Research Article
BibTex RIS Cite

Comparison of Laboratory Wear Resistance of Various Resin Composite Materials by 3D Optical Scanning

Year 2025, Volume: 12 Issue: 1, 110 - 117, 21.04.2025
https://doi.org/10.15311/selcukdentj.1600162

Abstract

AIM: The introduction of resin-based composite technology in restorative dentistry was one of the most significant investments in dentistry in the last century. Wear resistance continues to be a particularly important issue in the renovation of large occlusal areas in posterior teeth. The purpose of this study was to compare the wear of direct and indirect resin composites designed for in vitro posterior use.
METHODS: Therefore, a total of 40 samples were prepared with three direct nanohybrid composites (Tetric Evo Ceram, Filtek Supreme XT, Aelite Estetik) and two indirect composites (Estenia, Tescera ATL) in a randomized complete block design (n=8). The samples were subjected to abrasive wear performed under a normal load of 50–60 N with a frequency of 1.2 Hz on a wear simulator (Selcuk) in the presence of artificial saliva, after which superhard replicas of stone molds were produced analyze the laboratory attrition rate. Wear was quantified by optical 3-D scanning every 30,000 to 60,000 cycles.
RESULTS: Data were analyzed by one-way ANOVA and Tukey's multiple range post hoc test (α = 0.05). The results showed that the type of composite resin significantly affects the measured wear. Direct nanohybrid composite resin material (Aelite Esthetic) showed significantly less abrasive wear than indirect microhybrid composite resin (Tescera ATL) and direct nanofilled composite resin (Filtek superior). There was no significant difference in the average wear rate of Aelite Estetik, Estenia and Tetric Evo Ceram.
CONCULUSION: In summary, indirect resin composites may not have superior wear behavior compared to direct nanohybrid composites. However, the laboratory resistance of all composite resin types was found to be adequate in this study when compared to the ADA approval program regulations.

Project Number

06102010

References

  • 1. Mair L, Stolarski T, Vowles R, Lloyd C. Wear: mechanisms, manifestations and measurement. Report of a workshop. Journal of dentistry. 1996;24(1-2):141-8.
  • 2. Teoh S, Ong LF, Yap AU, Hastings GW. Bruxing‐type dental wear simulator for ranking of dental restorative materials. Journal of biomedical materials research. 1998;43(2):175-83.
  • 3. Heintze S, Zellweger G, Cavalleri A, Ferracane J. Influence of the antagonist material on the wear of different composites using two different wear simulation methods. Dental Materials. 2006;22(2):166-75.
  • 4. Lambrechts P, Debels E, Van Landuyt K, Peumans M, Van Meerbeek B. How to simulate wear? overview of existing methods. Dental materials. 2006;22(8):693-701.
  • 5. Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. Quantitative in vivo wear of human enamel. Journal of dental research. 1989;68(12):1752-4.
  • 6. Ferracane JL. Is the wear of dental composites still a clinical concern? is there still a need for in vitro wear simulating devices? Dental Materials. 2006;22(8):689-92.
  • 7. Braem M, Lambrechts P, Van Doren V, Vanherle G. In vivo evaluation of four posterior composites: quantitative wear measurements and clinical behavior. Dental Materials. 1986;2(3):106-13.
  • 8. Mehl A, Gloger W, Kunzelmann K-H, Hickel R. A new optical 3-D device for the detection of wear. Journal of dental research. 1997;76(11):1799-807.
  • 9. Perry R, Kugel G, Kunzelmann K-H, Flessa H-P, Estafan D. Composite restoration wear analysis: conventional methods vs. three-dimensional laser digitizer. The Journal of the American Dental Association. 2000;131(10):1472-7.
  • 10. Görür B, Akdoğan A, Yurci M. Optik Ölçme Yöntemlerinin Sac ve Plastik Parçaların İmalatındaki Sayısallaştırma, Tersine Mühendislik ve Muayene Prosesleri, www.turkcadcam.net, Aralık; 2005.
  • 11. Çakır A. 3D Optik Taramanın Temel Prensibi. Optik Üçgenleme (Optical Triangulation) Kalıp Dünyası. 2005:26-30.
  • 12. Mair L, Vowles R, Cunningham J, Williams D. The clinical wear of three posterior composites. British dental journal. 1990;169(11):355-60.
  • 13. Wilson N, Norman R. Five-year findings of a multiclinical trial for posterior composite. Journal of dentistry. 1991;19(3):153-9.
  • 14. Ferracane J, Mitchem J, Condon J, Todd R. Wear and marginal breakdown of composites with various degrees of cure. Journal of dental research. 1997;76(8):1508-16.
  • 15. Türkün LŞ, Aktener BO, Ateş M. Clinical evaluation of different posterior resin composite materials: a 7-year report. Quintessence International. 2003;34(6).
  • 16. Van Nieuwenhuysen J-P, D'Hoore W, Carvalho J, Qvist V. Long-term evaluation of extensive restorations in permanent teeth. Journal of dentistry. 2003;31(6):395-405.
  • 17. da Rosa Rodolpho PA, Cenci MS, Donassollo TA, Loguércio AD, Demarco FF. A clinical evaluation of posterior composite restorations: 17-year findings. Journal of dentistry. 2006;34(7):427-35.
  • 18. Yap A. Occlusal contact area (OCA) wear of two new composite restoratives. Journal of oral rehabilitation. 2002;29(2):194-200.
  • 19. Heintze S, Zellweger G, Zappini G. The relationship between physical parameters and wear of dental composites. Wear. 2007;263(7-12):1138-46.
  • 20. Turssi CP, de Moraes Purquerio B, Serra MC. Wear of dental resin composites: insights into underlying processes and assessment methods—a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003;65(2):280-5.
  • 21. Hu X, Harrington E, Marquis P, Shortall A. The influence of cyclic loading on the wear of a dental composite. Biomaterials. 1999;20(10):907-12.
  • 22. Finger W, Thiemann J. Correlation between in vitro and in vivo wear of posterior restorative materials. Dental Materials. 1987;3(5):280-6.
  • 23. Wassell R, McCabe J, Walls A. A two-body frictional wear test. Journal of dental research. 1994;73(9):1546-53.
  • 24. Kawai K, Leinfelder KF. In vitro evaluation of OCA wear resistance of posterior composites. Dental Materials. 1995;11(4):246-51.
  • 25. Condon JR, Ferracane JL. Evaluation of composite wear with a new multi-mode oral wear simulator. Dental Materials. 1996;12(4):218-26.
  • 26. Schnabel C, Daes P, Kunzelmann K, Hickel R. Two-body wear simulation in a computer controlled artificial mouth. J Dent Res. 1994;74:294.
  • 27. Shortall AC, Hu XQ, Marquis PM. Potential countersample materials for in vitro simulation wear testing. Dental Materials. 2002;18(3):246-54.
  • 28. 28. Krejci I, Albert P, Lutz F. The influence of antagonist standardization on wear. Journal of dental research. 1999;78(2):713-9.
  • 29. Lutz F, Krejci I, Barbakow F. Chewing pressure us. wear of composites and opposing enamel cusps. Journal of dental research. 1992;71(8):1525-9.
  • 30. Schindler HJ, Stengel E, Spiess WE. Feedback control during mastication of solid food textures—a clinical-experimental study. The Journal of prosthetic dentistry. 1998;80(3):330-6.
  • 31. Manhart J, Kunzelmann K-H, Chen H, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dental Materials. 2000;16(1):33-40.
  • 32. Kaidonis J, Richards L, Townsend G, Tansley G. Wear of human enamel: a quantitative in vitro assessment. Journal of dental research. 1998;77(12):1983-90.
  • 33. Turssi CP, Ferracane JL, Ferracane LL. Wear and fatigue behavior of nano‐structured dental resin composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;78(1):196-203.
  • 34. Moura S, Tavares A, Lima J, Muench A, Cardoso PE. Qualitative and quantitative wear rate analysis of direct restorative materials. Brazilian Dental Science. 2003;6(2).
  • 35. Cha HS, Lee YK, Lim BS, Rhee SH, Yang HC. Evaluation of wear resistance of dental resin composites with a 3D profilometer. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2004;71(2):414-20.
  • 36. Heintze S, Zappini G, Rousson V. Wear of ten dental restorative materials in five wear simulators—results of a round robin test. Dental Materials. 2005;21(4):304-17.
  • 37. Lee A, He L, Lyons K, Swain M. Tooth wear and wear investigations in dentistry. Journal of oral rehabilitation. 2012;39(3):217-25.
  • 38. Zantner C, Kielbassa AM, Martus P, Kunzelmann K-H. Sliding wear of 19 commercially available composites and compomers. Dental Materials. 2004;20(3):277-85.
  • 39. Savabi O, Nejatidanesh F, Shabanian M, Anbari Z. Two-body wear resistance of some indirect composite resins. European Journal of Prosthodontics and Restorative Dentistry. 2011;19(2):81.
  • 40. Peutzfeldt A. Resin composites in dentistry: the monomer systems. European journal of oral sciences. 1997;105(2):97-116.
  • 41. Wassell R, McCabe J, Walls A. Wear rates of regular and tempered composites. Journal of Dentistry. 1997;25(1):49-52.
  • 42. Han J-M, Zhang H, Choe H-S, Lin H, Zheng G, Hong G. Abrasive wear and surface roughness of contemporary dental composite resin. Dental materials journal. 2014;33(6):725-32.
  • 43. Palaniappan S, Bharadwaj D, Mattar DL, Peumans M, Van Meerbeek B, Lambrechts P. Nanofilled and microhybrid composite restorations: Five-year clinical wear performances. Dental materials. 2011;27(7):692-700.
  • 44. Yilmaz EÇ, Sadeler R, Duymuş ZY, Öcal M. Effects of two-body wear on microfill, nanofill, and nanohybrid restorative composites. Biomedical and Biotechnology Research Journal (BBRJ). 2017;1(1):25-8.
  • 45. Topcu FT, Erdemir U, Sahinkesen G, Yildiz E, Uslan I, Acikel C. Evaluation of microhardness, surface roughness, and wear behavior of different types of resin composites polymerized with two different light sources. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2010;92(2):470-8.
  • 46. Asadian F, Hoseini AP, Ahmadian L, Rafeie N, Rezaei S, Moradi Z. In vitro attrition wear resistance of four types of paste-like bulk-fill composite resins. BMC Oral Health. 2022;22(1):360.
  • 47. Chadwick R, McCabe J, Walls A, Storer R. The effect of storage media upon the surface microhardness and abrasion resistance of three composites. Dental Materials. 1990;6(2):123-8.

Çeşitli Rezin Kompozit Materyallerin Laboratuvar Aşınma Dayanımlarının 3B Optik Tarama İle Karşılaştırılması

Year 2025, Volume: 12 Issue: 1, 110 - 117, 21.04.2025
https://doi.org/10.15311/selcukdentj.1600162

Abstract

AMAÇ: Diş restorasyonlarında rezin bazlı kompozit teknolojisinin kullanılmaya başlanması, geçen yüzyılın diş hekimliğinde en büyük ilerlemedir. Posterior dişlerin geniş oklüzal alanlarının restorasyonunda kompozit rezinlerin aşınma direnci önemini korumaktadır. Bu çalışmanın amacı posterior restorasyonlar için direkt ve indirekt kompozitlerin laboratuvar aşınma değerlerini karşılaştırmaktır.
GEREÇ VE YÖNTEMLER: Bu çalışma, 40 adet çürüksüz insan daimi azı dişi rastgele 3 nanohibrit direkt kompozit (Tetric Evo Ceram, Filtek Supreme XT, Aelite Estetik) ve 2 adet indirekt kompozit (Estenia, Tescera ATL) olmak üzere 5 gruba ayrıldı (n=8). Dişlerin okluzal bölgesinde düz dentin yüzeyi oluşturularak 2 mm kalınlığında kompozit malzeme ile restore edildi. Numuneler, yapay tükürük varlığında bir aşınma simülatörü kullanılarak 1.2 Hz frekansta ve 50-60 N normal yükte aşınmaya tabi tutuldu. 30.000 ve 60.000 aşındırma döngüsünden sonra numunelerden sert sıva kopyaları yapıldı.
BULGULAR: Hazırlanan alçı modeli optik 3 boyutlu tarama kullanılarak tarandı ve aşınma değerleri hesaplandı. Veriler, tek yönlü varyans analizi ANOVA ve Tukey çoklu karşılaştırma testi kullanılarak analiz edildi (α=0.05). Sonuç olarak kompozit rezin tipinin aşınma derecesini büyük ölçüde etkilediği tespit edildi. Doğrudan nanohibrit kompozit rezin malzemesinin (Aelite Esthetic), dolaylı mikrohibrit kompozit rezin (Tescera ATL) ve doğrudan nano dolgulu kompozit rezine (Filtek Supreme) göre önemli ölçüde daha az aşınma sergilediği gösterilmiştir. Aelite Esthetic, Estenia ve Tetric Evo Ceram ortalama aşınma seviyeleri açısından önemli bir farklılık göstermedi.
SONUÇ: Sonuç olarak dolaylı kompozitlerin aşınma direnci açısından doğrudan kompozitlerden üstün olmadığı görüldü. Ancak bu çalışmada kullanılan tüm kompozit rezin malzemelerin aşınma direncinin ADA Onaylı Program hükümlerine göre yeterli olduğu söylenebilir.

Project Number

06102010

References

  • 1. Mair L, Stolarski T, Vowles R, Lloyd C. Wear: mechanisms, manifestations and measurement. Report of a workshop. Journal of dentistry. 1996;24(1-2):141-8.
  • 2. Teoh S, Ong LF, Yap AU, Hastings GW. Bruxing‐type dental wear simulator for ranking of dental restorative materials. Journal of biomedical materials research. 1998;43(2):175-83.
  • 3. Heintze S, Zellweger G, Cavalleri A, Ferracane J. Influence of the antagonist material on the wear of different composites using two different wear simulation methods. Dental Materials. 2006;22(2):166-75.
  • 4. Lambrechts P, Debels E, Van Landuyt K, Peumans M, Van Meerbeek B. How to simulate wear? overview of existing methods. Dental materials. 2006;22(8):693-701.
  • 5. Lambrechts P, Braem M, Vuylsteke-Wauters M, Vanherle G. Quantitative in vivo wear of human enamel. Journal of dental research. 1989;68(12):1752-4.
  • 6. Ferracane JL. Is the wear of dental composites still a clinical concern? is there still a need for in vitro wear simulating devices? Dental Materials. 2006;22(8):689-92.
  • 7. Braem M, Lambrechts P, Van Doren V, Vanherle G. In vivo evaluation of four posterior composites: quantitative wear measurements and clinical behavior. Dental Materials. 1986;2(3):106-13.
  • 8. Mehl A, Gloger W, Kunzelmann K-H, Hickel R. A new optical 3-D device for the detection of wear. Journal of dental research. 1997;76(11):1799-807.
  • 9. Perry R, Kugel G, Kunzelmann K-H, Flessa H-P, Estafan D. Composite restoration wear analysis: conventional methods vs. three-dimensional laser digitizer. The Journal of the American Dental Association. 2000;131(10):1472-7.
  • 10. Görür B, Akdoğan A, Yurci M. Optik Ölçme Yöntemlerinin Sac ve Plastik Parçaların İmalatındaki Sayısallaştırma, Tersine Mühendislik ve Muayene Prosesleri, www.turkcadcam.net, Aralık; 2005.
  • 11. Çakır A. 3D Optik Taramanın Temel Prensibi. Optik Üçgenleme (Optical Triangulation) Kalıp Dünyası. 2005:26-30.
  • 12. Mair L, Vowles R, Cunningham J, Williams D. The clinical wear of three posterior composites. British dental journal. 1990;169(11):355-60.
  • 13. Wilson N, Norman R. Five-year findings of a multiclinical trial for posterior composite. Journal of dentistry. 1991;19(3):153-9.
  • 14. Ferracane J, Mitchem J, Condon J, Todd R. Wear and marginal breakdown of composites with various degrees of cure. Journal of dental research. 1997;76(8):1508-16.
  • 15. Türkün LŞ, Aktener BO, Ateş M. Clinical evaluation of different posterior resin composite materials: a 7-year report. Quintessence International. 2003;34(6).
  • 16. Van Nieuwenhuysen J-P, D'Hoore W, Carvalho J, Qvist V. Long-term evaluation of extensive restorations in permanent teeth. Journal of dentistry. 2003;31(6):395-405.
  • 17. da Rosa Rodolpho PA, Cenci MS, Donassollo TA, Loguércio AD, Demarco FF. A clinical evaluation of posterior composite restorations: 17-year findings. Journal of dentistry. 2006;34(7):427-35.
  • 18. Yap A. Occlusal contact area (OCA) wear of two new composite restoratives. Journal of oral rehabilitation. 2002;29(2):194-200.
  • 19. Heintze S, Zellweger G, Zappini G. The relationship between physical parameters and wear of dental composites. Wear. 2007;263(7-12):1138-46.
  • 20. Turssi CP, de Moraes Purquerio B, Serra MC. Wear of dental resin composites: insights into underlying processes and assessment methods—a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2003;65(2):280-5.
  • 21. Hu X, Harrington E, Marquis P, Shortall A. The influence of cyclic loading on the wear of a dental composite. Biomaterials. 1999;20(10):907-12.
  • 22. Finger W, Thiemann J. Correlation between in vitro and in vivo wear of posterior restorative materials. Dental Materials. 1987;3(5):280-6.
  • 23. Wassell R, McCabe J, Walls A. A two-body frictional wear test. Journal of dental research. 1994;73(9):1546-53.
  • 24. Kawai K, Leinfelder KF. In vitro evaluation of OCA wear resistance of posterior composites. Dental Materials. 1995;11(4):246-51.
  • 25. Condon JR, Ferracane JL. Evaluation of composite wear with a new multi-mode oral wear simulator. Dental Materials. 1996;12(4):218-26.
  • 26. Schnabel C, Daes P, Kunzelmann K, Hickel R. Two-body wear simulation in a computer controlled artificial mouth. J Dent Res. 1994;74:294.
  • 27. Shortall AC, Hu XQ, Marquis PM. Potential countersample materials for in vitro simulation wear testing. Dental Materials. 2002;18(3):246-54.
  • 28. 28. Krejci I, Albert P, Lutz F. The influence of antagonist standardization on wear. Journal of dental research. 1999;78(2):713-9.
  • 29. Lutz F, Krejci I, Barbakow F. Chewing pressure us. wear of composites and opposing enamel cusps. Journal of dental research. 1992;71(8):1525-9.
  • 30. Schindler HJ, Stengel E, Spiess WE. Feedback control during mastication of solid food textures—a clinical-experimental study. The Journal of prosthetic dentistry. 1998;80(3):330-6.
  • 31. Manhart J, Kunzelmann K-H, Chen H, Hickel R. Mechanical properties and wear behavior of light-cured packable composite resins. Dental Materials. 2000;16(1):33-40.
  • 32. Kaidonis J, Richards L, Townsend G, Tansley G. Wear of human enamel: a quantitative in vitro assessment. Journal of dental research. 1998;77(12):1983-90.
  • 33. Turssi CP, Ferracane JL, Ferracane LL. Wear and fatigue behavior of nano‐structured dental resin composites. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2006;78(1):196-203.
  • 34. Moura S, Tavares A, Lima J, Muench A, Cardoso PE. Qualitative and quantitative wear rate analysis of direct restorative materials. Brazilian Dental Science. 2003;6(2).
  • 35. Cha HS, Lee YK, Lim BS, Rhee SH, Yang HC. Evaluation of wear resistance of dental resin composites with a 3D profilometer. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2004;71(2):414-20.
  • 36. Heintze S, Zappini G, Rousson V. Wear of ten dental restorative materials in five wear simulators—results of a round robin test. Dental Materials. 2005;21(4):304-17.
  • 37. Lee A, He L, Lyons K, Swain M. Tooth wear and wear investigations in dentistry. Journal of oral rehabilitation. 2012;39(3):217-25.
  • 38. Zantner C, Kielbassa AM, Martus P, Kunzelmann K-H. Sliding wear of 19 commercially available composites and compomers. Dental Materials. 2004;20(3):277-85.
  • 39. Savabi O, Nejatidanesh F, Shabanian M, Anbari Z. Two-body wear resistance of some indirect composite resins. European Journal of Prosthodontics and Restorative Dentistry. 2011;19(2):81.
  • 40. Peutzfeldt A. Resin composites in dentistry: the monomer systems. European journal of oral sciences. 1997;105(2):97-116.
  • 41. Wassell R, McCabe J, Walls A. Wear rates of regular and tempered composites. Journal of Dentistry. 1997;25(1):49-52.
  • 42. Han J-M, Zhang H, Choe H-S, Lin H, Zheng G, Hong G. Abrasive wear and surface roughness of contemporary dental composite resin. Dental materials journal. 2014;33(6):725-32.
  • 43. Palaniappan S, Bharadwaj D, Mattar DL, Peumans M, Van Meerbeek B, Lambrechts P. Nanofilled and microhybrid composite restorations: Five-year clinical wear performances. Dental materials. 2011;27(7):692-700.
  • 44. Yilmaz EÇ, Sadeler R, Duymuş ZY, Öcal M. Effects of two-body wear on microfill, nanofill, and nanohybrid restorative composites. Biomedical and Biotechnology Research Journal (BBRJ). 2017;1(1):25-8.
  • 45. Topcu FT, Erdemir U, Sahinkesen G, Yildiz E, Uslan I, Acikel C. Evaluation of microhardness, surface roughness, and wear behavior of different types of resin composites polymerized with two different light sources. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2010;92(2):470-8.
  • 46. Asadian F, Hoseini AP, Ahmadian L, Rafeie N, Rezaei S, Moradi Z. In vitro attrition wear resistance of four types of paste-like bulk-fill composite resins. BMC Oral Health. 2022;22(1):360.
  • 47. Chadwick R, McCabe J, Walls A, Storer R. The effect of storage media upon the surface microhardness and abrasion resistance of three composites. Dental Materials. 1990;6(2):123-8.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Restorative Dentistry
Journal Section Research
Authors

Ali Rıza Çetin 0000-0002-6552-2788

Nimet Ünlü 0000-0002-6546-6368

Selin Seda Çağlar Aşkın 0009-0008-0674-2829

Project Number 06102010
Publication Date April 21, 2025
Submission Date December 18, 2024
Acceptance Date February 14, 2025
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

Vancouver Çetin AR, Ünlü N, Çağlar Aşkın SS. Çeşitli Rezin Kompozit Materyallerin Laboratuvar Aşınma Dayanımlarının 3B Optik Tarama İle Karşılaştırılması. Selcuk Dent J. 2025;12(1):110-7.