Research Article
BibTex RIS Cite

Sınırlandırılmış Çarpan İkiz Jetlerin Akış Yapısı ve Isı Transferi Karakteristikleri Üzerine Bir İnceleme

Year 2023, Volume: 8 Issue: 2, 178 - 201, 28.12.2023
https://doi.org/10.33484/sinopfbd.1365843

Abstract

Sayısal ve deneysel yöntemler kullanılarak dairesel ikiz jetlerin ısı transferi performansı ve akış karakteristikleri üzerine bir araştırma gerçekleştirildi. Jetler alt yüzeyden yayılmış ve üst yüzeye dik olarak çarpmak üzere sınırlandırılmıştır. İki boyutlu çarpan ikiz jet akış alanındaki güçlü türbülans yapılarını ve ısı transferini simüle etmek için Realizable k-ε ve Standard k-ω türbülans modelleri kullanılmıştır. Hem simülasyonlarda hem de deneylerde 30000 ila 50000 arasında değişen Reynolds sayıları kullanılmış, jetler arası mesafe 0.5 ila 2 arasında değişmiş ve lüleler ile hedef çarpma levhası arası mesafe de aynı aralıkta olmuştur. Deneysel ölçümlerde açıklığın 1'e kadar olduğu durumlar için hedef çarpma yüzeyinde atmosfer altı basınç bölgeleri tespit edilirken, sayısal sonuçlar bunların incelenen tüm lüle hedef levha aralıklarında bulunabileceğini göstermiştir. Hedef yüzeydeki ısı transferi katsayılarındaki tepe noktaları ile basınç dağılımlarındaki atmosfer altı bölgeler arasında bir korelasyon keşfedilmiştir.

References

  • Barata, J. M. M., Durao, D. F. G. & Heitor, M. V. (1991). Impingement of single and twin turbulent jets through a cross-flow. AIAA Journal, 29, 595-602. https://doi.org/10.2514/3.10626
  • Chuang, S. H., Chen, M. H., Lii, S. W. & Tai, F. M. (1992). Numerical simulation of twin-jet impingement on a flat plate coupled with cross-flow. International Journal for Numerical Methods in Fluids, 14, 459-475. https://doi.org/10.1002/fld.1650140406
  • Chuang, S. H. & Nieh, T. J. (2000). Numerical simulation and analysis of three-dimensional turbulent impinging square twin jet flow field with no-cross flow. International Journal of Numerical Methods in Fluids, 33, 475-498. https://doi.org/10.1002/1097-0363(20000630)33:4<475::AID-FLD16>3.0.CO;2-Q
  • Polat, S., Huang, B., Mujumdar, A. S. & Douglas, W. J. (1989). Numerical flow and heat transfer under impinging jets. Annual Review of Numerical Fluid Mechanics and Heat Transfer, 2, 157-197. https://doi.org/10.1615/AnnualRevHeatTransfer.v2.60
  • Shi, Y. L., Ray, M. B. & Mujumdar, A. S. (2002). Computational study of impingement heat transfer under a turbulent slot jet. Industrial & Engineering Chemistry Research, 41, 4643-4651. https://doi.org/10.1021/ie020120a
  • Seyedein, S. H., Hasan, M. & Mujumdar, A. S. (1995). Turbulent flow and heat transfer from confined multiple impinging slot jets. Numerical Heat Transfer, 18, 35-51. https://doi.org/10.1080/10407789508913687
  • Dianat, M., Fairweather, M. & Jones, W. P. (1996). Prediction of axisymmetric and two dimensional impinging turbulent jets. International Journal of Heat and Fluid Flow, 17, 530-538. https://doi.org/10.1016/S0142-727X(96)00076-8
  • Fernandez, J. A., Elicer-Cortes, J. C., Valencia, A., Pavagean, M. & Gupta, S. (2007). Comparison of low cost two equation turbulence models for prediction flow dynamics in twin jet devices. International Communications in Heat and Mass Transfer, 34, 570-578. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.011
  • Miao, J. M., Wu, C. Y. & Chen, P. H. (2009). Numerical investigation of confined multiple jet impingement cooling over a flat plate at different cross flow orientations. Numerical Heat Transfer, Part A, 55, 1019-1050. https://doi.org/10.1080/10407780903014335
  • Qiu, S., Xu, P., Jiang, Z. & Mujumdar, A. S. (2012). Numerical modeling of pulsed laminar opposed impinging jets. Engineering Applications of Computational Fluid Mechanics, 6(2), 195-202. https://doi.org/10.1080/19942060.2012.11015414
  • Attalla, M & Specht, E. (2009). Heat transfer characteristics from in-line arrays of free impinging jets. Heat and Mass Transfer, 45, 537-543. https://doi.org/10.1007/s00231-008-0452-y
  • Aldabbagh, L. B. Y. & Mohamad, A. A. (2007). Effect of jet-to-plate spacing in laminar array jets impinging. Heat and Mass Transfer, (43), 265-273. https://doi.org/ 10.1007/s00231-006-0109-7
  • Dagtekin, I. & Oztop, H.F. (2008). Heat transfer due to double laminar slot jets impingement on to an isothermal wall within one side closed long duct. International Communications in Heat and Mass Transfer, 35, 65-75. https://doi.org/10.1016/j.icheatmasstransfer.2007.05.013
  • Aldabbagh, L. B. Y. & Sezai, I. (2002). Numerical simulation of three-dimensional laminar, square twin–jet impingement on a flat plate, flow structure and heat transfer. Numerical Heat Transfer, Part A, 41, 835-850. https://doi.org/10.1080/10407780290059378
  • Ho, C. M. & Hsiao, F. B. (1982, August 31 - September 3). Evolution of coherent structure in a lip jet [Conference presentation]. International Symposium on Structure of Complex Turbulent Shear Flow, Marseille, France 121-136. https://doi.org/ 10.1007/978-3-642-81991-9_13
  • Siclari, M. J., Hill, J. W. G. & Jenkins, R. C. (1981). Stagnation line and upwash formation of two impinging jets. AIAA Journal, 19, 1286-1293. https://doi.org/10.2514/3.60062
  • Tanaka, E. (1974). The interference of two dimensional parallel jets experiments on the combined flow of dual jets. Bulletin ASME, 17, 920-927. https://doi.org/ 10.1299/JSME1958.17.920
  • Abdel-Fattah, A. (2007). Numerical and experimental study of turbulent impinging twin jet flow. Experimental Thermal and Fluid Science, 31, 1060-1072. https://doi.org/10.1016/j.expthermflusci.2006.11.006
  • Mikhail, S., Morces, S. M., Absu-Ellail, M. M. M. & Ghaly, W. S. (1982). Numerical prediction of flow field and heat transfer from a row of laminar slot jets impinging on a flat plate. Heat Transfer, 3, 377-382.
  • Barata, J. M. M. (1996, November 18-20,). Ground vortex formation with twin impinging jets [Conference presentation]. International Powered Lift Conference, Florida, USA. https://www.jstor.org/stable/44725610
  • Dong, L. L., Leung, C. W. & Cheung, C. S. (2004). Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets. International Journal of Heat and Mass Transfer, 47, 489-500. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.019
  • Saad, N. R., Polat, S. & Douglas, W. J. M. (1992). Confined multiple impinging slot jets without crossflow effects. Int J Heat Fluid Flow, 13, 2-14. https://doi.org/10.1016/0142-727X(92)90054-D
  • Ozmen, Y. (2011). Confined impinging twin air jets at high Reynolds numbers. Experimental Thermal and Fluid Science, 35, 355-363. https://doi.org/10.1016/j.expthermflusci.2010.10.006
  • Buchlin, J. M. (2011). Convective heat transfer in impinging- gas- jet arrangements. Journal of Applied Fluid Mechanics (JAFM), 4, 137-149. https://doi.org/10.36884/jafm.4.02.11926
  • Polat S., Huang B., Mujumdar A. S. & Douglas W. J. M. (1989). Numerical flow and heat transfer under impinging jets : A review. Annual Review of Heat Transfer, 2, 157-197. https://doi.org/10.1615/AnnualRevHeatTransfer.v2.60
  • Ozmen, Y. & Ipek, G. (2016). Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat and Mass Transfer, 52, 773-787. https://doi.org/10.1007/s00231-015-1598-z
  • Ozmen, Y. & Baydar, E. (2013). A numerical investigation on confined impinging array of air jets. Journal of Thermal Science and Technology, 33, 65-74.
  • Afroz F. & Sharif, M. A. R. (2013). Numerical study of heat transfer from an isothermally heated flat surface due to turbulent twin oblique confined slot-jet impingement. International Journal of Thermal Sciences, 74, 1-13. https://doi.org/10.1016/j.ijthermalsci.2013.07.004
  • Yousefi-Lafouraki, B., Ramiar, A. & Ranjbar, A. A. (2014). Laminar forced convection of a confined slot impinging jet in a converging channel. International Journal of Thermal Sciences, 77, 130-138. https://doi.org/10.1016/j.ijthermalsci.2013.10.014
  • Al-Rmah, M. A. & Mohamad, A. A. (2015). Simulation of multi-internal confined impinging jets using the lattice boltzmann method. Applied Thermal Engineering, 81, 288-296. https://doi.org/10.1016/j.applthermaleng.2015.02.038
  • Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G. & Cong D. (2016). Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows. International Journal of Thermal Sciences, 108, 123-131. https://doi.org/10.1016/j.ijthermalsci.2016.05.006
  • Lam, P. A. K. & Prakash, K. A. (2017). A numerical investigation and design optimization of impingement cooling system with an array of air jets. International Journal of Heat and Mass Transfer, 108, 880–900. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.017
  • Paulraj, M. P., Byon, C., Vallati, A. & Parthasarathy, R. K. (2020). A numerical investigation of flow and heat transfer of laminar multiple slot jets impinging on multiple protruding heat sources. Heat Transfer Engineering, 41, 65-83. https://doi.org/10.1080/01457632.2018.1513629
  • Kaya, H. (2021). İkili çarpan jet ile soğutulan sıcak plakanın yüzey şeklinin ısı transferine etkisinin sayısal analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 152-163. https://doi.org/10.29130/dubited.754908
  • Martinez-Filguera, P., Portal-Porras, K., Fernandez-Gamiz, U., Zulueta, E. & Soriano, J. (2022). Experimental and numerical modeling of an air jet impingement system. European Journal of Mechanics-B/Fludis, 94, 228-245. https://doi.org/10.1016/j.euromechflu.2022.03.005
  • Demircan, T. & Türkoğlu, H. (2010). Çarpan osilasyonlu jetlerde osilasyon karakteristiklerinin ve çarpma mesafesinin akış ve ısı transferine etkilerinin sayısal olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25 (4), 895-904. https://dergipark.org.tr/tr/pub/gazimmfd/issue/6686/88613
  • Bolek, A. & Bayraktar, S. (2019). Flow and heat transfer investigation of a circular jet issuing on different types of surfaces. Sādhanā 44, 242. https://doi.org/10.1007/s12046-019-1226-6).
  • Çalışır, T., Başkaya, Ş., Çalışkan, S. & Kılıç, M. (2017). Çarpan akışkan jetleri kullanarak kanatçıklı yüzeyler üzerindeki akış alanının sayısal olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32 (1): 119-130. https://doi.org/10.17341/gazimmfd.300601.
  • Wang, S. J. & Mujumdar, A. S. (2005). A comparative study of five low Reynolds number k-ɛ models for impingement heat transfer. Applied Thermal Engineering, 25, 31-44. https://doi.org/10.1016/j.applthermaleng.2004.06.001
  • Park, T. H., Choi, H. G., Yoo, J. Y. & Kim, S. J. (2003). Streamline upwind numerical simulation of two-dimensional confined impinging slot jets. International Journal of Heat and Mass Transfer, 46, 251-262. https://doi.org/10.1016/S0017-9310(02)00270-3
  • Bentarzi, F., Mataoui, A. & Rebay, M. (2019). Effect of inclination of twin impinging turbulent jets on flow and heat transfer characteristics. International Journal of Thermal Sciences, 137, 490-499. https://doi.org/10.1016/j.ijthermalsci.2018.12.021
  • Youn, J. S., Choi, W. W. & Kim, S. M. (2021). Numerical investigation of jet array impingement cooling with effusion holes. Applied Thermal Engineering, 197, 117-147. https://doi.org/10.1016/j.applthermaleng.2021.117347
  • Singh, P. K., Renganathan, M., Yadav, H., Sahu, S. K., Upadhyay, P. K. & Agrawal, A. (2022). An experimental investigation of the flow-field and thermal characteristics of synthetic jet impingement with different waveforms. International Journal of Heat and Mass Transfer, 187, 122534. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122534
  • Sharif, M. A. R. (2013). Heat transfer from an isothermally heated flat surface due to confined laminar twin oblique slot-jet impingement. Journal of Thermal Science and Engineering Applications, 7, 031001. https://doi.org/10.1016/j.proeng.2013.03.158
  • Cornaro, C., Fleischer, A. S. & Goldstein R. J. (1999). Flow visualization of a round jet impinging on cylindrical surfaces. Experimental Thermal and Fluid Science, 20, 66-78. https://doi.org/10.1016/S0894-1777(99)00032-1
  • Travnicek, Z. & Tesar, V. (2004). Annular impinging jet with recirculation zone expanded by acoustic excitation. International Journal of Heat and Mass Transfer, 47, 2329-2341. https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.032
  • Obot, N. T. & Trabold, T. A. (1987). Impinging heat transfer within arrays of circular jets: Part 1- effects of minimum, intermediate and complete cross flow for small and large spacings. Journal of Heat Transfer, 109, 872-879. https://doi.org/10.1115/1.3248197
  • Cooper, D., Jackson, D. C., Launder, B. E. & Liao, G. X. (1993). Impinging jet studies for turbulence model assessment-I. Flow field experiments. International Journal of Heat and Mass Transfer, 36, 2675-2684. https://doi.org/10.1016/S0017-9310(05)80204-2

An Investigation on Flow Structure and Heat Transfer Characteristics of Confined Impinging Twin Jets

Year 2023, Volume: 8 Issue: 2, 178 - 201, 28.12.2023
https://doi.org/10.33484/sinopfbd.1365843

Abstract

An investigation into the heat transfer performance and flow characteristics of circular twin jets was conducted using both numerical and experimental methods. The jets emanated from the lower surface and were confined to impinge perpendicularly on the upper surface. To simulate the bidimensional impinging twin jet flow field with powerful turbulence and heat transfer, Realizable k-ε and Standard k-ω turbulence models were employed. Reynolds numbers ranging from 30000 to 50000 were used in both simulations and experiments, with jet-to-jet spacing ranging from 0.5 to 2 and nozzles to target impingement plate spacing in the same range. Sub-atmospheric pressure regions were detected on the impingement surface in experimental measurements for spacing up to 1, whereas numerical results suggested that they could be found at all nozzle to target impingement plate spacings studied. A correlation was discovered between the peaks in coefficients of heat transfer on the target surface and the sub-atmospheric regions in pressure distributions.

References

  • Barata, J. M. M., Durao, D. F. G. & Heitor, M. V. (1991). Impingement of single and twin turbulent jets through a cross-flow. AIAA Journal, 29, 595-602. https://doi.org/10.2514/3.10626
  • Chuang, S. H., Chen, M. H., Lii, S. W. & Tai, F. M. (1992). Numerical simulation of twin-jet impingement on a flat plate coupled with cross-flow. International Journal for Numerical Methods in Fluids, 14, 459-475. https://doi.org/10.1002/fld.1650140406
  • Chuang, S. H. & Nieh, T. J. (2000). Numerical simulation and analysis of three-dimensional turbulent impinging square twin jet flow field with no-cross flow. International Journal of Numerical Methods in Fluids, 33, 475-498. https://doi.org/10.1002/1097-0363(20000630)33:4<475::AID-FLD16>3.0.CO;2-Q
  • Polat, S., Huang, B., Mujumdar, A. S. & Douglas, W. J. (1989). Numerical flow and heat transfer under impinging jets. Annual Review of Numerical Fluid Mechanics and Heat Transfer, 2, 157-197. https://doi.org/10.1615/AnnualRevHeatTransfer.v2.60
  • Shi, Y. L., Ray, M. B. & Mujumdar, A. S. (2002). Computational study of impingement heat transfer under a turbulent slot jet. Industrial & Engineering Chemistry Research, 41, 4643-4651. https://doi.org/10.1021/ie020120a
  • Seyedein, S. H., Hasan, M. & Mujumdar, A. S. (1995). Turbulent flow and heat transfer from confined multiple impinging slot jets. Numerical Heat Transfer, 18, 35-51. https://doi.org/10.1080/10407789508913687
  • Dianat, M., Fairweather, M. & Jones, W. P. (1996). Prediction of axisymmetric and two dimensional impinging turbulent jets. International Journal of Heat and Fluid Flow, 17, 530-538. https://doi.org/10.1016/S0142-727X(96)00076-8
  • Fernandez, J. A., Elicer-Cortes, J. C., Valencia, A., Pavagean, M. & Gupta, S. (2007). Comparison of low cost two equation turbulence models for prediction flow dynamics in twin jet devices. International Communications in Heat and Mass Transfer, 34, 570-578. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.011
  • Miao, J. M., Wu, C. Y. & Chen, P. H. (2009). Numerical investigation of confined multiple jet impingement cooling over a flat plate at different cross flow orientations. Numerical Heat Transfer, Part A, 55, 1019-1050. https://doi.org/10.1080/10407780903014335
  • Qiu, S., Xu, P., Jiang, Z. & Mujumdar, A. S. (2012). Numerical modeling of pulsed laminar opposed impinging jets. Engineering Applications of Computational Fluid Mechanics, 6(2), 195-202. https://doi.org/10.1080/19942060.2012.11015414
  • Attalla, M & Specht, E. (2009). Heat transfer characteristics from in-line arrays of free impinging jets. Heat and Mass Transfer, 45, 537-543. https://doi.org/10.1007/s00231-008-0452-y
  • Aldabbagh, L. B. Y. & Mohamad, A. A. (2007). Effect of jet-to-plate spacing in laminar array jets impinging. Heat and Mass Transfer, (43), 265-273. https://doi.org/ 10.1007/s00231-006-0109-7
  • Dagtekin, I. & Oztop, H.F. (2008). Heat transfer due to double laminar slot jets impingement on to an isothermal wall within one side closed long duct. International Communications in Heat and Mass Transfer, 35, 65-75. https://doi.org/10.1016/j.icheatmasstransfer.2007.05.013
  • Aldabbagh, L. B. Y. & Sezai, I. (2002). Numerical simulation of three-dimensional laminar, square twin–jet impingement on a flat plate, flow structure and heat transfer. Numerical Heat Transfer, Part A, 41, 835-850. https://doi.org/10.1080/10407780290059378
  • Ho, C. M. & Hsiao, F. B. (1982, August 31 - September 3). Evolution of coherent structure in a lip jet [Conference presentation]. International Symposium on Structure of Complex Turbulent Shear Flow, Marseille, France 121-136. https://doi.org/ 10.1007/978-3-642-81991-9_13
  • Siclari, M. J., Hill, J. W. G. & Jenkins, R. C. (1981). Stagnation line and upwash formation of two impinging jets. AIAA Journal, 19, 1286-1293. https://doi.org/10.2514/3.60062
  • Tanaka, E. (1974). The interference of two dimensional parallel jets experiments on the combined flow of dual jets. Bulletin ASME, 17, 920-927. https://doi.org/ 10.1299/JSME1958.17.920
  • Abdel-Fattah, A. (2007). Numerical and experimental study of turbulent impinging twin jet flow. Experimental Thermal and Fluid Science, 31, 1060-1072. https://doi.org/10.1016/j.expthermflusci.2006.11.006
  • Mikhail, S., Morces, S. M., Absu-Ellail, M. M. M. & Ghaly, W. S. (1982). Numerical prediction of flow field and heat transfer from a row of laminar slot jets impinging on a flat plate. Heat Transfer, 3, 377-382.
  • Barata, J. M. M. (1996, November 18-20,). Ground vortex formation with twin impinging jets [Conference presentation]. International Powered Lift Conference, Florida, USA. https://www.jstor.org/stable/44725610
  • Dong, L. L., Leung, C. W. & Cheung, C. S. (2004). Heat transfer and wall pressure characteristics of a twin premixed butane/air flame jets. International Journal of Heat and Mass Transfer, 47, 489-500. https://doi.org/10.1016/j.ijheatmasstransfer.2003.07.019
  • Saad, N. R., Polat, S. & Douglas, W. J. M. (1992). Confined multiple impinging slot jets without crossflow effects. Int J Heat Fluid Flow, 13, 2-14. https://doi.org/10.1016/0142-727X(92)90054-D
  • Ozmen, Y. (2011). Confined impinging twin air jets at high Reynolds numbers. Experimental Thermal and Fluid Science, 35, 355-363. https://doi.org/10.1016/j.expthermflusci.2010.10.006
  • Buchlin, J. M. (2011). Convective heat transfer in impinging- gas- jet arrangements. Journal of Applied Fluid Mechanics (JAFM), 4, 137-149. https://doi.org/10.36884/jafm.4.02.11926
  • Polat S., Huang B., Mujumdar A. S. & Douglas W. J. M. (1989). Numerical flow and heat transfer under impinging jets : A review. Annual Review of Heat Transfer, 2, 157-197. https://doi.org/10.1615/AnnualRevHeatTransfer.v2.60
  • Ozmen, Y. & Ipek, G. (2016). Investigation of flow structure and heat transfer characteristics in an array of impinging slot jets. Heat and Mass Transfer, 52, 773-787. https://doi.org/10.1007/s00231-015-1598-z
  • Ozmen, Y. & Baydar, E. (2013). A numerical investigation on confined impinging array of air jets. Journal of Thermal Science and Technology, 33, 65-74.
  • Afroz F. & Sharif, M. A. R. (2013). Numerical study of heat transfer from an isothermally heated flat surface due to turbulent twin oblique confined slot-jet impingement. International Journal of Thermal Sciences, 74, 1-13. https://doi.org/10.1016/j.ijthermalsci.2013.07.004
  • Yousefi-Lafouraki, B., Ramiar, A. & Ranjbar, A. A. (2014). Laminar forced convection of a confined slot impinging jet in a converging channel. International Journal of Thermal Sciences, 77, 130-138. https://doi.org/10.1016/j.ijthermalsci.2013.10.014
  • Al-Rmah, M. A. & Mohamad, A. A. (2015). Simulation of multi-internal confined impinging jets using the lattice boltzmann method. Applied Thermal Engineering, 81, 288-296. https://doi.org/10.1016/j.applthermaleng.2015.02.038
  • Guoneng, L., Zhihua, X., Youqu, Z., Wenwen, G. & Cong D. (2016). Experimental study on convective heat transfer from a rectangular flat plate by multiple impinging jets in laminar cross flows. International Journal of Thermal Sciences, 108, 123-131. https://doi.org/10.1016/j.ijthermalsci.2016.05.006
  • Lam, P. A. K. & Prakash, K. A. (2017). A numerical investigation and design optimization of impingement cooling system with an array of air jets. International Journal of Heat and Mass Transfer, 108, 880–900. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.017
  • Paulraj, M. P., Byon, C., Vallati, A. & Parthasarathy, R. K. (2020). A numerical investigation of flow and heat transfer of laminar multiple slot jets impinging on multiple protruding heat sources. Heat Transfer Engineering, 41, 65-83. https://doi.org/10.1080/01457632.2018.1513629
  • Kaya, H. (2021). İkili çarpan jet ile soğutulan sıcak plakanın yüzey şeklinin ısı transferine etkisinin sayısal analizi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9, 152-163. https://doi.org/10.29130/dubited.754908
  • Martinez-Filguera, P., Portal-Porras, K., Fernandez-Gamiz, U., Zulueta, E. & Soriano, J. (2022). Experimental and numerical modeling of an air jet impingement system. European Journal of Mechanics-B/Fludis, 94, 228-245. https://doi.org/10.1016/j.euromechflu.2022.03.005
  • Demircan, T. & Türkoğlu, H. (2010). Çarpan osilasyonlu jetlerde osilasyon karakteristiklerinin ve çarpma mesafesinin akış ve ısı transferine etkilerinin sayısal olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 25 (4), 895-904. https://dergipark.org.tr/tr/pub/gazimmfd/issue/6686/88613
  • Bolek, A. & Bayraktar, S. (2019). Flow and heat transfer investigation of a circular jet issuing on different types of surfaces. Sādhanā 44, 242. https://doi.org/10.1007/s12046-019-1226-6).
  • Çalışır, T., Başkaya, Ş., Çalışkan, S. & Kılıç, M. (2017). Çarpan akışkan jetleri kullanarak kanatçıklı yüzeyler üzerindeki akış alanının sayısal olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32 (1): 119-130. https://doi.org/10.17341/gazimmfd.300601.
  • Wang, S. J. & Mujumdar, A. S. (2005). A comparative study of five low Reynolds number k-ɛ models for impingement heat transfer. Applied Thermal Engineering, 25, 31-44. https://doi.org/10.1016/j.applthermaleng.2004.06.001
  • Park, T. H., Choi, H. G., Yoo, J. Y. & Kim, S. J. (2003). Streamline upwind numerical simulation of two-dimensional confined impinging slot jets. International Journal of Heat and Mass Transfer, 46, 251-262. https://doi.org/10.1016/S0017-9310(02)00270-3
  • Bentarzi, F., Mataoui, A. & Rebay, M. (2019). Effect of inclination of twin impinging turbulent jets on flow and heat transfer characteristics. International Journal of Thermal Sciences, 137, 490-499. https://doi.org/10.1016/j.ijthermalsci.2018.12.021
  • Youn, J. S., Choi, W. W. & Kim, S. M. (2021). Numerical investigation of jet array impingement cooling with effusion holes. Applied Thermal Engineering, 197, 117-147. https://doi.org/10.1016/j.applthermaleng.2021.117347
  • Singh, P. K., Renganathan, M., Yadav, H., Sahu, S. K., Upadhyay, P. K. & Agrawal, A. (2022). An experimental investigation of the flow-field and thermal characteristics of synthetic jet impingement with different waveforms. International Journal of Heat and Mass Transfer, 187, 122534. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122534
  • Sharif, M. A. R. (2013). Heat transfer from an isothermally heated flat surface due to confined laminar twin oblique slot-jet impingement. Journal of Thermal Science and Engineering Applications, 7, 031001. https://doi.org/10.1016/j.proeng.2013.03.158
  • Cornaro, C., Fleischer, A. S. & Goldstein R. J. (1999). Flow visualization of a round jet impinging on cylindrical surfaces. Experimental Thermal and Fluid Science, 20, 66-78. https://doi.org/10.1016/S0894-1777(99)00032-1
  • Travnicek, Z. & Tesar, V. (2004). Annular impinging jet with recirculation zone expanded by acoustic excitation. International Journal of Heat and Mass Transfer, 47, 2329-2341. https://doi.org/10.1016/j.ijheatmasstransfer.2003.10.032
  • Obot, N. T. & Trabold, T. A. (1987). Impinging heat transfer within arrays of circular jets: Part 1- effects of minimum, intermediate and complete cross flow for small and large spacings. Journal of Heat Transfer, 109, 872-879. https://doi.org/10.1115/1.3248197
  • Cooper, D., Jackson, D. C., Launder, B. E. & Liao, G. X. (1993). Impinging jet studies for turbulence model assessment-I. Flow field experiments. International Journal of Heat and Mass Transfer, 36, 2675-2684. https://doi.org/10.1016/S0017-9310(05)80204-2
There are 48 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Yücel Özmen 0000-0003-1127-1060

Haluk Keleş 0000-0002-6562-8902

Publication Date December 28, 2023
Submission Date September 25, 2023
Published in Issue Year 2023 Volume: 8 Issue: 2

Cite

APA Özmen, Y., & Keleş, H. (2023). An Investigation on Flow Structure and Heat Transfer Characteristics of Confined Impinging Twin Jets. Sinop Üniversitesi Fen Bilimleri Dergisi, 8(2), 178-201. https://doi.org/10.33484/sinopfbd.1365843


Articles published in Sinopjns are licensed under CC BY-NC 4.0.