Newtonian Olmayan Padovan ve Newtonian Olmayan Perrin Sayıları Hakkında
Year 2024,
Volume: 9 Issue: 2, 502 - 515, 29.12.2024
Orhan Dişkaya
Abstract
Bu çalışmada Newtonian olmayan Padovan ve Newtonian olmayan Perrin sayıları olarak adlandırdığımız Padovan ve Perrin sayılarının yeni bir versiyonunu tanıtıyoruz. Ayrıca bunların bazı özelliklerini de inceliyoruz. Ek olarak, Binet benzeri formüller, üreteç fonksiyonları, kısmi toplam formülleri ve binom toplam formülleri de dahil olmak üzere bu yeni türleri içeren çeşitli özdeşlikler ve formüller sağlıyoruz.
References
- Grossman, M. & Katz, R. (1972). Non-Newtonian calculus, Lee Press: Pigeon Cove, MA, USA.
- Grossman, M. (1979). An introduction to non-Newtonian calculus. International Journal of Mathematical Educational in Science and Technology 10(4), 525–528. https://doi.org/10.1080/0020739790100406
- Çakmak, A. F. & Başar, F. (2012). Some new results on sequence spaces with respect to non-Newtonian calculus. Journal of Inequalities and Applications, 1–17. https://doi.org/10.1186/1029-242X-2012-228
- Duyar, C., & Sağır, B. (2017). Non-Newtonian Comment of Lebesgue Measure in Real Numbers. Journal of Mathematics 2017(1), 6507013. https://doi.org/10.1155/2017/6507013
- Erdogan, M., & Duyar, C. (2018). Non-Newtonian improper integrals. Journal of Science and Arts 18(1), 49–74.
- Degirmen, N. & Duyar, C. (2023). A new perspective on Fibonacci and Lucas numbers. Filomat, 37(28), 9561–9574. https://doi.org/10.2298/FIL2328561D
- Yağmur, T. (2024). Non-Newtonian Pell and Pell-Lucas numbers. Journal of New Results in Science, 13(1), 22–35. https://doi.org/10.54187/jnrs.1447678
- Shannon, A. G., Horadam, A. F., & Anderson, P. R. (2006). The Auxiliary Equation Associated with the Plastic Numbers, Notes Number Theory Discrete Mathematics, 12(1), 1–12.
- Shannon, A. G., Anderson, P. R. & Horadam, A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, 37(7), 825–831. https://doi.org/10.1080/00207390600712554
- Sloane, N. J. A. (1973). A Handbook of Integer Sequences, Academic Press, NY.
- Dişkaya, O. (2023). Padovan sayılarının genellemeleri ve uygulamaları . (Tez no. 826990) [Doktora Tezi, Mersin Üniversitesi].
- Adegoke, K. (2022). Summation identities involving Padovan and Perrin numbers.Palestine Journal of Mathematics, 11(1), 633—650.
- Yilmaz, N. & Taskara, N. (2013). Matrix sequences in terms of Padovan and Perrin numbers. Journal of Applied Mathematics, 2013(1), 941673. https://doi.org/10.1155/2013/941673
- Dişkaya, O. & Menken, H. (2021). Some properties of the plastic constant. Journal of Science and Arts 21(4), 883–894. https://doi.org/10.46939/J.Sci.Arts-21.4-a01
- Diskaya, O., & Menken, H. (2020). On the Padovan Triangle. Journal of Contemporary Applied Mathematics 10(2), 77–83.
- Diskaya, O., & Menken, H. (2024). On the pulsating Padovan sequence. Notes on Number Theory and Discrete Mathematics 30(1), 1–7. https://doi.org/10.7546/nntdm.2024.30.1.1-7
- Diskaya, O., & Menken, H. (2023). Padovan Polynomials Matrix. Bulletin of The International Mathematical Virtual Institute 13(3), 499–509. https://doi.org/10.7251/BIMVI2303499D
- Diskaya, O., & Menken, H. (2020). Some Identities of Gadovan Numbers. Journal of Science and Arts, 20(2), 317–322.
- Deveci, O., & Karaduman, E. (2017). On the Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics 46(4), 579–592.
- Duyar, C. & Erdogan, M. (2016). On non-Newtonian real number series. IOSR Journal of Mathematics, 12(6), 34–48.
On the Non-Newtonian Padovan and Non-Newtonian Perrin Numbers
Year 2024,
Volume: 9 Issue: 2, 502 - 515, 29.12.2024
Orhan Dişkaya
Abstract
In this work, we introduce a novel version of Padovan and Perrin numbers which we refer to as non-Newtonian Padovan and non-Newtonian Perrin numbers. Furthermore, we examine about a number of their properties. Additionally, we provide a variety of identities and formulas involving these new kinds, including the Binet-like formulas, the generating functions, the partial sum formulas, and the binomial sum formulas.
Ethical Statement
The work does not require ethics committee approval and any private permission.
Supporting Institution
The author has no received any financial support for the research, authorship, or publication of this study.
Thanks
The author would like to thank the editors and reviewers for their careful reading and suggestions.
References
- Grossman, M. & Katz, R. (1972). Non-Newtonian calculus, Lee Press: Pigeon Cove, MA, USA.
- Grossman, M. (1979). An introduction to non-Newtonian calculus. International Journal of Mathematical Educational in Science and Technology 10(4), 525–528. https://doi.org/10.1080/0020739790100406
- Çakmak, A. F. & Başar, F. (2012). Some new results on sequence spaces with respect to non-Newtonian calculus. Journal of Inequalities and Applications, 1–17. https://doi.org/10.1186/1029-242X-2012-228
- Duyar, C., & Sağır, B. (2017). Non-Newtonian Comment of Lebesgue Measure in Real Numbers. Journal of Mathematics 2017(1), 6507013. https://doi.org/10.1155/2017/6507013
- Erdogan, M., & Duyar, C. (2018). Non-Newtonian improper integrals. Journal of Science and Arts 18(1), 49–74.
- Degirmen, N. & Duyar, C. (2023). A new perspective on Fibonacci and Lucas numbers. Filomat, 37(28), 9561–9574. https://doi.org/10.2298/FIL2328561D
- Yağmur, T. (2024). Non-Newtonian Pell and Pell-Lucas numbers. Journal of New Results in Science, 13(1), 22–35. https://doi.org/10.54187/jnrs.1447678
- Shannon, A. G., Horadam, A. F., & Anderson, P. R. (2006). The Auxiliary Equation Associated with the Plastic Numbers, Notes Number Theory Discrete Mathematics, 12(1), 1–12.
- Shannon, A. G., Anderson, P. R. & Horadam, A. F. (2006). Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, 37(7), 825–831. https://doi.org/10.1080/00207390600712554
- Sloane, N. J. A. (1973). A Handbook of Integer Sequences, Academic Press, NY.
- Dişkaya, O. (2023). Padovan sayılarının genellemeleri ve uygulamaları . (Tez no. 826990) [Doktora Tezi, Mersin Üniversitesi].
- Adegoke, K. (2022). Summation identities involving Padovan and Perrin numbers.Palestine Journal of Mathematics, 11(1), 633—650.
- Yilmaz, N. & Taskara, N. (2013). Matrix sequences in terms of Padovan and Perrin numbers. Journal of Applied Mathematics, 2013(1), 941673. https://doi.org/10.1155/2013/941673
- Dişkaya, O. & Menken, H. (2021). Some properties of the plastic constant. Journal of Science and Arts 21(4), 883–894. https://doi.org/10.46939/J.Sci.Arts-21.4-a01
- Diskaya, O., & Menken, H. (2020). On the Padovan Triangle. Journal of Contemporary Applied Mathematics 10(2), 77–83.
- Diskaya, O., & Menken, H. (2024). On the pulsating Padovan sequence. Notes on Number Theory and Discrete Mathematics 30(1), 1–7. https://doi.org/10.7546/nntdm.2024.30.1.1-7
- Diskaya, O., & Menken, H. (2023). Padovan Polynomials Matrix. Bulletin of The International Mathematical Virtual Institute 13(3), 499–509. https://doi.org/10.7251/BIMVI2303499D
- Diskaya, O., & Menken, H. (2020). Some Identities of Gadovan Numbers. Journal of Science and Arts, 20(2), 317–322.
- Deveci, O., & Karaduman, E. (2017). On the Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics 46(4), 579–592.
- Duyar, C. & Erdogan, M. (2016). On non-Newtonian real number series. IOSR Journal of Mathematics, 12(6), 34–48.