Review
BibTex RIS Cite

Selenium, Seafoods and Health

Year 2021, Volume: 6 Issue: 2, 162 - 173, 29.12.2021
https://doi.org/10.33484/sinopfbd.879034

Abstract

Selenium supports the functions of many systems such as endocrine, immune and cardiovascular systems. Like all trace minerals, it is essential for the proper functioning of the body. Selenium is a trace element that is important for human health but can also be harmful for humans when taken in excess. Selenium requirement is less than minerals that are required by the body in larger amounts, such as calcium and iron. Therefore, it is called a micronutrient. As with many other foods, the biological response to selenium varies by gender and age. People often take selenium with crops and animal products, and sometimes as functional foods or supplements. Selenium works synergistically with vitamin E. Seafood products have high selenium levels. Not only fish but also other shellfish products have an important place in daily food intake due to their minerals contain.

References

  • De la Guardia, M., & Garrigues, S. (2015). Handbook of mineral elements in food. Chapter 2. In: Zand, N., Christides, T., Loughrill, E. (Eds.), Dietary Intake of Minerals. John Wiley & Sons, p. 23.
  • Aksoy, M. (2016). Beslenme Biyokimyası (5. Baskı). Basım Yeri: Hatiboğlu Kitabevi.
  • Kryukov, G. V, Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigo, R., & Gladyshev, V. N. (2003). Characterization of mammalian selenoproteomes. Science, 300(5624), 1439–1443. https://doi.org/10.1126/science.1083516
  • Rayman, M. P. (2012). Selenium and human health. Lancet, 379(9822), 1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2014). EFSA panel on dietetic products, nutrition and allergies scientific opinion on dietary reference values for selenium, EFSA. J., 12 (10), 3846, https://doi.org/10.2903/J.Efsa.2014.3846
  • Gać, P., & Pawlas, K. (2011). Blood selenium concentration in various populations of healthy and sick people-review of literature from the years 2005–2010. Med. Środowisk, 14, 93-104.
  • Muntau, C., Streiter, M., Kappler, M., Röschinger, W. I., Schmid Rehnert, A., Schramel, P., & Poscherage, A. A. (2002). Age-Related reference values for serum selenium concentrations in infants and children, Clinical Chemistry, 48(3), 555-560. https://doi.org/10.1093/clinchem/48.3.555
  • Mehdi, Y., Hornick, J. L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292–3311. https://doi.org/10.3390/molecules18033292
  • Thavarajah, D., Thavarajah, P., Wejesuriya, A., Rutzke, M., Glahn, R. P., Combs, G. F., & Vandenberg, A. (2011). The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3-year study. Euphytica, 180(1), 123–128. https://doi.org/10.1007/s10681-011-0365-6
  • Kasnak, C., & Palamutoğlu, R. (2015). Doğal antioksidanların sınıflandırılması ve insan sağlığına etkisi. Türk Tarım ve Teknoloji Dergisi, 3(5), 226-234. https://doi.org/10.24925/turjaf.v3i5.226-234.171
  • Kangalgil, M., & Yardımcı, H. (2017). Selenyumun insan sağlığı üzerine etkileri ve diyabetes mellitusla ilişkisi. Bozok Tıp Dergisi, 7(4), 66-71.
  • Georgieff, M. K. (2007). Nutrition and the developing brain: nutrient priorities and measurement. The American Journal of Clinical Nutrition, 85(2), 614-620. https://doi.org/10.1093/ajcn/85.2.614S
  • Nyaradi, A., Li, J., Hickling, S., Foster, J. & Oddy, W. H. (2013). The role of nutrition in children’s neuro cognitive development, from pregnancy through childhood. Frontiers in Human Neuroscience, 7, 1-16. https://doi.org/10.3389/fnhum.2013.00097
  • Nandakumaran, M., Dashti, H. M., AlSaleh, E., & Al-Zaid, N. S. (2003). Transport kinetics of zinc, copper, selenium, and iron in perfused human placental lobule in vitro. Molecular and Cellular Biochemistry, 252(1), 91-96. https://doi.org/10.1023/A:1025565720489
  • Rayman, M. P. (2002). The argument for increasing selenium intake. Proceedings of the Nutrition Society, 61(2), 203-215. https://doi.org/10.1079/PNS2002153
  • Chen, J., & Berry, M. J. (2003). Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry, 86, 1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x
  • Drasch, G., Mailänder, S., Schlosser, C., & Roider, G. (2000). Content of non-mercury-associated selenium in human tissues. Biological Trace Element Research, 77(3), 219-230. https://doi.org/10.1385/BTER:77:3:219
  • Ejima, A., Watanabe, C., Koyama, H., Matsuno, K., & Satoh, H. (1996). Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry. Biological Trace Element Research, 54(1), 9-21. https://doi.org/10.1007/BF02785316
  • Vahter, M., Lutz, E., Lind, B., Herin, P., Bui, T. H., & Krakau, I. (1997). Concentrations of copper, zinc and selenium in brain and kidney of second trimester fetuses and infants. Journal of Trace Elements in Medicine and Biology, 11(4), 215-222. https://doi.org/10.1016/S0946-672X(97)80016-8
  • Holben, D. H., & Smith, A. M. (1999). The diverse role of selenium within selenoproteins: A review. Journal of the American Dietetic Association, 99, 836–843. https://doi.org/10.1016/S0002-8223(99)00198-4
  • Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., Hackler, J., Seemann, P., Diegmann, J., Pilz, M., Bachmann, M., Minich, W. B., & Schomburg, L. (2020). Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12(7), 2098. https://doi.org/10.3390/nu12072098
  • Zhang, J., Taylor, E. W., Bennett, K., Saad, R., & Rayman, M. P. (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China [Letter to the editors]. The American Journal of Clinical Nutrition, 111(6), 1297–9. https://doi.org/10.1093/ajcn/nqaa095
  • Filippini, T., Cilloni, S., Malavolti, M., Violi, F., Malagoli, C., Tesauro, M., & Vinceti, M, (2018). Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. Journal of Trace Elements in Medicine and Biology, 50, 508-517. https://doi.org/10.1016/j.jtemb.2018.03.001
  • Waegeneers, N., Thiry, C., De Temmerman, L., & Ruttens, A. (2013). Predicted dietary intake of selenium by the general adult population in Belgium. Food Additives & Contaminants: Part A, 30(2), 278–285. https://doi.org/10.1080/19440049.2012.746474
  • WHO/FAO (2004). Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation. Bangkok, Thailand, 21–30 September 1998., Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements, p. 341.
  • Uslu, B., & Aktaç, Ş. (2020). Selenyum ve depresyon üzerine etkileri. Avrupa Bilim ve Teknoloji Dergisi, (20), 147-151.
  • Rasmussen, R. R., Søndergaard, A. B., Bøknæs, N., Cederberg, T. L., Sloth, J. J., & Granby, K. (2017). Effects of industrial processing on essential elements and regulated and emerging contaminant levels in seafood. Food and Chemical Toxicology, 104, 85-94. https://doi.org/10.1016/j.fct.2017.02.008
  • Çorapcı, B. (2018). Ön işlemsiz donmuş depolanan (-22±1 ºC) hamsi (Engraulis encrasicolus, Linnaeus 1758) ve palamut (Sarda sarda, Bloch 1793) balıklarının duyusal, besinsel, kimyasal ve mikrobiyolojik özellikleri. Gıda, 43(6), 1075-1090. https://doi.org/10.15237/gida.GD18068
  • Pekcan, G., Şanlıer, N., & Baş, M., (Ed.) 2015. Türkiye Beslenme Rehberi (TÜBER), Ankara: Alban Tanıtım.
  • Balachandan, K. (2002). Post-Harvest Technology of Fish and Fish Products, Daya Publishing House, New Delhi, 1-28.
  • Lie, Ø. (2001). Flesh quality–the role of nutrition. Aquaculture Research, 32, 341-348. https://doi.org/10.1046/j.1355-557x.2001.00026.x
  • Morris, P. C. (2001). The Effects of Nutrition on The Composition of Farmed Fish, In: Kestin, S. C., and Warriss, P. D. (Eds.), Farmed Fish Quality, (pp.161–179). Oxford, Fish News Books.
  • Shearer, K. D. (2001). The Effect of Diet Composition and Feeding Regime on the Proximate Composition of Farmed Fishes, In: Kestin, S. C., and Warriss, P. D. (Eds.), Farmed Fish Quality, (pp.31–40). 1st Ed. Oxford: Fishing News Books.
  • Baker, R. T. M. (2001). The effect of certain micro nutrients on fish flesh quality, In: Kestin, S.C., and Warriss, P. D. (Eds.), Farmed Fish Quality, (pp. 180-191). 1st Ed. Oxford: Fishing News Books.
  • Et ve Süt Kurumu (12 Ocak 2021). Balık hakkında bilinmesi gerekenler. https://www.esk.gov.tr/tr/11006/balik-hakkinda-bilinmesi-gerekenler.
  • Ralston, N. V. C. (2008). Selenium health benefit values as seafood safety criteria. Eco Health, 5, 442–455. https://doi.org/10.1007/s10393-008-0202-0
  • Fox, T. E. E., Van Den Heuvel, C. A., Atherton, J. R., Dainty, D. J., Lewis, N. J., Langford, H. M., Crews, J. B., Luten, M., Lorentzen. F. W., Sieling, P., Van Aken-Schneyder, M., Hoek, M. J. J., Kotterman, P., Van, D, & Fairweather-Tait, S. J. (2004). Bioavailability of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes. European Journal of Clinical Nutrition, 58, 343–349. https://doi.org/10.1038/sj.ejcn.1601787
  • Yamashita, Y., Yamashita, M., & Iida, H. (2013). Selenium Content in Seafood in Japan. Nutrients, 5(2), 388-395. https://doi.org/10.3390/nu5020388
  • Önning, G. (2000). Separation of soluble selenium compounds in different fish species. Food Chemistry, 68(2), 133-139.
  • Plessi, M., Bertelli, D., & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14, 461-467. https://doi.org/ 10.1006/jfca.2001.1003
  • Erkan, N., Özden, Ö., & Ulusoy, Ş. (2009). Levels of trace elements in commercially important fish, crustaceans and mollusks from Istanbul fish market. Fresenius Environmental Bulletin, 18(7B), 1307-1311.
  • Turan, H., Altan, C. O., & Kocatepe, D. (2019). Black Sea whiting: assessment of potential health benefits/risks and differences based on mineral concentrations of meat and roes. Turkish Journal of Agriculture-Food Science and Technology, 7(12), 2075-2082. https://doi.org/10.24925/turjaf.v7i12.2075-2082.2780
  • Kocatepe, D., & Turan, H. (2012). Chemical composition of cultured sea bass (Dicentrarchus labrax, Linnaeus 1758) muscle. Journal of Food & Nutrition Research, 51(1), 33-39.
  • Tuzen, M. (2009). Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food and Chemical Toxicology, 47(8), 1785-1790. https://doi.org/10.1016/j.fct.2009.04.029
  • Tuzen, M., & Soylak, M. (2007). Determination of trace metals in canned fish marketed in Turkey. Food Chemistry, 101(4), 1378-1382. https://doi.org/10.1016/j.foodchem.2006.03.044
  • Ulusoy, Ş., Mol, S., Karakulak, F. S., & Kahraman, A. E. (2019). Selenium-mercury balance in commercial fish species from the Turkish waters. Biological Trace Element Research, 191(1), 207-213. https://doi.org/10.1007/s12011-018-1609-2
  • Çorapcı, B. (2019). Farklı pişirme materyalleri ile pişirmenin çarpan balığı (Scorpaena porcus, Linnaeus 1758)’nın makro ve iz element kompozisyonuna etkisinin belirlenmesi. 29 Ekim Bilimsel Araştırmalar Sempozyumu. 26-29 Ekim, İzmir.
  • Uchwał, P., Juszczak, M., & Bąkowska, M. (2019). Content of selenium in selected food products on the markets of North-Western Poland. Journal of Elementology, 24(1), 111-123. https://doi.org/10.5601/jelem.2017.22.4.1564
  • Reyes, L. H., Mar, J. L., Rahman, G. M., Seybert, B., Fahrenholz, T., & Kingston, H. M. (2009). Simultaneous determination of arsenic and selenium species in fish tissues using microwave assisted enzymatic extraction and ion chromatography inductively coupled plasma mass spectrometry. Talanta, 78(3), 983–990. https://doi.org/10.1016/j.talanta.2009.01.003
  • Balçık Mısır, G. (2012). Denizel kaynaklı bazı fonksiyonel gıdalar ve gıda bileşenleri. Yunus Araştırma Bülteni, 1, 1-7.
  • Rayman, M. (2000). The importance of selenium to human health. Lancet, 356, 233–241.
  • Fırat, Ö., & Kaya, Ö, (2019). Evaluation of protective role of selenium on mercury toxicity by super oxide dismutase, catalase and malondialdehyde parameters in Oreochromis niloticus (Linnaeus, 1758). Ege Journal of Fisheries and Aquatic Sciences, 36(3), 245-253. https://doi.org/10.12714/egejfas.2019.36.3.05
  • Ralston, N. V. C., Kaneko, J. J., & Raymond, L. J. (2019). Selenium health benefit values provide a reliable index of seafood benefits vs. risks. Journal of Trace Elements in Medicine and Biology, 55, 50-57. https://doi.org/10.1016/j.neuro.2008.07.007
  • Ralston, N. V. C., Ralston, C. R., Blackwell, J. L., & Raymond, L. J. (2008). Dietary and tissue selenium in relation to methyl mercury toxicity. Neuro Toxicology, 29, 802–811. https://doi.org/10.1016/j.neuro.2008.07.007
  • Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium's protective effects against methyl mercury toxicity. Toxicology, 278, 112–123. https://doi.org/10.1016/j.tox.2010.06.004
  • Kehrig, H. A., Seixas, T. G., Di Beneditto A. P. M., & Malm, O. (2013). Selenium and mercury in widely consumed seafood from South Atlantic Ocean. Ecotoxicology and Environmental Safety, 93, 156–162. https://doi.org/10.1016/j.ecoenv.2013.03.034
  • Sakamoto, M., Chan, H. M., Domingo, J. L., Koriyama, C., & Murata, K. (2017). Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. Environment International, 111, 309–315. https://doi.org/10.1016/j.envint.2017.11.001
  • Ralston, N. V. C., & Raymond, L. J. (2018). Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. Biochimica et Biophysica Acta General Subjects, 1862, 2405–2416. https://doi.org/10.1016/j.bbagen.2018.05.009
  • Ambroziak, U., Hybsier, S., Shahnazaryan, U., Krasnodębska-Kiljańska, M., Rijntjes, E., Bartoszewicz, Z., Bednarczuka, T., & Schomburg, L. (2017). Severe selenium deficits in pregnant women irrespective of auto immune thyroid disease in an area with marginal selenium intake. Journal of Trace elements in Medicine and Biology, 44, 186–191. https://doi.org/10.1016/j.jtemb.2017.08.005
  • Varsi, K., Bolann, B., Torsvik, I., RosvoldEik, T. C., Høl, P. J., & Bjørke-Monsen, A. L. (2017). Impact of maternal selenium status on infant out come during the first 6 months of life. Nutrients, 9(5), 486. https://doi.org/10.3390/nu9050486
  • Irwinda, R., Wibowo, N., & Putri, A. S. (2019). The concentration of micronutrients and heavy metals in maternal serum, placenta, and cord blood: a cross-sectional study in preterm birth. Journal of Pregnancy, 2019, https://doi.org/10.1155/2019/5062365
  • Kaneko, J. J., & Ralston, N. V. C. (2007). Selenium and mercury in pelagic fish in the central North pacific near Hawaii. Biological Trace Element Research, 119, 242–254. https://doi.org/10.1007/s12011-007-8004-8

Selenyum, Su Ürünleri ve Sağlık

Year 2021, Volume: 6 Issue: 2, 162 - 173, 29.12.2021
https://doi.org/10.33484/sinopfbd.879034

Abstract

Selenyum; endokrin, bağışıklık ve kardiyovasküler sistem gibi birçok sistemin işlevini destekler. Tüm eser mineraller gibi vücudun düzgün çalışması için gereklidir. Selenyum insan sağlığı için önemli olan ancak fazla alındığında insanlar için de zararlı olabilecek bir eser elementtir. Selenyum ihtiyacı, kalsiyum ve demir gibi vücuda daha çok miktarlarda gerekli olan minerallerden daha az seviyededir. Bu nedenle de bir mikro besin olarak adlandırılır. Diğer birçok besinde de olduğu gibi, selenyuma verilen biyolojik yanıt cinsiyete ve yaşa göre farklılık gösterir. İnsanlar genellikle selenyumu mahsul ve hayvansal ürünlerle ve bazen de fonksiyonel yiyecekler veya takviyeler olarak alırlar. Selenyum, E vitamini ile sinerjist olarak çalışır. Su ürünlerinin selenyum açısından zengin gıdalar arasında gelmektedir. Sadece balık değil kabuklu su ürünleri de içerdikleri minerallerden dolayı günlük besin alımında önemli bir yeri vardır.

References

  • De la Guardia, M., & Garrigues, S. (2015). Handbook of mineral elements in food. Chapter 2. In: Zand, N., Christides, T., Loughrill, E. (Eds.), Dietary Intake of Minerals. John Wiley & Sons, p. 23.
  • Aksoy, M. (2016). Beslenme Biyokimyası (5. Baskı). Basım Yeri: Hatiboğlu Kitabevi.
  • Kryukov, G. V, Castellano, S., Novoselov, S. V., Lobanov, A. V., Zehtab, O., Guigo, R., & Gladyshev, V. N. (2003). Characterization of mammalian selenoproteomes. Science, 300(5624), 1439–1443. https://doi.org/10.1126/science.1083516
  • Rayman, M. P. (2012). Selenium and human health. Lancet, 379(9822), 1256–1268. https://doi.org/10.1016/S0140-6736(11)61452-9
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (2014). EFSA panel on dietetic products, nutrition and allergies scientific opinion on dietary reference values for selenium, EFSA. J., 12 (10), 3846, https://doi.org/10.2903/J.Efsa.2014.3846
  • Gać, P., & Pawlas, K. (2011). Blood selenium concentration in various populations of healthy and sick people-review of literature from the years 2005–2010. Med. Środowisk, 14, 93-104.
  • Muntau, C., Streiter, M., Kappler, M., Röschinger, W. I., Schmid Rehnert, A., Schramel, P., & Poscherage, A. A. (2002). Age-Related reference values for serum selenium concentrations in infants and children, Clinical Chemistry, 48(3), 555-560. https://doi.org/10.1093/clinchem/48.3.555
  • Mehdi, Y., Hornick, J. L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292–3311. https://doi.org/10.3390/molecules18033292
  • Thavarajah, D., Thavarajah, P., Wejesuriya, A., Rutzke, M., Glahn, R. P., Combs, G. F., & Vandenberg, A. (2011). The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3-year study. Euphytica, 180(1), 123–128. https://doi.org/10.1007/s10681-011-0365-6
  • Kasnak, C., & Palamutoğlu, R. (2015). Doğal antioksidanların sınıflandırılması ve insan sağlığına etkisi. Türk Tarım ve Teknoloji Dergisi, 3(5), 226-234. https://doi.org/10.24925/turjaf.v3i5.226-234.171
  • Kangalgil, M., & Yardımcı, H. (2017). Selenyumun insan sağlığı üzerine etkileri ve diyabetes mellitusla ilişkisi. Bozok Tıp Dergisi, 7(4), 66-71.
  • Georgieff, M. K. (2007). Nutrition and the developing brain: nutrient priorities and measurement. The American Journal of Clinical Nutrition, 85(2), 614-620. https://doi.org/10.1093/ajcn/85.2.614S
  • Nyaradi, A., Li, J., Hickling, S., Foster, J. & Oddy, W. H. (2013). The role of nutrition in children’s neuro cognitive development, from pregnancy through childhood. Frontiers in Human Neuroscience, 7, 1-16. https://doi.org/10.3389/fnhum.2013.00097
  • Nandakumaran, M., Dashti, H. M., AlSaleh, E., & Al-Zaid, N. S. (2003). Transport kinetics of zinc, copper, selenium, and iron in perfused human placental lobule in vitro. Molecular and Cellular Biochemistry, 252(1), 91-96. https://doi.org/10.1023/A:1025565720489
  • Rayman, M. P. (2002). The argument for increasing selenium intake. Proceedings of the Nutrition Society, 61(2), 203-215. https://doi.org/10.1079/PNS2002153
  • Chen, J., & Berry, M. J. (2003). Selenium and selenoproteins in the brain and brain diseases. Journal of Neurochemistry, 86, 1–12. https://doi.org/10.1046/j.1471-4159.2003.01854.x
  • Drasch, G., Mailänder, S., Schlosser, C., & Roider, G. (2000). Content of non-mercury-associated selenium in human tissues. Biological Trace Element Research, 77(3), 219-230. https://doi.org/10.1385/BTER:77:3:219
  • Ejima, A., Watanabe, C., Koyama, H., Matsuno, K., & Satoh, H. (1996). Determination of selenium in the human brain by graphite furnace atomic absorption spectrometry. Biological Trace Element Research, 54(1), 9-21. https://doi.org/10.1007/BF02785316
  • Vahter, M., Lutz, E., Lind, B., Herin, P., Bui, T. H., & Krakau, I. (1997). Concentrations of copper, zinc and selenium in brain and kidney of second trimester fetuses and infants. Journal of Trace Elements in Medicine and Biology, 11(4), 215-222. https://doi.org/10.1016/S0946-672X(97)80016-8
  • Holben, D. H., & Smith, A. M. (1999). The diverse role of selenium within selenoproteins: A review. Journal of the American Dietetic Association, 99, 836–843. https://doi.org/10.1016/S0002-8223(99)00198-4
  • Moghaddam, A., Heller, R. A., Sun, Q., Seelig, J., Cherkezov, A., Seibert, L., Hackler, J., Seemann, P., Diegmann, J., Pilz, M., Bachmann, M., Minich, W. B., & Schomburg, L. (2020). Selenium deficiency is associated with mortality risk from COVID-19. Nutrients, 12(7), 2098. https://doi.org/10.3390/nu12072098
  • Zhang, J., Taylor, E. W., Bennett, K., Saad, R., & Rayman, M. P. (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China [Letter to the editors]. The American Journal of Clinical Nutrition, 111(6), 1297–9. https://doi.org/10.1093/ajcn/nqaa095
  • Filippini, T., Cilloni, S., Malavolti, M., Violi, F., Malagoli, C., Tesauro, M., & Vinceti, M, (2018). Dietary intake of cadmium, chromium, copper, manganese, selenium and zinc in a Northern Italy community. Journal of Trace Elements in Medicine and Biology, 50, 508-517. https://doi.org/10.1016/j.jtemb.2018.03.001
  • Waegeneers, N., Thiry, C., De Temmerman, L., & Ruttens, A. (2013). Predicted dietary intake of selenium by the general adult population in Belgium. Food Additives & Contaminants: Part A, 30(2), 278–285. https://doi.org/10.1080/19440049.2012.746474
  • WHO/FAO (2004). Vitamin and Mineral Requirements in Human Nutrition: Report of a Joint FAO/WHO Expert Consultation. Bangkok, Thailand, 21–30 September 1998., Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements, p. 341.
  • Uslu, B., & Aktaç, Ş. (2020). Selenyum ve depresyon üzerine etkileri. Avrupa Bilim ve Teknoloji Dergisi, (20), 147-151.
  • Rasmussen, R. R., Søndergaard, A. B., Bøknæs, N., Cederberg, T. L., Sloth, J. J., & Granby, K. (2017). Effects of industrial processing on essential elements and regulated and emerging contaminant levels in seafood. Food and Chemical Toxicology, 104, 85-94. https://doi.org/10.1016/j.fct.2017.02.008
  • Çorapcı, B. (2018). Ön işlemsiz donmuş depolanan (-22±1 ºC) hamsi (Engraulis encrasicolus, Linnaeus 1758) ve palamut (Sarda sarda, Bloch 1793) balıklarının duyusal, besinsel, kimyasal ve mikrobiyolojik özellikleri. Gıda, 43(6), 1075-1090. https://doi.org/10.15237/gida.GD18068
  • Pekcan, G., Şanlıer, N., & Baş, M., (Ed.) 2015. Türkiye Beslenme Rehberi (TÜBER), Ankara: Alban Tanıtım.
  • Balachandan, K. (2002). Post-Harvest Technology of Fish and Fish Products, Daya Publishing House, New Delhi, 1-28.
  • Lie, Ø. (2001). Flesh quality–the role of nutrition. Aquaculture Research, 32, 341-348. https://doi.org/10.1046/j.1355-557x.2001.00026.x
  • Morris, P. C. (2001). The Effects of Nutrition on The Composition of Farmed Fish, In: Kestin, S. C., and Warriss, P. D. (Eds.), Farmed Fish Quality, (pp.161–179). Oxford, Fish News Books.
  • Shearer, K. D. (2001). The Effect of Diet Composition and Feeding Regime on the Proximate Composition of Farmed Fishes, In: Kestin, S. C., and Warriss, P. D. (Eds.), Farmed Fish Quality, (pp.31–40). 1st Ed. Oxford: Fishing News Books.
  • Baker, R. T. M. (2001). The effect of certain micro nutrients on fish flesh quality, In: Kestin, S.C., and Warriss, P. D. (Eds.), Farmed Fish Quality, (pp. 180-191). 1st Ed. Oxford: Fishing News Books.
  • Et ve Süt Kurumu (12 Ocak 2021). Balık hakkında bilinmesi gerekenler. https://www.esk.gov.tr/tr/11006/balik-hakkinda-bilinmesi-gerekenler.
  • Ralston, N. V. C. (2008). Selenium health benefit values as seafood safety criteria. Eco Health, 5, 442–455. https://doi.org/10.1007/s10393-008-0202-0
  • Fox, T. E. E., Van Den Heuvel, C. A., Atherton, J. R., Dainty, D. J., Lewis, N. J., Langford, H. M., Crews, J. B., Luten, M., Lorentzen. F. W., Sieling, P., Van Aken-Schneyder, M., Hoek, M. J. J., Kotterman, P., Van, D, & Fairweather-Tait, S. J. (2004). Bioavailability of selenium from fish, yeast and selenate: a comparative study in humans using stable isotopes. European Journal of Clinical Nutrition, 58, 343–349. https://doi.org/10.1038/sj.ejcn.1601787
  • Yamashita, Y., Yamashita, M., & Iida, H. (2013). Selenium Content in Seafood in Japan. Nutrients, 5(2), 388-395. https://doi.org/10.3390/nu5020388
  • Önning, G. (2000). Separation of soluble selenium compounds in different fish species. Food Chemistry, 68(2), 133-139.
  • Plessi, M., Bertelli, D., & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14, 461-467. https://doi.org/ 10.1006/jfca.2001.1003
  • Erkan, N., Özden, Ö., & Ulusoy, Ş. (2009). Levels of trace elements in commercially important fish, crustaceans and mollusks from Istanbul fish market. Fresenius Environmental Bulletin, 18(7B), 1307-1311.
  • Turan, H., Altan, C. O., & Kocatepe, D. (2019). Black Sea whiting: assessment of potential health benefits/risks and differences based on mineral concentrations of meat and roes. Turkish Journal of Agriculture-Food Science and Technology, 7(12), 2075-2082. https://doi.org/10.24925/turjaf.v7i12.2075-2082.2780
  • Kocatepe, D., & Turan, H. (2012). Chemical composition of cultured sea bass (Dicentrarchus labrax, Linnaeus 1758) muscle. Journal of Food & Nutrition Research, 51(1), 33-39.
  • Tuzen, M. (2009). Toxic and essential trace elemental contents in fish species from the Black Sea, Turkey. Food and Chemical Toxicology, 47(8), 1785-1790. https://doi.org/10.1016/j.fct.2009.04.029
  • Tuzen, M., & Soylak, M. (2007). Determination of trace metals in canned fish marketed in Turkey. Food Chemistry, 101(4), 1378-1382. https://doi.org/10.1016/j.foodchem.2006.03.044
  • Ulusoy, Ş., Mol, S., Karakulak, F. S., & Kahraman, A. E. (2019). Selenium-mercury balance in commercial fish species from the Turkish waters. Biological Trace Element Research, 191(1), 207-213. https://doi.org/10.1007/s12011-018-1609-2
  • Çorapcı, B. (2019). Farklı pişirme materyalleri ile pişirmenin çarpan balığı (Scorpaena porcus, Linnaeus 1758)’nın makro ve iz element kompozisyonuna etkisinin belirlenmesi. 29 Ekim Bilimsel Araştırmalar Sempozyumu. 26-29 Ekim, İzmir.
  • Uchwał, P., Juszczak, M., & Bąkowska, M. (2019). Content of selenium in selected food products on the markets of North-Western Poland. Journal of Elementology, 24(1), 111-123. https://doi.org/10.5601/jelem.2017.22.4.1564
  • Reyes, L. H., Mar, J. L., Rahman, G. M., Seybert, B., Fahrenholz, T., & Kingston, H. M. (2009). Simultaneous determination of arsenic and selenium species in fish tissues using microwave assisted enzymatic extraction and ion chromatography inductively coupled plasma mass spectrometry. Talanta, 78(3), 983–990. https://doi.org/10.1016/j.talanta.2009.01.003
  • Balçık Mısır, G. (2012). Denizel kaynaklı bazı fonksiyonel gıdalar ve gıda bileşenleri. Yunus Araştırma Bülteni, 1, 1-7.
  • Rayman, M. (2000). The importance of selenium to human health. Lancet, 356, 233–241.
  • Fırat, Ö., & Kaya, Ö, (2019). Evaluation of protective role of selenium on mercury toxicity by super oxide dismutase, catalase and malondialdehyde parameters in Oreochromis niloticus (Linnaeus, 1758). Ege Journal of Fisheries and Aquatic Sciences, 36(3), 245-253. https://doi.org/10.12714/egejfas.2019.36.3.05
  • Ralston, N. V. C., Kaneko, J. J., & Raymond, L. J. (2019). Selenium health benefit values provide a reliable index of seafood benefits vs. risks. Journal of Trace Elements in Medicine and Biology, 55, 50-57. https://doi.org/10.1016/j.neuro.2008.07.007
  • Ralston, N. V. C., Ralston, C. R., Blackwell, J. L., & Raymond, L. J. (2008). Dietary and tissue selenium in relation to methyl mercury toxicity. Neuro Toxicology, 29, 802–811. https://doi.org/10.1016/j.neuro.2008.07.007
  • Ralston, N. V. C., & Raymond, L. J. (2010). Dietary selenium's protective effects against methyl mercury toxicity. Toxicology, 278, 112–123. https://doi.org/10.1016/j.tox.2010.06.004
  • Kehrig, H. A., Seixas, T. G., Di Beneditto A. P. M., & Malm, O. (2013). Selenium and mercury in widely consumed seafood from South Atlantic Ocean. Ecotoxicology and Environmental Safety, 93, 156–162. https://doi.org/10.1016/j.ecoenv.2013.03.034
  • Sakamoto, M., Chan, H. M., Domingo, J. L., Koriyama, C., & Murata, K. (2017). Placental transfer and levels of mercury, selenium, vitamin E, and docosahexaenoic acid in maternal and umbilical cord blood. Environment International, 111, 309–315. https://doi.org/10.1016/j.envint.2017.11.001
  • Ralston, N. V. C., & Raymond, L. J. (2018). Mercury's neurotoxicity is characterized by its disruption of selenium biochemistry. Biochimica et Biophysica Acta General Subjects, 1862, 2405–2416. https://doi.org/10.1016/j.bbagen.2018.05.009
  • Ambroziak, U., Hybsier, S., Shahnazaryan, U., Krasnodębska-Kiljańska, M., Rijntjes, E., Bartoszewicz, Z., Bednarczuka, T., & Schomburg, L. (2017). Severe selenium deficits in pregnant women irrespective of auto immune thyroid disease in an area with marginal selenium intake. Journal of Trace elements in Medicine and Biology, 44, 186–191. https://doi.org/10.1016/j.jtemb.2017.08.005
  • Varsi, K., Bolann, B., Torsvik, I., RosvoldEik, T. C., Høl, P. J., & Bjørke-Monsen, A. L. (2017). Impact of maternal selenium status on infant out come during the first 6 months of life. Nutrients, 9(5), 486. https://doi.org/10.3390/nu9050486
  • Irwinda, R., Wibowo, N., & Putri, A. S. (2019). The concentration of micronutrients and heavy metals in maternal serum, placenta, and cord blood: a cross-sectional study in preterm birth. Journal of Pregnancy, 2019, https://doi.org/10.1155/2019/5062365
  • Kaneko, J. J., & Ralston, N. V. C. (2007). Selenium and mercury in pelagic fish in the central North pacific near Hawaii. Biological Trace Element Research, 119, 242–254. https://doi.org/10.1007/s12011-007-8004-8
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Fisheries Management
Journal Section Reviews
Authors

Demet Kocatepe 0000-0002-9234-1907

Derya Büyükkol This is me 0000-0001-8522-2339

Gözde Öztürk This is me 0000-0002-0021-8566

Publication Date December 29, 2021
Submission Date February 12, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Kocatepe, D., Büyükkol, D., & Öztürk, G. (2021). Selenyum, Su Ürünleri ve Sağlık. Sinop Üniversitesi Fen Bilimleri Dergisi, 6(2), 162-173. https://doi.org/10.33484/sinopfbd.879034


Articles published in Sinopjns are licensed under CC BY-NC 4.0.