Research Article
BibTex RIS Cite

Yapay Yaşlandırma İşleminin Monolitik Zirkonyaların Renk Stabilitesi ve Translusensi Özelliklerine Etkileri

Year 2025, Volume: 12 Issue: 1, 48 - 53, 21.04.2025
https://doi.org/10.15311/selcukdentj.1455392

Abstract

Amaç: Çalışmanın amacı monolitik zirkonyaların optik özellikleri üzerine yaşlandırmanın ve polisajın etkisinin değerlendirilmesidir.
Gereç ve Yöntemler: Üç farklı monolitik zirkonya materyalinden, 13 mm çapında ve 1 mm kalınlığında toplam 90 adet disk şeklinde örnek hazırlanmıştır.Elde edilen örnekler, polisaj kiti uygulanan grup polisaj kitini takiben polisaj patı uygulanan grup ve glaze uygulanan grup, olmak üzere 3 gruba ayrılmıştır.Polisaj işlemleri sonrası örnekler ultrasonik banyoda 10 dk temizlendikten sonra örneklerin ilk renk ölçümleri spektrofotometre kullanılarak nötral gri arka fonda yapıldı. CIE L*a*b*renk sistemine göre örneklerin ortalama L*, a* ve b* değerleri hesaplandı. Translusensi ölçümleri beyaz ve siyah arka fonlar üzerinde Translusensi parametresi yöntemi kullanılarak yapıldı, ortalama Lw ,aw, bw ve Lb, ab, bb değerleri hesaplandı. Tüm örnekler 134C, 0,2 MPa’da 30 dk yaşlandırma işlemine tabi tutulduktan sonra ikinci renk ve translüsensi ölçümleri yapıldı. Tüm ölçümler her örnek için üç kez tekrarlandı.
Bulgular: İlk ve ikinci ölçümler arasında yapılan karşılaştırmalar sonrası, yaşlandırma ve polisaj sonrasında en fazla renk değişimi Katana monolitik zirkonyumda gözlendi. Yaşlandırma sonrası lastik polisaj uygulanan Katana monolitik zirkonyum örnekler, lastik polisaj pat ve glaze ile polisaj uygulanan Katana monolitik zirkonyum örneklerden daha çok translüsent değişimi gösterdi. Katana monolitik zirkonyumda daha fazla renk değişiminin olması, materyalde bulunan fazla metal oksit miktarıyla ilişkili olabilir.
Sonuç: Elde edilen veriler doğrultusunda; Katana monolitik zirkonyum için lastik polisaj uygulaması, Dental Direkt ve Upcera monolitik zirkonyum için her üç polisaj yöntemi önerilebilir.


Anahtar Kelimeler: monolitik zirkonya, renk değişimi, translüsensi, yapay yaşlandırma

Ethical Statement

ETİK KURUL ONAY BELGESİ GEREKTİREN BİR ÇALIŞMA DEĞİLDİR.

References

  • 1. Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin North Am. 2017; 61(4):797–819.
  • 2. Juntavee P, Kumchai H, Juntavee N, Nathanson D. Effect of ceramic surface treatment and adhesive systems on bond strength of metallic brackets. Int J Dent. 2020;7286528.
  • 3. Sen N, Us YO. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J Prosthet Dent. 2018;119(4):593–9.
  • 4. Matsuzaki F, Sekine H, Honma S, Takanashi T, Furuya K, Yajima Y, et al. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J. 2015;34(6):910–7.
  • 5. Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont. 2014;6(6):456–61.
  • 6. Guess PC, Kuliš A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater. 2008;24(11):1556–67.
  • 7. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings - A new fabrication mode for all-ceramic restorations. Dent Mater. 2009;25(1):121–8.
  • 8. Wolfart S, Harder S, Eschbach S, Lehmann F, Kern M. Four-year clinical results of fixed dental prostheses with zirconia substructures (Cercon): end abutments vs. cantilever design. Eur J Oral Sci. 2009;117(6):741-9.
  • 9. Zhang Y, Lee JJW, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013;29(12):1201–8.
  • 10. Stober T, Bermejo JL, Rammelsberg P, Schmitter M. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use. J Oral Rehabil. 2014;41(4):314–22.
  • 11. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med. 2011;22(11):2429–35.
  • 12.Hafezeqoran A, Sabanik P, Koodaryan R, Ghalili KM. Effect of sintering speed, aging processes, and different surface treatments on the optical and surface properties of monolithic zirconia restorations. J Prosthet Dent. 2023;130(6):917-926.
  • 13. Schulze KA, Marshall SJ, Gansky SA, Marshall GW. Color stability and hardness in dental composites after accelerated aging. Dent Mater. 2003;19(7):612–9.
  • 14. Çal E, Güneri P, Bıçakçı A. Dişhekimliğindeki estetik ikilem: Diş rengi. EÜ Dişhek Fak Derg. 2005; 26: 117–25.
  • 15. Atay A. Farklı yüzey işlemleri yapılmış feldspatic porselen örneklere candida albicans yapışmasının incelenmesi. HÜ Diş Hek Fak Derg. 2008;32(1): 3–11.
  • 16. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37(1):1–32.
  • 17. Salama AA, Shehab KA, Bushra SS, Hamza FS. The effect of aging on the translucency of contemporary zirconia generations: in-vitro study. BMC Oral Health. 2024;27;24(1):744.
  • 18. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28(4):449–56.
  • 19. Pires-de-Souza Fde C, Casemiro LA, Garcia Lda F, Cruvinel DR.Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J Prosthet Dent. 2009;101(1):13–8.
  • 20. Anusavice KJ. Philips’ Science of Dental Materials, 11th Ed., Elsevier Science Ltd., St. Louis. China: 2013;231–473.
  • 21. Rinke S, Fischer C..Range of indications for translucent zirconia modifications: Clinical and technical aspects. Quintessence Int. 2013;44(8):557-66.
  • 22. Anusavice KJ. Phillips’ Science Dental Materials. 10th Edition, WB Saunders, Philadelphia, 1996. 423–59.
  • 23. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater. 2015;31(10):1180–7.
  • 24. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J Adv Prosthodont. 2013;5(3):296–304.
  • 24. Huh YH, Park CJ, Cho LR. Evaluation of various polishing systems and the phase transformation of monolithic zirconia. J Prosthet Dent. 2016;116(3):440–9.
  • 26. Chavali R, Lin CP, Lawson NC. evaluation of different polishing systems and speeds for dental zirconia. J Prosthodont. 2017;26(5):410–8.
  • 27. Lee WF, Feng SW, Lu YJ, Wu HJ, Peng PW. Effects of two surface finishes on the color of cemented and colored anatomic-contour zirconia crowns. J Prosthet Dent. 2016;116(2):264–8.
  • 28. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 2016;115(6):773–9.
  • 29. Yousry M, Hammad I, Halawani ME, Aboushelib M. Translucency of recent zirconia materials and material-related variables affecting their translucency: a systematic review and meta-analysis. BMC Oral Health. 2024;24(1):309.
  • 30. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 2014;30(12):e419–24.
  • 31. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010;26(8): 807–20.
  • 32. Silami FD, Tonani R, Alandia-Román CC, Pires-De-Souza Fde C. Influence of different types of resin luting agents on color stability of ceramic laminate veneers subjected to accelerated artificial aging. Braz Dent J. 2016;27(1):95–100. 33. Papageorgiou-Kyrana A, Kokoti M, Kontonasaki E, Koidis P. Evaluation of color stability of preshaded and liquid-shaded monolithic zirconia. J Prosthet Dent. 2018;119(3):467–72.
  • 34. Pandoleon P, Kontonasaki E, Kantiranis N, Pliatsikas N, Patsalas P, Papadopoulou L, et al. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent Mater. 2017;33(11):e385–92.
  • 35. Harada R, Takemoto S, Hattori M, Yoshinari M, Oda Y, Kawada E. The influence of colored zirconia on the optical properties of all-ceramic restorations. Dent Mater J. 2015;34(6):918–24.
  • 36. Mota YA, Cotes C, Carvalho RF, Machado JPB, Leite FPP, Souza ROA, et al. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging. J Biomed Mater Res B Appl Biomater. 2017;105(7):1972–7.
  • 37. Putra A, Chung KH, Flinn BD, Kuykendall T, Zheng C, Harada K, et al. Effect of hydrothermal treatment on light transmission of translucent zirconias. J Prosth Dent. 2017;118(3):422–9.
  • 38. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP Ceramics. J Am Ceram Soc. 1999, 82 (8), 2150-2154.
  • 39.Mascaro BA, Salomon JP, Demartine MS, Nicola TC, Dos Santos Nunes Reis JM. Evaluation of color and translucency of stained and glazed monolithic lithium disilicates and zirconia after toothbrushing with different dentifrices and thermocycling. Int J Prosthodont. 2023 21;0(0):1-29.
  • 40. Nakamura K, Harada A, Ono M, Shibasaki H, Kanno T, Niwano Y, et al. Effect of low-temperature degradation on the mechanical and microstructural properties of tooth-colored 3Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;53:301–11.
  • 41. Walczak K, Meißner H, Range U, Sakkas A, Boening K, Wieckiewicz M, et al. Translucency of zirconia ceramics before and after artificial aging. J Prosthodont. 2019;28(1):e319–24.
  • 42. Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand. 2015;1(2–4):86–92.
  • 43. Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, et al. Aging resistance of surface-treated dental zirconia. Dent Mater. 2015;31(2):182–94.
  • 44. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater.2014;30(10):1195–203.

EFFECTS OF ARTIFICIAL AGING PROCESS ON COLOR STABILITY AND TRANSLUCENCENCY OF MONOLITHIC ZIRCONIA

Year 2025, Volume: 12 Issue: 1, 48 - 53, 21.04.2025
https://doi.org/10.15311/selcukdentj.1455392

Abstract

Aim: The aim of the study is to evaluate the effect of aging and polishing on the optical properties of monolithic zirconias.
Methods: A total of 90 disk-shaped samples with a diameter of 13 mm and a thickness of 1 mm were prepared from three different monolithic zirconia.The obtained samples were divided into 3 different groups: the group to which a polishing kit was applied, the group to which polishing paste was applied following the polishing kit, and the group to which glaze was applied. All specimens were cleaned in an ultrasonic bath for 10 minutes after polishing. Color measurements of samples performed using the spectrophotometer. Color characteristics were measured according to the CIE L*a*b* color system, and the average L*, a* and b* values were calculated. Translucency Parameter (TP) method was used for translucency measurements. All samples were aged at 134C 0.2 MPa for 30 min. Then, second color and translucency measurements were made.
Results: According to comparisons between the measurements, Katana monolithic zirconium had a more significant color change and translucent result than other two monolithic zirconias. Katana monolithic zirconium polishing by rubber gave a significantly more translucent result after aging than the polishing processes with paste and glaze. The reason for more color change in Katana may be related to the excess metal oxide content in the material.
Conclusion: Based on this study's findings, rubber polishing can be recommended for Katana monolithic zirconium. Rubber, paste and glaze polishing processes can be applied for these monolithic zirconias.

Keywords: artificial aging, color change, monolithic zirconia, translucency

References

  • 1. Zhang Y, Kelly JR. Dental ceramics for restoration and metal veneering. Dent Clin North Am. 2017; 61(4):797–819.
  • 2. Juntavee P, Kumchai H, Juntavee N, Nathanson D. Effect of ceramic surface treatment and adhesive systems on bond strength of metallic brackets. Int J Dent. 2020;7286528.
  • 3. Sen N, Us YO. Mechanical and optical properties of monolithic CAD-CAM restorative materials. J Prosthet Dent. 2018;119(4):593–9.
  • 4. Matsuzaki F, Sekine H, Honma S, Takanashi T, Furuya K, Yajima Y, et al. Translucency and flexural strength of monolithic translucent zirconia and porcelain-layered zirconia. Dent Mater J. 2015;34(6):910–7.
  • 5. Harianawala HH, Kheur MG, Apte SK, Kale BB, Sethi TS, Kheur SM. Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials. J Adv Prosthodont. 2014;6(6):456–61.
  • 6. Guess PC, Kuliš A, Witkowski S, Wolkewitz M, Zhang Y, Strub JR. Shear bond strengths between different zirconia cores and veneering ceramics and their susceptibility to thermocycling. Dent Mater. 2008;24(11):1556–67.
  • 7. Beuer F, Schweiger J, Eichberger M, Kappert HF, Gernet W, Edelhoff D. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings - A new fabrication mode for all-ceramic restorations. Dent Mater. 2009;25(1):121–8.
  • 8. Wolfart S, Harder S, Eschbach S, Lehmann F, Kern M. Four-year clinical results of fixed dental prostheses with zirconia substructures (Cercon): end abutments vs. cantilever design. Eur J Oral Sci. 2009;117(6):741-9.
  • 9. Zhang Y, Lee JJW, Srikanth R, Lawn BR. Edge chipping and flexural resistance of monolithic ceramics. Dent Mater. 2013;29(12):1201–8.
  • 10. Stober T, Bermejo JL, Rammelsberg P, Schmitter M. Enamel wear caused by monolithic zirconia crowns after 6 months of clinical use. J Oral Rehabil. 2014;41(4):314–22.
  • 11. Jiang L, Liao Y, Wan Q, Li W. Effects of sintering temperature and particle size on the translucency of zirconium dioxide dental ceramic. J Mater Sci Mater Med. 2011;22(11):2429–35.
  • 12.Hafezeqoran A, Sabanik P, Koodaryan R, Ghalili KM. Effect of sintering speed, aging processes, and different surface treatments on the optical and surface properties of monolithic zirconia restorations. J Prosthet Dent. 2023;130(6):917-926.
  • 13. Schulze KA, Marshall SJ, Gansky SA, Marshall GW. Color stability and hardness in dental composites after accelerated aging. Dent Mater. 2003;19(7):612–9.
  • 14. Çal E, Güneri P, Bıçakçı A. Dişhekimliğindeki estetik ikilem: Diş rengi. EÜ Dişhek Fak Derg. 2005; 26: 117–25.
  • 15. Atay A. Farklı yüzey işlemleri yapılmış feldspatic porselen örneklere candida albicans yapışmasının incelenmesi. HÜ Diş Hek Fak Derg. 2008;32(1): 3–11.
  • 16. Chevalier J, Gremillard L, Deville S. Low-temperature degradation of zirconia and implications for biomedical implants. Annu Rev Mater Res. 2007;37(1):1–32.
  • 17. Salama AA, Shehab KA, Bushra SS, Hamza FS. The effect of aging on the translucency of contemporary zirconia generations: in-vitro study. BMC Oral Health. 2024;27;24(1):744.
  • 18. Beuer F, Stimmelmayr M, Gueth JF, Edelhoff D, Naumann M. In vitro performance of full-contour zirconia single crowns. Dent Mater. 2012;28(4):449–56.
  • 19. Pires-de-Souza Fde C, Casemiro LA, Garcia Lda F, Cruvinel DR.Color stability of dental ceramics submitted to artificial accelerated aging after repeated firings. J Prosthet Dent. 2009;101(1):13–8.
  • 20. Anusavice KJ. Philips’ Science of Dental Materials, 11th Ed., Elsevier Science Ltd., St. Louis. China: 2013;231–473.
  • 21. Rinke S, Fischer C..Range of indications for translucent zirconia modifications: Clinical and technical aspects. Quintessence Int. 2013;44(8):557-66.
  • 22. Anusavice KJ. Phillips’ Science Dental Materials. 10th Edition, WB Saunders, Philadelphia, 1996. 423–59.
  • 23. Sulaiman TA, Abdulmajeed AA, Donovan TE, Ritter AV, Vallittu PK, Närhi TO, et al. Optical properties and light irradiance of monolithic zirconia at variable thicknesses. Dent Mater. 2015;31(10):1180–7.
  • 24. Kim HK, Kim SH, Lee JB, Han JS, Yeo IS. Effect of polishing and glazing on the color and spectral distribution of monolithic zirconia. J Adv Prosthodont. 2013;5(3):296–304.
  • 24. Huh YH, Park CJ, Cho LR. Evaluation of various polishing systems and the phase transformation of monolithic zirconia. J Prosthet Dent. 2016;116(3):440–9.
  • 26. Chavali R, Lin CP, Lawson NC. evaluation of different polishing systems and speeds for dental zirconia. J Prosthodont. 2017;26(5):410–8.
  • 27. Lee WF, Feng SW, Lu YJ, Wu HJ, Peng PW. Effects of two surface finishes on the color of cemented and colored anatomic-contour zirconia crowns. J Prosthet Dent. 2016;116(2):264–8.
  • 28. Kim HK, Kim SH, Lee JB, Ha SR. Effects of surface treatments on the translucency, opalescence, and surface texture of dental monolithic zirconia ceramics. J Prosthet Dent. 2016;115(6):773–9.
  • 29. Yousry M, Hammad I, Halawani ME, Aboushelib M. Translucency of recent zirconia materials and material-related variables affecting their translucency: a systematic review and meta-analysis. BMC Oral Health. 2024;24(1):309.
  • 30. Ebeid K, Wille S, Hamdy A, Salah T, El-Etreby A, Kern M. Effect of changes in sintering parameters on monolithic translucent zirconia. Dent Mater. 2014;30(12):e419–24.
  • 31. Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: A critical review of the relevant aspects in dentistry. Dent Mater. 2010;26(8): 807–20.
  • 32. Silami FD, Tonani R, Alandia-Román CC, Pires-De-Souza Fde C. Influence of different types of resin luting agents on color stability of ceramic laminate veneers subjected to accelerated artificial aging. Braz Dent J. 2016;27(1):95–100. 33. Papageorgiou-Kyrana A, Kokoti M, Kontonasaki E, Koidis P. Evaluation of color stability of preshaded and liquid-shaded monolithic zirconia. J Prosthet Dent. 2018;119(3):467–72.
  • 34. Pandoleon P, Kontonasaki E, Kantiranis N, Pliatsikas N, Patsalas P, Papadopoulou L, et al. Aging of 3Y-TZP dental zirconia and yttrium depletion. Dent Mater. 2017;33(11):e385–92.
  • 35. Harada R, Takemoto S, Hattori M, Yoshinari M, Oda Y, Kawada E. The influence of colored zirconia on the optical properties of all-ceramic restorations. Dent Mater J. 2015;34(6):918–24.
  • 36. Mota YA, Cotes C, Carvalho RF, Machado JPB, Leite FPP, Souza ROA, et al. Monoclinic phase transformation and mechanical durability of zirconia ceramic after fatigue and autoclave aging. J Biomed Mater Res B Appl Biomater. 2017;105(7):1972–7.
  • 37. Putra A, Chung KH, Flinn BD, Kuykendall T, Zheng C, Harada K, et al. Effect of hydrothermal treatment on light transmission of translucent zirconias. J Prosth Dent. 2017;118(3):422–9.
  • 38. Chevalier J, Cales B, Drouin JM. Low-temperature aging of Y-TZP Ceramics. J Am Ceram Soc. 1999, 82 (8), 2150-2154.
  • 39.Mascaro BA, Salomon JP, Demartine MS, Nicola TC, Dos Santos Nunes Reis JM. Evaluation of color and translucency of stained and glazed monolithic lithium disilicates and zirconia after toothbrushing with different dentifrices and thermocycling. Int J Prosthodont. 2023 21;0(0):1-29.
  • 40. Nakamura K, Harada A, Ono M, Shibasaki H, Kanno T, Niwano Y, et al. Effect of low-temperature degradation on the mechanical and microstructural properties of tooth-colored 3Y-TZP ceramics. J Mech Behav Biomed Mater. 2016;53:301–11.
  • 41. Walczak K, Meißner H, Range U, Sakkas A, Boening K, Wieckiewicz M, et al. Translucency of zirconia ceramics before and after artificial aging. J Prosthodont. 2019;28(1):e319–24.
  • 42. Fathy SM, El-Fallal AA, El-Negoly SA, El Bedawy AB. Translucency of monolithic and core zirconia after hydrothermal aging. Acta Biomater Odontol Scand. 2015;1(2–4):86–92.
  • 43. Inokoshi M, Vanmeensel K, Zhang F, De Munck J, Eliades G, Minakuchi S, et al. Aging resistance of surface-treated dental zirconia. Dent Mater. 2015;31(2):182–94.
  • 44. Zhang Y. Making yttria-stabilized tetragonal zirconia translucent. Dent Mater.2014;30(10):1195–203.
There are 43 citations in total.

Details

Primary Language Turkish
Subjects Prosthodontics
Journal Section Research
Authors

Arzu Zeynep Yıldırım 0000-0002-9332-8982

Aziz Sönmez 0000-0002-3519-9617

Zeynep Yağmur Karagülleoğlu 0000-0002-9177-3687

Ayşe Nurcan Duman 0000-0002-8879-5703

Publication Date April 21, 2025
Submission Date March 21, 2024
Acceptance Date August 13, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Yıldırım AZ, Sönmez A, Karagülleoğlu ZY, Duman AN. Yapay Yaşlandırma İşleminin Monolitik Zirkonyaların Renk Stabilitesi ve Translusensi Özelliklerine Etkileri. Selcuk Dent J. 2025;12(1):48-53.