Kil Esaslı Bütünüyle-Katı-Hal Kompozit Kurşun (II)-Seçici Potansiyometrik Elektrot
Year 2022,
Volume: 7 Issue: 1, 8 - 21, 29.06.2022
Bilge Doğan
,
Bülent Çağlar
,
Cihan Topcu
,
Fatih Çoldur
,
Agah Özdemir
,
Eda Keleş Güner
,
Osman Çubuk
,
Volkan Özdokur
Abstract
Bentonit kili XRD, FTIR ve SEM-EDX teknikleriyle karakterize edildi. Karakterize edilen kil bütünüyle katı hal kompozit potansiyometrik elektrot yapımında iyonofor madde olarak kullanılmış ve kilin potansiyometrik uygulaması gerçekleştirilmiştir. Elektrodun Pb2+ iyonuna karşı, diğer yaygın inorganik katyonlarla karşılaştırıldığında oldukça duyarlı ve seçici potansiyometrik bir cevap sergilediği gözlemlenmiştir. Membran optimizasyon çalışmaları neticesinde en iyi potansiyometrik performans özellikleri sergileyen bileşimin kütlece % 65.0 grafit, % 5.0 çok duvarlı karbon nanotüp, %20.0 iyonofor (bentonit) ve %10.0 parafin yağı olduğu belirlenmiştir. Pb2+ seçici kompozit elektrodun 1.0×10-5 ˗ 1.0×10-1 M konsantrasyon aralığında doğrusal cevap sergilediği, doğrusal çalışma aralığında standart Pb2+ çözeltilerine karşı her 10 katlık konsantrasyon değişiminde ortalama 31 mV potansiyel fark sergilediği gözlenmiştir. Elektrodun tayin sınırı 9.0×10-6 M olarak hesaplanmıştır. Elektrodun cevap zamanının oldukça kısa olduğu (~5 s) potansiyometrik cevabın ve tekrarlanabilirliğinin de oldukça yüksek olduğu ortaya konmuştur.
Supporting Institution
Erzincan Binali Yıldırım Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğünün (BAP)
Project Number
FBA-2020-687
References
- Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite-and calcite-biochar composite. Science of the Total Environment, 709, Article 136171. https://doi.org/10.1016/j.scitotenv.2019.136171
- Ouni, L., Ramazani, A., & Fardood, S. T., (2019). An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 13(2), 274–295. https://doi.org/10.1007/s11705-018-1765-0
- Fu, F., & Wang, Q., (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
- Uzoh, C. F., Nwabanne, J. T., & Ozofor, I. H., (2020). Electrocoagulation of Pb2+, Co2+, and Mn2+ from simulated wastewater: An algorithmic optimization using hybrid RSM-GA-PSO. Environmental Progress & Sustainable Energy, 39:e13301. https://doi.org/10.1002/ep.13301
- Wang, T., & Yue, W., (2017). Carbon nanotubes heavy metal detection with stripping voltammetry: a review paper. Electroanalysis, 29, 2178-2189. https://doi.org/10.1002/elan.201700276
- Malik, L. A., Bashir, A., Qureashi, A., & Pandith, A. H., (2019). Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 17, 1495-1521. https://doi.org/10.1007/s10311-019-00891-z
- Pięk, M., Wojciechowska, A., Fendrych, K., Piech, R., & Paczosa-Bator B., (2019). A simple way to modify selectivity of sodium sensitive electrodes by using organic conductive crystals. Ionics, 25, 2311-2321. https://doi.org/10.1007/s11581-018-2600-9
- Lindner, E., & Gyurcsányi, R. E., (2009) Quality control criteria for solid-contact, solven tpolymeric membrane ion-selective electrodes. Journal of Solid State Electrochemistry, 13, 51-68. https://doi.org/10.1007/s10008-008-0608-1
- Bobacka, J., Ivaska, A., & Lewenstam, A., (2008). Potentiometric Ion Sensors. Chemical Reviews 108, 329-351. https://doi.org/10.1021/cr068100w
- Mendoza, M. O., Ortega, E. P., de Fuentes, O. A., Prokhorov, Y. & Luna Barcenas J. G., (2014) Chitosan/bentonit enanocomposite: Preliminary studies of its potentiometric response to nitrate ions in water. 2014 IEEE 9th Ibero American Congress on Sensors, 1-4.
https://doi.org/10.1109/IBERSENSOR.2014.6995562
- Udomphan, K.,Wongchaisuwat, A., & Meesuk, L., (2012). CdS-intercalated bentonite: A novel sulfide ions elective electrode. Applied Mechanics and Materials, 110-116, 472-477. https://doi.org/10.4028/www.scientific.net/amm.110-116.472
- Parra, E. J., Blondeau, P., Crespo, G. A., & Rius, F.X., (2011). An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chemical Communications, 47, 2438-2440. https://doi.org/10.1039/c0cc03639k
- Ghaedi, M., Montazerozohori, M., Behfar, M., Khodadoust S., Andikaey Z., & Biareh, M. N., (2011). Chemically modified multiwalled carbon nanotubes as efficient material for construction of new zinc(II) ion selective carbon paste electrode. Sensor Letters, 9(5), 1718-1725. https://doi.org/10.1166/sl.2011.1735
- Zhang, T., Chai, Y., Yuan, R., & Guo, J., (2012). Nanostructured multi-walled carbon nanotubes derivate based on carbon paste electrode for potentiometric detection of Ag+ ions. Analytical Methods 4, 454-459. https://doi.org/10.1039/C2AY05668B
- Shirzadmehr, A., Afkhami, A., & Madrakian, T., (2015). A new nano-composite potentiometric sensor containing an Hg2+-ion imprinted polymer for thetra Ce determination of mercury ions in different matrices. Journal of Molecular Liquids, 204, 227-235. https://doi.org/10.1016/j.molliq.2015.01.014
- Wang, L., Wang, Z., Zhou, C., Song, W., & Sun, C., (2020). Potentiometric micro sensor based on ion-imprinted polymer for thetrace determination of cesium(I) ions. Journal of Dispersion Science and Technology, 41 (7), 1095-1103. https://doi.org/10.1080/01932691.2020.1730886
- Yolcu, M., & Dere, N., (2018). All-solid-state potentiometric cu (ıı)-selective sensor based on ıon ımprinted methacrylamide polymer. Electroanalysis 30, 1147-1154. https://doi.org/ 10.1002/elan.201700849
- Caglar, B., Keles Guner, E., Ersoy, S., Caglar, S., Özdemir, A.O., Özdokur, K.V., Dogan, B., İcer, F., & Cırak C., (2021). Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes. Journal of Alloys and Compounds, 885, 160964. https://doi.org/10.1016/j.jallcom.2021.160964
- Caglar, B., Keles Guner, E., Özdokur, K.V., Özdemir, A.O., İçer, F., Caglar, S., Doğan, B., Beşer, B.M., Çırak, Ç., Tabak, A., & Ersoy, S., (2021). Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction. Journal of Photochemistry and Photobiology A: Chemistry, 418, Article 113400, https://doi.org/10.1016/j.jphotochem.2021.113400
- Caglar, B., Keles Guner, E., Keles, K., Özdokur, K.V., Cubuk, O., Coldur, F., Caglar, S., Topcu, C., & Tabak, A., (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: characterization, photocatalytic and electrocatalytic activities. Solid State Sciences, 83, 122-136, https://doi.org/10.1016/j.solidstatesciences.2018.07.013
- Prabhu, K., Malode, S. J., Veerapur, R. S., & Shetti, N. P., (2021). Clay-based carbon sensor for electro-oxidation of nimesulide. Materials Chemistry and Physics, 262, Article 124287. https://doi.org/10.1016/j.matchemphys.2021.124992
- Killedar, L. S., Vernekar, P. R., Shanbhag, M. M, Shetti, N. P., Malladi, R. S., Veerapur, R. S., & Reddy K. R., (2022). Fabrication of nanoclay-modified electrodes and their use as an effective electrochemical sensor for biomedical applications. Journal of Molecular Liquids, 351, Article 118583. https://doi.org/10.1016/j.molliq.2022.118583 0167
- Molaei N., Wani O. B., & Bobicki E. R., (2022). A comparative study of bio polymer adsorption on model anisotropic clay surface susing quartz crystal microbalance with dissipation (QCM-D). Journal of Colloid and Interface Science, 615, 543-553. https://doi.org/10.1016/j.jcis.2022.01.180
- Koksal, E., Afsin, B., Tabak, A., & Caglar B., (2011). Structural characterization of aniline-bentonite composite by FTIR, DTA/TG, and PXRD analyses and BET measurement. Spectroscopy Letters, 44, 77-82. https://doi.org/10.1080/00387010903555953
- Topcu, C., Coldur, F., Caglar, B., Ozdokur, K. V., & Cubuk, O. (2022). Solid‐state electrochemical sensor based on a cross‐linked copper (II)‐doped copolymer and carbon nanotube material for selective and sensitive detection of monohydrogen phosphate. Electroanalysis, 34(3), 474-484. https://doi.org/10.1002/elan.202100340
All-Solid-State Composite Lead (II)-Selective Potentiometric Electrode Based on Clay
Year 2022,
Volume: 7 Issue: 1, 8 - 21, 29.06.2022
Bilge Doğan
,
Bülent Çağlar
,
Cihan Topcu
,
Fatih Çoldur
,
Agah Özdemir
,
Eda Keleş Güner
,
Osman Çubuk
,
Volkan Özdokur
Abstract
The bentonite clay was characterized by XRD, FTIR and SEM-EDX techniques. The characterized bentonite clay was used as an ionophore material in the production of solid state composite potentiometric electrodes and its potentiometric electrode application was carried out. It was observed that the electrode exhibited a highly sensitive and selective potentiometric response to Pb2+ ion compared to other common inorganic cations. Membrane optimization studies indicated that the composition exhibiting the best potentiometric performance properties was 65.0% graphite, 5.0% multi-walled carbon nanotube, 20.0% ionophore (bentonite) and 10.0% paraffin oil by mass. It was also observed that the Pb2+ selective composite electrode exhibited a linear response in the concentration range of 1.0×10-5 ˗ 1.0×10-1 M with an average potential difference of 31 mV for each 10-fold Pb2+concentration change in the linear operating range. The detection limit of the electrode was calculated as 9.0×10-6 M. It was also revealed that the response time of the electrode was quite short (~5 s) and the reproducibility of the potentiometric response was quite high.
Project Number
FBA-2020-687
References
- Ramola, S., Belwal, T., Li, C. J., Wang, Y. Y., Lu, H. H., Yang, S. M., & Zhou, C. H. (2020). Improved lead removal from aqueous solution using novel porous bentonite-and calcite-biochar composite. Science of the Total Environment, 709, Article 136171. https://doi.org/10.1016/j.scitotenv.2019.136171
- Ouni, L., Ramazani, A., & Fardood, S. T., (2019). An overview of carbon nanotubes role in heavy metals removal from wastewater. Frontiers of Chemical Science and Engineering, 13(2), 274–295. https://doi.org/10.1007/s11705-018-1765-0
- Fu, F., & Wang, Q., (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92(3), 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011
- Uzoh, C. F., Nwabanne, J. T., & Ozofor, I. H., (2020). Electrocoagulation of Pb2+, Co2+, and Mn2+ from simulated wastewater: An algorithmic optimization using hybrid RSM-GA-PSO. Environmental Progress & Sustainable Energy, 39:e13301. https://doi.org/10.1002/ep.13301
- Wang, T., & Yue, W., (2017). Carbon nanotubes heavy metal detection with stripping voltammetry: a review paper. Electroanalysis, 29, 2178-2189. https://doi.org/10.1002/elan.201700276
- Malik, L. A., Bashir, A., Qureashi, A., & Pandith, A. H., (2019). Detection and removal of heavy metal ions: a review. Environmental Chemistry Letters, 17, 1495-1521. https://doi.org/10.1007/s10311-019-00891-z
- Pięk, M., Wojciechowska, A., Fendrych, K., Piech, R., & Paczosa-Bator B., (2019). A simple way to modify selectivity of sodium sensitive electrodes by using organic conductive crystals. Ionics, 25, 2311-2321. https://doi.org/10.1007/s11581-018-2600-9
- Lindner, E., & Gyurcsányi, R. E., (2009) Quality control criteria for solid-contact, solven tpolymeric membrane ion-selective electrodes. Journal of Solid State Electrochemistry, 13, 51-68. https://doi.org/10.1007/s10008-008-0608-1
- Bobacka, J., Ivaska, A., & Lewenstam, A., (2008). Potentiometric Ion Sensors. Chemical Reviews 108, 329-351. https://doi.org/10.1021/cr068100w
- Mendoza, M. O., Ortega, E. P., de Fuentes, O. A., Prokhorov, Y. & Luna Barcenas J. G., (2014) Chitosan/bentonit enanocomposite: Preliminary studies of its potentiometric response to nitrate ions in water. 2014 IEEE 9th Ibero American Congress on Sensors, 1-4.
https://doi.org/10.1109/IBERSENSOR.2014.6995562
- Udomphan, K.,Wongchaisuwat, A., & Meesuk, L., (2012). CdS-intercalated bentonite: A novel sulfide ions elective electrode. Applied Mechanics and Materials, 110-116, 472-477. https://doi.org/10.4028/www.scientific.net/amm.110-116.472
- Parra, E. J., Blondeau, P., Crespo, G. A., & Rius, F.X., (2011). An effective nanostructured assembly for ion-selective electrodes. An ionophore covalently linked to carbon nanotubes for Pb2+ determination. Chemical Communications, 47, 2438-2440. https://doi.org/10.1039/c0cc03639k
- Ghaedi, M., Montazerozohori, M., Behfar, M., Khodadoust S., Andikaey Z., & Biareh, M. N., (2011). Chemically modified multiwalled carbon nanotubes as efficient material for construction of new zinc(II) ion selective carbon paste electrode. Sensor Letters, 9(5), 1718-1725. https://doi.org/10.1166/sl.2011.1735
- Zhang, T., Chai, Y., Yuan, R., & Guo, J., (2012). Nanostructured multi-walled carbon nanotubes derivate based on carbon paste electrode for potentiometric detection of Ag+ ions. Analytical Methods 4, 454-459. https://doi.org/10.1039/C2AY05668B
- Shirzadmehr, A., Afkhami, A., & Madrakian, T., (2015). A new nano-composite potentiometric sensor containing an Hg2+-ion imprinted polymer for thetra Ce determination of mercury ions in different matrices. Journal of Molecular Liquids, 204, 227-235. https://doi.org/10.1016/j.molliq.2015.01.014
- Wang, L., Wang, Z., Zhou, C., Song, W., & Sun, C., (2020). Potentiometric micro sensor based on ion-imprinted polymer for thetrace determination of cesium(I) ions. Journal of Dispersion Science and Technology, 41 (7), 1095-1103. https://doi.org/10.1080/01932691.2020.1730886
- Yolcu, M., & Dere, N., (2018). All-solid-state potentiometric cu (ıı)-selective sensor based on ıon ımprinted methacrylamide polymer. Electroanalysis 30, 1147-1154. https://doi.org/ 10.1002/elan.201700849
- Caglar, B., Keles Guner, E., Ersoy, S., Caglar, S., Özdemir, A.O., Özdokur, K.V., Dogan, B., İcer, F., & Cırak C., (2021). Bi2S3 nanorods decorated on bentonite nanocomposite for enhanced visible-light-driven photocatalytic performance towards degradation of organic dyes. Journal of Alloys and Compounds, 885, 160964. https://doi.org/10.1016/j.jallcom.2021.160964
- Caglar, B., Keles Guner, E., Özdokur, K.V., Özdemir, A.O., İçer, F., Caglar, S., Doğan, B., Beşer, B.M., Çırak, Ç., Tabak, A., & Ersoy, S., (2021). Application of BiFeO3 and Au/BiFeO3 decorated kaolinite nanocomposites as efficient photocatalyst for degradation of dye and electrocatalyst for oxygen reduction reaction. Journal of Photochemistry and Photobiology A: Chemistry, 418, Article 113400, https://doi.org/10.1016/j.jphotochem.2021.113400
- Caglar, B., Keles Guner, E., Keles, K., Özdokur, K.V., Cubuk, O., Coldur, F., Caglar, S., Topcu, C., & Tabak, A., (2018). Fe3O4 nanoparticles decorated smectite nanocomposite: characterization, photocatalytic and electrocatalytic activities. Solid State Sciences, 83, 122-136, https://doi.org/10.1016/j.solidstatesciences.2018.07.013
- Prabhu, K., Malode, S. J., Veerapur, R. S., & Shetti, N. P., (2021). Clay-based carbon sensor for electro-oxidation of nimesulide. Materials Chemistry and Physics, 262, Article 124287. https://doi.org/10.1016/j.matchemphys.2021.124992
- Killedar, L. S., Vernekar, P. R., Shanbhag, M. M, Shetti, N. P., Malladi, R. S., Veerapur, R. S., & Reddy K. R., (2022). Fabrication of nanoclay-modified electrodes and their use as an effective electrochemical sensor for biomedical applications. Journal of Molecular Liquids, 351, Article 118583. https://doi.org/10.1016/j.molliq.2022.118583 0167
- Molaei N., Wani O. B., & Bobicki E. R., (2022). A comparative study of bio polymer adsorption on model anisotropic clay surface susing quartz crystal microbalance with dissipation (QCM-D). Journal of Colloid and Interface Science, 615, 543-553. https://doi.org/10.1016/j.jcis.2022.01.180
- Koksal, E., Afsin, B., Tabak, A., & Caglar B., (2011). Structural characterization of aniline-bentonite composite by FTIR, DTA/TG, and PXRD analyses and BET measurement. Spectroscopy Letters, 44, 77-82. https://doi.org/10.1080/00387010903555953
- Topcu, C., Coldur, F., Caglar, B., Ozdokur, K. V., & Cubuk, O. (2022). Solid‐state electrochemical sensor based on a cross‐linked copper (II)‐doped copolymer and carbon nanotube material for selective and sensitive detection of monohydrogen phosphate. Electroanalysis, 34(3), 474-484. https://doi.org/10.1002/elan.202100340