Research Article
BibTex RIS Cite

Schrödinger Denkleminin Sonlu Fark Yöntemi Çözümünde Chebyshev Noktaları Kullanımı

Year 2018, Volume: 3 Issue: 1, 53 - 62, 25.05.2018

Abstract

Günümüzde Schrödinger denkleminin hassas ve aynı zamanda hızlı çözümü oldukça önem arz etmektedir. Bu çalışmada Schrödinger denkleminin sonlu fark yöntemi ve Chebyshev noktaları kullanılarak daha hassas ve dolayısıyla hızlı çözümü önerilmektedir. Sınırlandırılmış nano boyutlardaki çözüm bölgesi Chebyshev noktaları ile tanımlanmış ve elde edilen Hermitian olmayan asimetrik Hamiltonian benzerlik transformasyonu ile simetrik Hermitian Hamiltonian’a çevrilmiştir. Bu yöntemle elde edilen Hamiltonian’ın homojen aralıklı noktalar ile çözülmüş problemlere göre daha düşük nokta sayısı ile ve metodolojik değişime gerek duymadan doğru sonuca yakınsadığı gösterilmiştir.

References

  • L. Vitos, 2007. Computational quantum mechanics for materials engineers: the EMTO method and applications, Springer.
  • Datta, Supriyo, 2012. Lessons From Nanoelectronics: A New Perspective On Transport, World Scientific.
  • Randall J. LeVeque, 2007. Finite difference methods for ordinary and partial differential equations : steady-state and time-dependent problems, SIAM, Philadelphia, PA.
  • L.N. Trefethen, 2000. Spectral Methods in MATLAB, SIAM, Philadelphia, PA.
  • Runge, Carl, (1901) Uber empirische Funktionen und die Interpolation zwischen aquidistanten Ordinaten.} Zeitschrift für Mathematik und Physik., 46: 224-243.
  • Q. Liu, C. Cheng, H. Z. Massoud, 2004. The Spectral Grid Method: A Novel Fast Schrödinger-Equation Solver for Semiconductor Nanodevice Simulation. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., v. 23, n.8, p. 1200-1208.
  • J. Lee, Q. H. Liu, 2005. An Efficient 3-D Spectral-Element Method for Schrödinger Equation in Nanodevice Simulation. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., v. 24, n.12, p. 1848-1858.
  • W. Lin, N. Kovvali, L. Carin, 2006. Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation. Computer Physics Communications., v. 175, p. 78-85.
  • C. Huang, 2009. Semiconductor nanodevice simulation by multidomain spectral method with Chebyshev, prolate spheroidal and Laguerre basis functions. Computer Physics Communications., v. 180, p. 375-383.
  • Q. Liu, C. Cheng, H. Z. Massoud, 2008. 3-D self-consistent Schr\"odinger-Poisson solver: the spectral element method. J. Comput. Electron., 7: 337-341.
  • G. Dattoli, C. Centioli, A. Torre, 1988. The Similarity Transformation Method and Diagonalization of Two-Photon Hamiltonians. Il Nuovo Cimento B, v. 101, i. 5, p. 557–567.
  • L. Meissnera, M. Nooijen, 1995. Effective and intermediate Hamiltonians obtained by similarity transformations. J. Chem. Phys., Vol. 102, No. 24.
  • Jacob M. Wahlen-Strothman, Carlos A. Jiménez-Hoyos, Thomas M. Henderson, and Gustavo E. Scuseria, 2015. Lie algebraic similarity transformed Hamiltonians for lattice model systems. PHYSICAL REVIEW B 91, 041114(R)
Year 2018, Volume: 3 Issue: 1, 53 - 62, 25.05.2018

Abstract

References

  • L. Vitos, 2007. Computational quantum mechanics for materials engineers: the EMTO method and applications, Springer.
  • Datta, Supriyo, 2012. Lessons From Nanoelectronics: A New Perspective On Transport, World Scientific.
  • Randall J. LeVeque, 2007. Finite difference methods for ordinary and partial differential equations : steady-state and time-dependent problems, SIAM, Philadelphia, PA.
  • L.N. Trefethen, 2000. Spectral Methods in MATLAB, SIAM, Philadelphia, PA.
  • Runge, Carl, (1901) Uber empirische Funktionen und die Interpolation zwischen aquidistanten Ordinaten.} Zeitschrift für Mathematik und Physik., 46: 224-243.
  • Q. Liu, C. Cheng, H. Z. Massoud, 2004. The Spectral Grid Method: A Novel Fast Schrödinger-Equation Solver for Semiconductor Nanodevice Simulation. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., v. 23, n.8, p. 1200-1208.
  • J. Lee, Q. H. Liu, 2005. An Efficient 3-D Spectral-Element Method for Schrödinger Equation in Nanodevice Simulation. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS., v. 24, n.12, p. 1848-1858.
  • W. Lin, N. Kovvali, L. Carin, 2006. Pseudospectral method based on prolate spheroidal wave functions for semiconductor nanodevice simulation. Computer Physics Communications., v. 175, p. 78-85.
  • C. Huang, 2009. Semiconductor nanodevice simulation by multidomain spectral method with Chebyshev, prolate spheroidal and Laguerre basis functions. Computer Physics Communications., v. 180, p. 375-383.
  • Q. Liu, C. Cheng, H. Z. Massoud, 2008. 3-D self-consistent Schr\"odinger-Poisson solver: the spectral element method. J. Comput. Electron., 7: 337-341.
  • G. Dattoli, C. Centioli, A. Torre, 1988. The Similarity Transformation Method and Diagonalization of Two-Photon Hamiltonians. Il Nuovo Cimento B, v. 101, i. 5, p. 557–567.
  • L. Meissnera, M. Nooijen, 1995. Effective and intermediate Hamiltonians obtained by similarity transformations. J. Chem. Phys., Vol. 102, No. 24.
  • Jacob M. Wahlen-Strothman, Carlos A. Jiménez-Hoyos, Thomas M. Henderson, and Gustavo E. Scuseria, 2015. Lie algebraic similarity transformed Hamiltonians for lattice model systems. PHYSICAL REVIEW B 91, 041114(R)
There are 13 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Aytaç Çelik

Publication Date May 25, 2018
Submission Date May 16, 2018
Published in Issue Year 2018 Volume: 3 Issue: 1

Cite

APA Çelik, A. (2018). Schrödinger Denkleminin Sonlu Fark Yöntemi Çözümünde Chebyshev Noktaları Kullanımı. Sinop Üniversitesi Fen Bilimleri Dergisi, 3(1), 53-62.


Articles published in Sinopjns are licensed under CC BY-NC 4.0.