94-102.
  • 27. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont 2013;5(2):161-6.
  • 28. Harada A, Shishido S, Barkarmo S, Inagaki R, Kanno T, Örtengren U, Egusa H, Nakamura K. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5mol% yttria. J Mech Behav Biomed Mater 2020;111:103974.
  • 29. Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, vd. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2015;47:49–56.
  • 30. Chai J, Chu F, Chow TW, Liang BM. Chemical solubility and flexural strength of zirconia-based ceramics. Int J Prosthodont 2007;20(6):587-95.
  • 31. Dikicier S, Ayyildiz S, Ozen J, Sipahi C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dental materials journal 2017;36(3):296-302.
  • 32. de Araújo-Júnior EN, Bergamo ET, Bastos TM, Jalkh EB, Lopes AC, Monteiro KN, et al. Ultra-translucent zirconia processing and aging effect on microstructural, optical, and mechanical properties. Dental Materials 2022.
  • 33. Leung BT, Tsoi JK, Matinlinna JP, Pow EH. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. The Journal of prosthetic dentistry 2015;114(3):440-6.
  • 34. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated- ceramic-network materials. Dent Mater 2013;29:419-26.
  • 35. Reyes AR, Dennison JB, Powers JM, Sierraalta M, Yaman P. Translucency and flexural strength of translucent zirconia ceramics. The Journal of Prosthetic Dentistry 2021.
  • 36. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30(10):1195–203.
  • 37. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002;23(3):937–45.
  • 38. Krogstad JA, Lepple M, Gao Y, Lipkin DM, Levi CG. Effect of yttria content on the zirconia unit cell parameters. J Am Ceram Soc 2011;94:4548–55. https://doi.org/10.1111/j.1551- 2916.2011.04862.x
  • 39. Čokić SM, Cóndor M, Vleugels J, Van Meerbeek B, Van Oosterwyck H, Inokoshi M, et al. Mechanical properties–translucency–microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics. Dental Materials 2022;38(5):797-810.
  • 40. Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. Journal of the mechanical behavior of

Yaşlandırılmış Tam Seramik Materyallerin Mekanik Özelliklerinin Karşılaştırılması

Year 2023, Volume: 10 Issue: 2, 457 - 461, 21.08.2023
https://doi.org/10.15311/selcukdentj.1202624

Abstract

Amaç: Araştırmamız, cam seramik ve iki farklı monolitik zirkonyanın yaşlanma sonrası çift eksenli eğilme dayanımını karşılaştırmayı, taramalı elektron mikroskobu (SEM) ile kırık yüzeylerini incelemeyi ve enerji dağılımlı spektroskopi (EDS) ile element analizi yapmayı amaçladı.
Gereç ve Yöntemler: Bu çalışma için iki tip monolitik CAD/CAM materyali (Katana UTML ve Prettau Anterior) ve bir lityum disilikat materyali (IPS emax Press) seçilmiştir. Tüm örnekler, 10000 döngülük termal siklus ile yaşlandırıldı. Disk numunelerinin biaksiyal eğilme dayanımı, üç bilyeli piston testi ve evrensel bir test makinesi kullanılarak belirlendi. Her grup için (n = 10), çift eksenli eğilme dayanımları karşılaştırıldı. Tüm kırık numuneler SEM ile incelendi ve EDS ile element analizleri yapıldı. Veriler 1-way ANOVA ve Tukey post hoc ile analiz edildi (p<0.05).
Bulgular: Prettau Anterior diğer gruplar arasında istatistiksel olarak anlamlı fark gösterdi (p<0.05). Prettau Anterioru (1141.81) takiben sırasıyla IPS Emax Press (278.86) ve Katana UTML (216.14) çift eksenli eğilme dayanımı gösterdi.
Sonuç: Değerlendirilen diğer materyallerle karşılaştırıldığında Prettau Anterior çok daha yüksek çift eksenli eğilme dayanımına sahipti. Katana UTML ve IPS emax Press, uzun dönemde benzer dayanım göstermektedir. Materyallerin kimyasal yapısının, mekanik kapasitesine etkisi olduğu görülmektedir.
ANAHTAR KELİMELER: Çift Eksenli Eğilme Dayanımı, Lityum Disilikat Cam-Seramik, Monolitik Zirkonya

Project Number

161924002

References

  • 1. Studart AR, Filser F, Kocker P, Gauckler LJ. Invitro life time of dental ceramics under cyclic loading in water. Biomaterials 2007;28:2695-705.
  • 2. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Effect of loading method on the fracture mechanics of two layered all-ceramic restorative systems. Dent Mater 2007;23:952- 9.
  • 3. Drummond JL, King TJ, Bapna MS, Koperski RD. Mechanical property evaluation of pressable restorative ceramics. Dent Mater 2000;16:226-33.
  • 4. Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont 2002;15(4):339-46.
  • 5. Sundh A, Molin M, Sjögren G. Fracture resistance of yttrium oxide partially-stabilized zirconia all-ceramic bridges after veneering and mechanical fatigue testing. Dental Materials 2005;21(5):476-82.
  • 6. Moqbel NM, Al-Akhali M, Wille S, Kern M. Influence of aging on biaxial flexural strength and hardness of translucent 3Y-TZP. Materials 2019;13(1)27.
  • 7. Seghi RR, Sorensen JA. Relative flexural strength of six new ceramic materials. Int J Prosthodont 1995;8:239-46.
  • 8. Lughi V, Sergo V, Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry, Dent. Mater 2010;26:807–20.
  • 9. Garvie RC, Hannink RH, Pascoe RT. Ceramic steel? Nature1975;258 703–4,
  • 10. Chevalier J, Olagnon C, Fantozzi G. Subcritical crack propagation in 3Y-TZP ceramics: static and cyclic fatigue, J. Am. Ceram. Soc 1999;82:3129-38.
  • 11. Haraguchi K, Sugano N, Nishii T, Miki H, Oka K, Yoshikawa H. Phase transformation of a zirconia ceramic head after total hip arthroplasty, J. Bone Joint Surg 2001;83:996-1000.
  • 12. Guo X. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater 2004;16:3988–94.
  • 13. Yoshimura M, Noma T, Kawabata K, Somiya S. Role of water on the degradation process of Y-TZP, J. Mater. Sci. Lett 1987;6:465–7.
  • 14. Amaral M, Valandro LF, Bottino MA, Souza RO. Low-temperature degradation of a Y-TZP ceramic after surface treatments. J. Biomed. Mater. Res. Part B Appl. Biomater 2013;101;1387–92.
  • 15. Hannink RH, Kelly PM, Muddle BC. Transformation toughening in zirconia-containing ceramics. J. Am. Ceram. Soc 2000;83:461–87.
  • 16. Flinn BD, de Groot DA, Mancl LA, Raigrodski AJ. Accelerated aging characteristics of three yttria-stabilized tetragonal zirconia polycrystalline dental materials. J. Prosthet. Dent 2012;108:223–30.
  • 17. Kobayashi K, Kuwajima H, Masaki T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics 1981;3:489–93.
  • 18. Cattani-Lorente M, Scherrer SS, Ammann P, Jobin M, Wiskott HA. Low temperature degradation of a Y-TZP dental ceramic. Acta Biomater 2011;7:858–65.
  • 19. Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. Journal of Prosthodontics: Implant, Esthetic and Reconstructive Dentistry 2012;21(5):353-62.
  • 20. Jeong HY, Lee HY, Choi YS. Mechanical properties of hybrid CAD/CAM materials after aging treatments. Ceramics International 2018;44:19217-26.
  • 21. Hantsche H. Comparison of basic principles of the surface-specific analytical methods: AES/SAM, ESCA (XPS), SIMS and ISS with X-ray microanalysis, and some applications in research and industry. Scanning. 1989;11:257-80.
  • 22. El-Araby A, Talic Y. The effect of thermocycling on the adhesion of self-etching adhesives on dental enamel and dentin, J Contemp Dent Pract 2007;8(2):17-24.
  • 23. ISO-standards ISO 6872 Dental Ceramic. Brussels: European Committee for Standardization; 1998.
  • 24. Inokoshi M, Shimizubata M, Nozaki K, Takagaki T, Yoshihara K, Minakuchi S, et al. Impact of sandblasting on the flexural strength of highly translucent zirconia. Journal of the Mechanical Behavior of Biomedical Materials 2021;115:104268.
  • 25. Schmitter M, Mueller D, Rues S. In vitro chipping behaviour of all-ceramic crowns with a zirconia framework and feldspathic veneering: comparison of CAD/CAM-produced veneer with manually layered veneer. J Oral Rehabil 2013;40(7):519-25.
  • 26. Muñoz EM, Longhini D, Antonio SG, Adabo GL. The effects of mechanical and hydrothermal aging on microstructure and biaxial flexural strength of an anterior and a posterior monolithic zirconia. J Dentist 2017;63:94-102.
  • 27. Kim MJ, Ahn JS, Kim JH, Kim HY, Kim WC. Effects of the sintering conditions of dental zirconia ceramics on the grain size and translucency. J Adv Prosthodont 2013;5(2):161-6.
  • 28. Harada A, Shishido S, Barkarmo S, Inagaki R, Kanno T, Örtengren U, Egusa H, Nakamura K. Mechanical and microstructural properties of ultra-translucent dental zirconia ceramic stabilized with 5mol% yttria. J Mech Behav Biomed Mater 2020;111:103974.
  • 29. Nakamura K, Harada A, Kanno T, Inagaki R, Niwano Y, Milleding P, vd. The influence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2015;47:49–56.
  • 30. Chai J, Chu F, Chow TW, Liang BM. Chemical solubility and flexural strength of zirconia-based ceramics. Int J Prosthodont 2007;20(6):587-95.
  • 31. Dikicier S, Ayyildiz S, Ozen J, Sipahi C. Influence of core thickness and artificial aging on the biaxial flexural strength of different all-ceramic materials: An in-vitro study. Dental materials journal 2017;36(3):296-302.
  • 32. de Araújo-Júnior EN, Bergamo ET, Bastos TM, Jalkh EB, Lopes AC, Monteiro KN, et al. Ultra-translucent zirconia processing and aging effect on microstructural, optical, and mechanical properties. Dental Materials 2022.
  • 33. Leung BT, Tsoi JK, Matinlinna JP, Pow EH. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. The Journal of prosthetic dentistry 2015;114(3):440-6.
  • 34. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated- ceramic-network materials. Dent Mater 2013;29:419-26.
  • 35. Reyes AR, Dennison JB, Powers JM, Sierraalta M, Yaman P. Translucency and flexural strength of translucent zirconia ceramics. The Journal of Prosthetic Dentistry 2021.
  • 36. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater 2014;30(10):1195–203.
  • 37. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials 2002;23(3):937–45.
  • 38. Krogstad JA, Lepple M, Gao Y, Lipkin DM, Levi CG. Effect of yttria content on the zirconia unit cell parameters. J Am Ceram Soc 2011;94:4548–55. https://doi.org/10.1111/j.1551- 2916.2011.04862.x
  • 39. Čokić SM, Cóndor M, Vleugels J, Van Meerbeek B, Van Oosterwyck H, Inokoshi M, et al. Mechanical properties–translucency–microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics. Dental Materials 2022;38(5):797-810.
  • 40. Pereira GK, Guilardi LF, Dapieve KS, Kleverlaan CJ, Rippe MP, Valandro LF. Mechanical reliability, fatigue strength and survival analysis of new polycrystalline translucent zirconia ceramics for monolithic restorations. Journal of the mechanical behavior of
There are 40 citations in total.

Details

Primary Language English
Subjects Dentistry
Journal Section Research
Authors

Tugba Temizci 0000-0001-8212-6122

Ali Riza Tuncdemir 0000-0002-6114-3369

Project Number 161924002
Publication Date August 21, 2023
Submission Date November 11, 2022
Published in Issue Year 2023 Volume: 10 Issue: 2

Cite

Vancouver Temizci T, Tuncdemir AR. Comparison of Mechanical Properties of Aged All-Ceramic Materials. Selcuk Dent J. 2023;10(2):457-61.