Review
BibTex RIS Cite

The Use of Advanced Oxidation Processes in the Treatment of Leachate

Year 2022, Volume: 7 Issue: 2, 173 - 187, 30.12.2022
https://doi.org/10.33484/sinopfbd.1162145

Abstract

In this study, the basic mechanisms of Fenton, electro-Fenton and photo-electro-Fenton, known as advanced oxidation processes, and the effects of selected experimental operating parameters on the efficiency of these processes in the treatment of leachate are discussed. Experimental studies on leachate treatment have shown that advanced oxidation processes can be used to achieve rapid oxidative degradation of organic pollutants. Therefore, the use of Fenton and related processes in the treatment of leachate is widely discussed in the literature. During the Fenton reactions, hydrogen peroxide (H2O2) is activated by iron to produce hydroxyl radicals (OH●) in the acidic environment, and the formed OH● removes resistant organic compounds in the leachate. Although the discharge standards expressed in the Water Pollution and Control Regulation in force in our country are mostly not met, it is understood that advanced oxidation processes are quite effective in reducing very high dissolved pollutant concentrations. For this reason, it is recommended to use such techniques together with another treatment method in the form of pre-treatment or post-treatment in the treatment of leachate.

References

  • Reshadi, M. A. M., Bazargan, A., & McKay, G. (2020). A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. Science of the Total Environment, 731, 1-15. https://doi.org/10.1016/j.scitotenv.2020.138863
  • Wu, C., Chen, W., Gu, Z., & Li, Q. (2021). A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment. Science of the Total Environment, 762, 1-15. https://doi.org/10.1016/j.scitotenv.2020.143131
  • Luo, H., Zeng, Y., Cheng, Y., He, D., & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of the Total Environment, 703, 1-19. https://doi.org/10.1016/j.scitotenv.2019.135468
  • Bakhshoodeh, R., Alavi, N., Oldham, C., Santos, R. M., Babaei, A. A., Vymazal, J., & Paydary, P. (2020). Constructed wetlands for landfill leachate treatment. Ecological Engineering, 146, 1-11. https://doi.org/10.1016/j.ecoleng.2020.105725
  • Mukherjee, S., Mukhopadhyay, S., Hashim, M. A., & Gupta, B. S. (2014). Contemporary environmental issues of landfill leachate: Assessment and remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524
  • Ameta, S. C., & Ameta, R. (Ed). (2018). Advanced Oxidation Processes for Wastewater Treatment Emerging Green Chemical Technology, Academic Press.
  • Babuponnusami, A., & Muthukumar, K. (2012). Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal, 183, 1-9. https://doi: 10.1016/j.cej.2011.12.010
  • Kang, Y. W., & Hwang, K-Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786-2790. https://doi.org/10.1016/S0043-1354(99)00388-7
  • Wang, P., Lau, I., Fang, H., & Zhou, D. (2000). Landfill leachate treatment with combined uasb and fenton coagulation. Journal of Environmental Science & Health Part A, 35(10), 1981-1988. https://doi.org/10.1080/10934520009377093
  • Lau, I. W. C., Wang, P., & Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. Journal of Environmental Engineering, 127(7), 666-669.
  • Gulsen, H., & Turan, M. (2004). Treatment of sanitary landfill leachate using a combined anaerobic fluidized bed reactor and Fentons oxidation. Environmental Engineering Science, 21(5), 627-636. https://doi.org/10.1089/ees.2004.21.627
  • Lopez, A., Pagano, M., Volpe, A., & Di Pinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54(7), 1005-1010. https://doi.org/10.1016/j.chemosphere.2003.09.015
  • Zhang, H., Choi, H. J., & Huang, C-P. (2005). Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 125(1-3), 166-174. https://doi.org/10.1016/j.jhazmat.2005.05.025
  • Di Iaconi, C., Ramadori, R., & Lopez, A. (2006). Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochemical Engineering Journal, 31(2), 118-124. https://doi.org/10.1016/j.bej.2006.06.002
  • Zhang, H., Zhang, D., & Zhou, J. (2006). Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials, 135(1-3), 106-111. https://doi.org/10.1016/j.jhazmat.2005.11.025
  • Deng. Y. (2007). Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. Journal of Hazardous Materials, 146(1-2), 334-340. https://doi.org/10.1016/j.jhazmat.2006.12.026
  • Primo, O., Rivero, M. J., & Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053
  • Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials, 163(1), 109-114. https://doi.org/10.1016/j.jhazmat.2008.06.067
  • Kochany, J., & Kochany, E. L. (2009). Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation-A comparative study. Journal of Hazardous Materials, 166(1), 248-254. https://doi.org/10.1016/j.jhazmat.2008.11.017
  • Wang, X., Chen, S., Gu, X., & Wang, K. (2009). Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process. Waste Management, 29(4), 1354-1358. https://doi.org/10.1016/j.wasman.2008.10.006
  • Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2010). Fenton’s oxidation as post-treatment of a mature municipal landfill leachate. International Journal of Environmental Science and Engineering, 2(1), 40-43.
  • Cotman, M., & Gotvajn, A. Z. (2010). Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate. Journal of Hazardous Materials, 178(1-3), 298-305. https://doi.org/10.1016/j.jhazmat.2010.01.078
  • Carluccio, M., Fiorentino, A., & Rizzo, L. (2020). Multi-barrier treatment of mature landfill leachate: effect of Fenton oxidation and air stripping on activated sludge process and cost analysis. Journal of Environmental Chemical Engineering, 8(5), 104444. https://doi.org/10.1016/j.jece.2020.104444
  • Altin, A. (2008). An alternative type of photoelectro-Fenton process for the treatment of landfill leachate. Separation and Purification Technology, 61(3), 391-397. https://doi.org/10.1016/j.seppur.2007.12.004
  • Asaithambi, P., Govindarajan, R., Yesuf, M. B., & Alemayehu, E. (2020). Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes. Separation and Purification Technology, 233, 115935. https://doi.org/10.1016/j.seppur.2019.115935
  • Atmaca, K. (2021). Sızıntı sularının elektrokimyasal olarak arıtımında işletme parametrelerinin belirlenmesi. (Tez No. 688814) [Doktora Tezi, Ondokuz Mayıs Üniversitesi]
  • Kim, S-M., Geissen, S-U., & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted Fenton reaction. Water Science and Technology, 35(4), 239-248. https://doi.org/10.1016/S0273-1223(97)00031-0
  • Baig, S., Coulomb, I., Courant, P., & Liechti, P. (1999). Treatment of landfill leachates: Lapeyrouse and satrod case studies. Ozone Science & Engineering, 21, 1-22. https://doi.org/10.1080/01919519908547255
  • Welander, U., Henrysson, T., & Welander, T. (1998). Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Research, 32(5), 1564-1570. https://doi.org/10.1016/S0043-1354(97)00351-5
  • Haapea, P., Korhonen, S., & Tuhkanen, T. (2002). Treatment of industrial landfill leachates by chemical and biological methods: Ozonation, ozonation + hydrogen peroxide, hydrogen peroxide and biological post-treatment for ozonated water. Ozone Science & Engineering, 24(5), 369-378. https://doi.org/10.1080/01919510208901627
  • Wu, J. J., Wu, C-C., Ma, H-W., & Chang, C-C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7), 997-1003. https://doi.org/10.1016/j.chemosphere.2003.10.006
  • Rivas, F. J., Beltran, F., Carvalho, F., Acedo, B., & Gimeno, O. (2004). Stabilized leachates: sequential coagulation-flocculation + chemical oxidation process. Journal of Hazardous Materials, 116(1-2), 95-102. https://doi.org/10.1016/j.jhazmat.2004.07.022
  • İnce, N. H. (1998). Light-enhanced chemical oxidation for tertiary treatment of municipal landfill leachate. Water Environment Research, 70(6), 1161-1169. https://doi.org/10.2175/106143098X123282
  • Wenzel, A., Gahr, A., & Niessner, R. (1999). TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Research, 33(4), 937-946. https://doi.org/10.1016/S0043-1354(98)00302-9
  • Domingues, A., Silva, M.J., Vaz, T., Gomes, J., & Martins, R.C. (2022). Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: A comparative review with Fenton’s peroxidation. Science of the Total Environment, 832, 155029. http://dx.doi.org/10.1016/j.scitotenv.2022.155029
  • Hilles, A. H., Abu Amr, S. S., Hussein, R. A., Arafa, A. I., & El-Sebaie, O. D. (2015). Effect of persulfate and persulfate /H2O2 on biodegradability of an anaerobic stabilized landfill leachate. Waste Management, 44, 172-177. https://doi.org/10.1016/j.wasman.2015.07.046
  • Hilles, A. H., & Abu Amr, S. S. (2016). Factorial design and optimization of leachate treatment using persulfate oxidation. Global Nest Journal, 18(4), 842-854.
  • Chen, W., Wang, F., He, C., & Li, Q. (2020). Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate. Journal of Hazardous Materials, 397, 122785. https://doi.org/10.1016/j.jhazmat.2020.122785
  • Chou, Y-C., Lo, S-L., Kuo, J., & Yeh, C-J. (2013). A study on microwave oxidation of landfill leachate ─ contributions of microwave-specific effects. Journal of Hazardous Materials, 246-247, 79-86. https://doi.org/10.1016/j.jhazmat.2012.11.060
  • Hilles, A. H., Abu Amr, S. S., Hussein, R. A., El-Sebaie, O. D., & Arafa, A. I. (2016). Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of Environmental Management, 166, 493-498. https://doi.org/10.1016/j.jenvman.2015.10.051
  • Kattel, E., & Dulova, N. (2017). Ferrous ion-activated persulphate process for landfill leachate treatment: removal of organic load, phenolic micropollutants and nitrogen. Environmental Technology, 38(10), 1223-1231. https://doi.org/10.1080/09593330.2016.1221472
  • He, H., & Zhou, Z. (2017). Electro-Fenton process for water and wastewater treatment. Critical Reviews in Environmental Science and Technology, 47(21), 2100-2131. https://doi.org/10.1080/10643389.2017.1405673
  • Deng, Y., & Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683-3694. https://doi.org/10.1016/j.watres.2006.08.009
  • Wang, Z., Li, J., Tan, W., Wu, X., Lin, H., & Zhang, H. (2019). Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis. Separation and Purification Technology, 208, 3-11. https://doi.org/j.seppur.2018.06.048
  • Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M., & Oturan, M. A. (2007). Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. Journal of Electroanalytical Chemistry, 610(1), 75-84. https://doi.org/10.1016/j.jelechem.2007.07.004
  • Ma, L., Zhou, M., Ren, G., Yang, W., & Liang, L. (2016). A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation. Electrochimica Acta, 200, 222-230. https://doi.org/10.1016/j.electacta.2016.03.181
  • Rivas, F. J., Beltran, F. J., Frades, J., & Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Research, 35(2), 387-396. https://doi.org/10.1016/S0043-1354(00)00285-2
  • Babuponnusami, A., & Muthukumar, K. (2011). Degradation of phenol in aqueous solution by Fenton, sono-Fenton and sono-photo-Fenton methods. Clean-Soil Air Water, 39(2), 142-147. https://doi.org/10.1002/clen.201000072
  • Ting, W-P., Lu, M-C., & Huang, Y-H. (2009). Kinetics of 2,6-dimethylnaniline degradation by electro-Fenton process. Journal of Hazardous Materials, 161(2-3), 1484-1490. https://doi.org/10.1016/j.jhazmat.2008.04.119
  • Verma, V., & Chaudhari, P. K. (2020). Optimization of multiple parameters for treatment of coking wastewater using Fenton oxidation. Arabian Journal of Chemistry, 13(4), 5084-5095. https://doi.org/10.1016/j.arabjc.2020.02.008
  • Lin, S. S., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  • Lin, S. H., Lin, C. M., & Leu, H. G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Research, 33(7), 1735-1741. https://doi.org/10.1016/S0043-1354(98)00403-5
  • Ting, W-P., Lu, M-C., & Huang, Y-H. (2008). The reactor design and comparasion of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). Journal of Hazardous Materials, 156(1-3), 421-427. https://doi.org/10.1016/j.jhazmat.2007.12.031
  • Kurt, U., Apaydin, U., & Gonullu, M. T. (2007). Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. Journal of Hazardous Materials, 143(1-2), 33-40. https://doi.org/10.1016/j.jhazmat.2006.08.065
  • Brillas, E., & Casado, J. (2002). Aniline degradation by electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere, 47(3), 241-248. https://doi.org/10.1016/S0045-6535(01)00221-1
  • Badellino, C., Rodrigues, C. A., & Bertazzoli, R. (2006). Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid. Journal of Hazardous Materials, 137(2), 856-864. https://doi.org/10.1016/j.jhazmat.2006.03.035
  • Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145(1-2), 227-232. https://doi.org/10.1016/j.jhazmat.2006.11.016
  • Nidheesh, P. V., & Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 299, 1-15. https://doi.org/10.1016/j.desal.2012.05.011
  • Deng, Y., Zhu, X., Chen, N., Feng, C., Wang, H., Kuang, P., & Hu, W. (2020). Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Science of the Total Environment, 745, 1-16. https://doi.org/10.1016/j.scitotenv.2020.140768
  • Beyazit, N., & Atmaca, K. (2021). COD and color removal from landfill leachate by photo-electro-Fenton process. International Journal of Electrochemical Science, 16, 1-14. https://doi: 10.20964/2021.05.65
  • Masschelein, W. J., & Rice, R. G. (2002). Ultraviolet Light in Water and Wastewater Sanitation. A CRC Press Company Washinghton, D.C.
  • Cırık, K (2013). Boyar madde içeren atıksu arıtma tesislerinin işletilmesine yönelik el kitabı.

İleri Oksidasyon Proseslerinin Sızıntı Sularının Arıtımında Kullanımı

Year 2022, Volume: 7 Issue: 2, 173 - 187, 30.12.2022
https://doi.org/10.33484/sinopfbd.1162145

Abstract

Bu çalışmada, ileri oksidasyon prosesleri olarak bilinen, Fenton, elektro-Fenton ve foto-elektro-Fenton’un temel mekanizmaları ve sızıntı suyu arıtımında seçilen deneysel çalışma parametrelerinin bu proseslerin verimliliğine etkileri tartışılmıştır. Sızıntı suyu arıtımı ile ilgili deneysel çalışmalar, organik kirleticilerin hızlı oksidatif bozunmasını sağlamak için ileri oksidasyon proseslerinin kullanılabileceğini göstermiştir. Bu nedenle, sızıntı suyunun arıtımında, Fenton ve ilgili proseslerin kullanımı literatürde yaygın olarak tartışılmaktadır. Fenton reaksiyonu sırasında, asidik ortamda hidroksil radikalleri (OH●) üretmek için hidrojen peroksit (H2O2) demir tarafından aktive edilir ve oluşan OH● sızıntı suyundaki dirençli organik bileşikleri giderir. Ülkemizde yürürlükte olan Su Kirliliği ve Kontrolü Yönetmeliği'nde ifade edilen deşarj standartları çoğunlukla sağlanmasa da ileri oksidasyon proseslerinin çok yüksek çözünmüş kirletici konsantrasyonlarını azaltmada oldukça etkili olduğu anlaşılmaktadır. Bu nedenle sızıntı suyu arıtımında bu tür tekniklerin ön arıtma veya arıtma sonrası şeklinde başka bir arıtma ile birlikte kullanılması tavsiye edilir.

References

  • Reshadi, M. A. M., Bazargan, A., & McKay, G. (2020). A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. Science of the Total Environment, 731, 1-15. https://doi.org/10.1016/j.scitotenv.2020.138863
  • Wu, C., Chen, W., Gu, Z., & Li, Q. (2021). A review of the characteristics of Fenton and ozonation systems in landfill leachate treatment. Science of the Total Environment, 762, 1-15. https://doi.org/10.1016/j.scitotenv.2020.143131
  • Luo, H., Zeng, Y., Cheng, Y., He, D., & Pan, X. (2020). Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. Science of the Total Environment, 703, 1-19. https://doi.org/10.1016/j.scitotenv.2019.135468
  • Bakhshoodeh, R., Alavi, N., Oldham, C., Santos, R. M., Babaei, A. A., Vymazal, J., & Paydary, P. (2020). Constructed wetlands for landfill leachate treatment. Ecological Engineering, 146, 1-11. https://doi.org/10.1016/j.ecoleng.2020.105725
  • Mukherjee, S., Mukhopadhyay, S., Hashim, M. A., & Gupta, B. S. (2014). Contemporary environmental issues of landfill leachate: Assessment and remedies. Critical Reviews in Environmental Science and Technology, 45(5), 472-590. https://doi.org/10.1080/10643389.2013.876524
  • Ameta, S. C., & Ameta, R. (Ed). (2018). Advanced Oxidation Processes for Wastewater Treatment Emerging Green Chemical Technology, Academic Press.
  • Babuponnusami, A., & Muthukumar, K. (2012). Advanced oxidation of phenol: A comparison between Fenton, electro-Fenton, sono-electro-Fenton and photo-electro-Fenton processes. Chemical Engineering Journal, 183, 1-9. https://doi: 10.1016/j.cej.2011.12.010
  • Kang, Y. W., & Hwang, K-Y. (2000). Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 34(10), 2786-2790. https://doi.org/10.1016/S0043-1354(99)00388-7
  • Wang, P., Lau, I., Fang, H., & Zhou, D. (2000). Landfill leachate treatment with combined uasb and fenton coagulation. Journal of Environmental Science & Health Part A, 35(10), 1981-1988. https://doi.org/10.1080/10934520009377093
  • Lau, I. W. C., Wang, P., & Fang, H. H. P. (2001). Organic removal of anaerobically treated leachate by Fenton coagulation. Journal of Environmental Engineering, 127(7), 666-669.
  • Gulsen, H., & Turan, M. (2004). Treatment of sanitary landfill leachate using a combined anaerobic fluidized bed reactor and Fentons oxidation. Environmental Engineering Science, 21(5), 627-636. https://doi.org/10.1089/ees.2004.21.627
  • Lopez, A., Pagano, M., Volpe, A., & Di Pinto, A. C. (2004). Fenton’s pre-treatment of mature landfill leachate. Chemosphere, 54(7), 1005-1010. https://doi.org/10.1016/j.chemosphere.2003.09.015
  • Zhang, H., Choi, H. J., & Huang, C-P. (2005). Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials, 125(1-3), 166-174. https://doi.org/10.1016/j.jhazmat.2005.05.025
  • Di Iaconi, C., Ramadori, R., & Lopez, A. (2006). Combined biological and chemical degradation for treating a mature municipal landfill leachate. Biochemical Engineering Journal, 31(2), 118-124. https://doi.org/10.1016/j.bej.2006.06.002
  • Zhang, H., Zhang, D., & Zhou, J. (2006). Removal of COD from landfill leachate by electro-Fenton method. Journal of Hazardous Materials, 135(1-3), 106-111. https://doi.org/10.1016/j.jhazmat.2005.11.025
  • Deng. Y. (2007). Physical and oxidative removal of organics during Fenton treatment of mature municipal landfill leachate. Journal of Hazardous Materials, 146(1-2), 334-340. https://doi.org/10.1016/j.jhazmat.2006.12.026
  • Primo, O., Rivero, M. J., & Ortiz, I. (2008). Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. Journal of Hazardous Materials, 153(1-2), 834-842. https://doi.org/10.1016/j.jhazmat.2007.09.053
  • Atmaca, E. (2009). Treatment of landfill leachate by using electro-Fenton method. Journal of Hazardous Materials, 163(1), 109-114. https://doi.org/10.1016/j.jhazmat.2008.06.067
  • Kochany, J., & Kochany, E. L. (2009). Utilization of landfill leachate parameters for pretreatment by Fenton reaction and struvite precipitation-A comparative study. Journal of Hazardous Materials, 166(1), 248-254. https://doi.org/10.1016/j.jhazmat.2008.11.017
  • Wang, X., Chen, S., Gu, X., & Wang, K. (2009). Pilot study on the advanced treatment of landfill leachate using a combined coagulation, fenton oxidation and biological aerated filter process. Waste Management, 29(4), 1354-1358. https://doi.org/10.1016/j.wasman.2008.10.006
  • Cortez, S., Teixeira, P., Oliveira, R., & Mota, M. (2010). Fenton’s oxidation as post-treatment of a mature municipal landfill leachate. International Journal of Environmental Science and Engineering, 2(1), 40-43.
  • Cotman, M., & Gotvajn, A. Z. (2010). Comparison of different physico-chemical methods for the removal of toxicants from landfill leachate. Journal of Hazardous Materials, 178(1-3), 298-305. https://doi.org/10.1016/j.jhazmat.2010.01.078
  • Carluccio, M., Fiorentino, A., & Rizzo, L. (2020). Multi-barrier treatment of mature landfill leachate: effect of Fenton oxidation and air stripping on activated sludge process and cost analysis. Journal of Environmental Chemical Engineering, 8(5), 104444. https://doi.org/10.1016/j.jece.2020.104444
  • Altin, A. (2008). An alternative type of photoelectro-Fenton process for the treatment of landfill leachate. Separation and Purification Technology, 61(3), 391-397. https://doi.org/10.1016/j.seppur.2007.12.004
  • Asaithambi, P., Govindarajan, R., Yesuf, M. B., & Alemayehu, E. (2020). Removal of color, COD and determination of power consumption from landfill leachate wastewater using an electrochemical advanced oxidation processes. Separation and Purification Technology, 233, 115935. https://doi.org/10.1016/j.seppur.2019.115935
  • Atmaca, K. (2021). Sızıntı sularının elektrokimyasal olarak arıtımında işletme parametrelerinin belirlenmesi. (Tez No. 688814) [Doktora Tezi, Ondokuz Mayıs Üniversitesi]
  • Kim, S-M., Geissen, S-U., & Vogelpohl, A. (1997). Landfill leachate treatment by a photoassisted Fenton reaction. Water Science and Technology, 35(4), 239-248. https://doi.org/10.1016/S0273-1223(97)00031-0
  • Baig, S., Coulomb, I., Courant, P., & Liechti, P. (1999). Treatment of landfill leachates: Lapeyrouse and satrod case studies. Ozone Science & Engineering, 21, 1-22. https://doi.org/10.1080/01919519908547255
  • Welander, U., Henrysson, T., & Welander, T. (1998). Biological nitrogen removal from municipal landfill leachate in a pilot scale suspended carrier biofilm process. Water Research, 32(5), 1564-1570. https://doi.org/10.1016/S0043-1354(97)00351-5
  • Haapea, P., Korhonen, S., & Tuhkanen, T. (2002). Treatment of industrial landfill leachates by chemical and biological methods: Ozonation, ozonation + hydrogen peroxide, hydrogen peroxide and biological post-treatment for ozonated water. Ozone Science & Engineering, 24(5), 369-378. https://doi.org/10.1080/01919510208901627
  • Wu, J. J., Wu, C-C., Ma, H-W., & Chang, C-C. (2004). Treatment of landfill leachate by ozone-based advanced oxidation processes. Chemosphere, 54(7), 997-1003. https://doi.org/10.1016/j.chemosphere.2003.10.006
  • Rivas, F. J., Beltran, F., Carvalho, F., Acedo, B., & Gimeno, O. (2004). Stabilized leachates: sequential coagulation-flocculation + chemical oxidation process. Journal of Hazardous Materials, 116(1-2), 95-102. https://doi.org/10.1016/j.jhazmat.2004.07.022
  • İnce, N. H. (1998). Light-enhanced chemical oxidation for tertiary treatment of municipal landfill leachate. Water Environment Research, 70(6), 1161-1169. https://doi.org/10.2175/106143098X123282
  • Wenzel, A., Gahr, A., & Niessner, R. (1999). TOC-removal and degradation of pollutants in leachate using a thin-film photoreactor. Water Research, 33(4), 937-946. https://doi.org/10.1016/S0043-1354(98)00302-9
  • Domingues, A., Silva, M.J., Vaz, T., Gomes, J., & Martins, R.C. (2022). Sulfate radical based advanced oxidation processes for agro-industrial effluents treatment: A comparative review with Fenton’s peroxidation. Science of the Total Environment, 832, 155029. http://dx.doi.org/10.1016/j.scitotenv.2022.155029
  • Hilles, A. H., Abu Amr, S. S., Hussein, R. A., Arafa, A. I., & El-Sebaie, O. D. (2015). Effect of persulfate and persulfate /H2O2 on biodegradability of an anaerobic stabilized landfill leachate. Waste Management, 44, 172-177. https://doi.org/10.1016/j.wasman.2015.07.046
  • Hilles, A. H., & Abu Amr, S. S. (2016). Factorial design and optimization of leachate treatment using persulfate oxidation. Global Nest Journal, 18(4), 842-854.
  • Chen, W., Wang, F., He, C., & Li, Q. (2020). Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate. Journal of Hazardous Materials, 397, 122785. https://doi.org/10.1016/j.jhazmat.2020.122785
  • Chou, Y-C., Lo, S-L., Kuo, J., & Yeh, C-J. (2013). A study on microwave oxidation of landfill leachate ─ contributions of microwave-specific effects. Journal of Hazardous Materials, 246-247, 79-86. https://doi.org/10.1016/j.jhazmat.2012.11.060
  • Hilles, A. H., Abu Amr, S. S., Hussein, R. A., El-Sebaie, O. D., & Arafa, A. I. (2016). Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of Environmental Management, 166, 493-498. https://doi.org/10.1016/j.jenvman.2015.10.051
  • Kattel, E., & Dulova, N. (2017). Ferrous ion-activated persulphate process for landfill leachate treatment: removal of organic load, phenolic micropollutants and nitrogen. Environmental Technology, 38(10), 1223-1231. https://doi.org/10.1080/09593330.2016.1221472
  • He, H., & Zhou, Z. (2017). Electro-Fenton process for water and wastewater treatment. Critical Reviews in Environmental Science and Technology, 47(21), 2100-2131. https://doi.org/10.1080/10643389.2017.1405673
  • Deng, Y., & Englehardt, J. D. (2006). Treatment of landfill leachate by the Fenton process. Water Research, 40(20), 3683-3694. https://doi.org/10.1016/j.watres.2006.08.009
  • Wang, Z., Li, J., Tan, W., Wu, X., Lin, H., & Zhang, H. (2019). Removal of COD from landfill leachate by advanced Fenton process combined with electrolysis. Separation and Purification Technology, 208, 3-11. https://doi.org/j.seppur.2018.06.048
  • Hammami, S., Oturan, N., Bellakhal, N., Dachraoui, M., & Oturan, M. A. (2007). Oxidative degradation of direct orange 61 by electro-Fenton process using a carbon felt electrode: Application of the experimental design methodology. Journal of Electroanalytical Chemistry, 610(1), 75-84. https://doi.org/10.1016/j.jelechem.2007.07.004
  • Ma, L., Zhou, M., Ren, G., Yang, W., & Liang, L. (2016). A highly energy-efficient flow-through electro-Fenton process for organic pollutants degradation. Electrochimica Acta, 200, 222-230. https://doi.org/10.1016/j.electacta.2016.03.181
  • Rivas, F. J., Beltran, F. J., Frades, J., & Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent. Water Research, 35(2), 387-396. https://doi.org/10.1016/S0043-1354(00)00285-2
  • Babuponnusami, A., & Muthukumar, K. (2011). Degradation of phenol in aqueous solution by Fenton, sono-Fenton and sono-photo-Fenton methods. Clean-Soil Air Water, 39(2), 142-147. https://doi.org/10.1002/clen.201000072
  • Ting, W-P., Lu, M-C., & Huang, Y-H. (2009). Kinetics of 2,6-dimethylnaniline degradation by electro-Fenton process. Journal of Hazardous Materials, 161(2-3), 1484-1490. https://doi.org/10.1016/j.jhazmat.2008.04.119
  • Verma, V., & Chaudhari, P. K. (2020). Optimization of multiple parameters for treatment of coking wastewater using Fenton oxidation. Arabian Journal of Chemistry, 13(4), 5084-5095. https://doi.org/10.1016/j.arabjc.2020.02.008
  • Lin, S. S., & Lo, C. C. (1997). Fenton process for treatment of desizing wastewater. Water Research, 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  • Lin, S. H., Lin, C. M., & Leu, H. G. (1999). Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation. Water Research, 33(7), 1735-1741. https://doi.org/10.1016/S0043-1354(98)00403-5
  • Ting, W-P., Lu, M-C., & Huang, Y-H. (2008). The reactor design and comparasion of Fenton, electro-Fenton and photoelectro-Fenton processes for mineralization of benzene sulfonic acid (BSA). Journal of Hazardous Materials, 156(1-3), 421-427. https://doi.org/10.1016/j.jhazmat.2007.12.031
  • Kurt, U., Apaydin, U., & Gonullu, M. T. (2007). Reduction of COD in wastewater from an organized tannery industrial region by electro-Fenton process. Journal of Hazardous Materials, 143(1-2), 33-40. https://doi.org/10.1016/j.jhazmat.2006.08.065
  • Brillas, E., & Casado, J. (2002). Aniline degradation by electro-Fenton® and peroxi-coagulation processes using a flow reactor for wastewater treatment. Chemosphere, 47(3), 241-248. https://doi.org/10.1016/S0045-6535(01)00221-1
  • Badellino, C., Rodrigues, C. A., & Bertazzoli, R. (2006). Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: Study for the degradation of 2,4-dichlorophenoxyacetic acid. Journal of Hazardous Materials, 137(2), 856-864. https://doi.org/10.1016/j.jhazmat.2006.03.035
  • Zhang, H., Fei, C., Zhang, D., & Tang, F. (2007). Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials, 145(1-2), 227-232. https://doi.org/10.1016/j.jhazmat.2006.11.016
  • Nidheesh, P. V., & Gandhimathi, R. (2012). Trends in electro-Fenton process for water and wastewater treatment: An overview. Desalination, 299, 1-15. https://doi.org/10.1016/j.desal.2012.05.011
  • Deng, Y., Zhu, X., Chen, N., Feng, C., Wang, H., Kuang, P., & Hu, W. (2020). Review on electrochemical system for landfill leachate treatment: Performance, mechanism, application, shortcoming, and improvement scheme. Science of the Total Environment, 745, 1-16. https://doi.org/10.1016/j.scitotenv.2020.140768
  • Beyazit, N., & Atmaca, K. (2021). COD and color removal from landfill leachate by photo-electro-Fenton process. International Journal of Electrochemical Science, 16, 1-14. https://doi: 10.20964/2021.05.65
  • Masschelein, W. J., & Rice, R. G. (2002). Ultraviolet Light in Water and Wastewater Sanitation. A CRC Press Company Washinghton, D.C.
  • Cırık, K (2013). Boyar madde içeren atıksu arıtma tesislerinin işletilmesine yönelik el kitabı.
There are 62 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Reviews
Authors

Kasım Atmaca 0000-0002-6570-4127

Nevzat Beyazıt 0000-0002-8396-5996

Publication Date December 30, 2022
Submission Date August 15, 2022
Published in Issue Year 2022 Volume: 7 Issue: 2

Cite

APA Atmaca, K., & Beyazıt, N. (2022). İleri Oksidasyon Proseslerinin Sızıntı Sularının Arıtımında Kullanımı. Sinop Üniversitesi Fen Bilimleri Dergisi, 7(2), 173-187. https://doi.org/10.33484/sinopfbd.1162145


Articles published in Sinopjns are licensed under CC BY-NC 4.0.