Research Article
BibTex RIS Cite

Kalp Hastalıklarının Topluluk Öğrenme Algoritmaları ile Sınıflandırılması

Year 2024, Volume: 9 Issue: 2, 369 - 387, 29.12.2024
https://doi.org/10.33484/sinopfbd.1458580

Abstract

Kalp, insan vücudunun hayati organlarından biridir. Kalp sağlığının korunması genel refahımızı etkileyen çok önemli bir faktördür. Kalp hastalıkları çağımızın en önemli sağlık sorunlarından biri olarak kabul edilmekte ve dünya çapında önde gelen ölüm nedenlerinden biri olarak kabul edilmektedir. Bu da kalbin önemini bir kez daha vurgulamaktadır. Bu kritik sağlık sorununu daha iyi anlamak, erken teşhis teknikleri geliştirmek ve etkili tedavi planları oluşturmak sürekli araştırma ve çaba gerektirmektedir. Bu çalışmada, kalp hastalığı olan ve olmayan bireylere ait 319795 kayıttan elde edilen 18 özellikli bir veri kümesi kullanılarak üç farklı makine öğrenimi algoritmasının performans ölçümleri elde edilmiştir. Araştırma sonuçları, topluluk yöntemlerinin (AdaBoost, Stacking ve Gradient Boosting) kalp hastalığı teşhisinde başarıyla uygulanabileceğini göstermektedir. Bu algoritmaların sınıflandırma doğrulukları aşağıdaki gibidir: AdaBoost için %88.80, Stacking için %91.50 ve Gradient Boosting için %91.60. Bu sonuçlar, kalp hastalığının teşhisinde kullanılabilecek başarılı yöntemlerin varlığını vurgulamaktadır.

Project Number

23401163

Thanks

We would like to thank the Scientific Research Coordinator of Selcuk University for their support with the project titled “Diagnosis and Classification of Heart Disease with Artificial Intelligence Techniques” numbered 23401163.

References

  • Erdem, K., & Duman, A. (2023). Pulmonary artery pressures and right ventricular dimensions of post-COVID-19 patients without previous significant cardiovascular pathology. Heart & Lung, 57, 75-79. https://doi.org/10.1016/j.hrtlng.2022.08.023
  • Erdem, K., Kobat, M. A., Bilen, M. N., Balik, Y., Alkan, S., Cavlak, F., Poyraz, A. K., Barua, P. D., Tuncer, I., & Dogan, S. (2023). Hybrid‐Patch‐Alex: A new patch division and deep feature extraction‐based image classification model to detect COVID‐19, heart failure, and other lung conditions using medical images. International Journal of Imaging Systems and Technology, 33(4), 1144-1159. https://doi.org/10.1002/ima.22914
  • Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y. R., & Suraj, R. S. (2021). Heart disease prediction using hybrid machine learning model. 2021 6th international conference on inventive computation technologies (ICICT). Coimbatore, India, 1329-1333. https://doi.org/10.1109/ICICT50816.2021.9358597
  • Buber, M., Fadime, S., Bulut, I., & Kursun, R. (2015). Cloud computing environments which can be used in health education. International Journal of Intelligent Systems and Applications in Engineering, 3(4), 124-126. https://doi.org/10.18201/ijisae.92756
  • Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542-81554. https://doi.org/10.1109/ACCESS.2019.2923707
  • Repaka, A. N., Ravikanti, S. D., & Franklin, R. G. (2019). Design and implementing heart disease prediction using naives Bayesian. 2019 3rd International conference on trends in electronics and informatics (ICOEI). Tirunelveli, India, 292-297, https://doi.org/10.1109/ICOEI.2019.8862604
  • Anitha, S., & Sridevi, N. (2019). Heart disease prediction using data mining techniques. Journal of Analysis and Computation, 7(2), 48-55.
  • Shah, D., Patel, S., & Bharti, S. K. (2020). Heart disease prediction using machine learning techniques. SN Computer Science, 1, 1-6. https://doi.org/10.1007/s42979-020-00365-y
  • Motarwar, P., Duraphe, A., Suganya, G., & Premalatha, M. (2020). Cognitive approach for heart disease prediction using machine learning. 2020 international conference on emerging trends in information technology and engineering (ic-ETITE). Vellore, India, 1-5, https://doi.org/10.1109/ic-ETITE47903.2020.242
  • Junaid, M. J. A., & Kumar, R. (2020). Data science and its application in heart disease prediction. 2020 International Conference on Intelligent Engineering and Management (ICIEM). London, UK, 396-400, https://doi.org/10.1109/ICIEM48762.2020.9160056
  • Sharma, S., & Parmar, M. (2020). Heart diseases prediction using deep learning neural network model. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(3), 2244-2248. https://doi.org/10.35940/ijitee.C9009.019320
  • Anbuselvan, P. (2020). Heart disease prediction using machine learning techniques. International Journal of Engineering Research & Technolog, 9(11), 515-518.
  • Rani, P., Kumar, R., Ahmed, N. M. S., & Jain, A. (2021). A decision support system for heart disease prediction based upon machine learning. Journal of Reliable Intelligent Environments, 7(3), 263-275. https://doi.org/10.1007/s40860-021-00133-6
  • Jindal, H., Agrawal, S., Khera, R., Jain, R., & Nagrath, P. (2021). Heart disease prediction using machine learning algorithms. IOP Conference Series: Materials Science and Engineering, 1022(1), 01-10. https://doi.org/ 10.1088/1757-899X/1022/1/012072
  • Goel, R. (2021). Heart disease prediction using various algorithms of machine learning. Proceedings of the International Conference on Innovative Computing & Communication (ICICC). Delhi, India, https://dx.doi.org/10.2139/ssrn.3884968
  • Boukhatem, C., Youssef, H. Y., & Nassif, A. B. (2022). Heart disease prediction using machine learning. 2022 Advances in Science and Engineering Technology International Conferences (ASET). Dubai, United Arab Emirates, 1-6, https://doi.org/10.1109/ASET53988.2022.9734880
  • Sugendran, G., & Sujatha, S. (2023). Earlier identification of heart disease using enhanced genetic algorithm and fuzzy weight based support vector machine algorithm. Measurement: Sensors, 100814. https://doi.org/10.1016/j.measen.2023.100814.
  • Erdem, K., Yildiz, M. B., Yasin, E. T., & Koklu, M. (2023). A Detailed Analysis of Detecting Heart Diseases Using Artificial Intelligence Methods. Intelligent Methods in Engineering Sciences, 2(4), 115-124. https://doi.org/10.58190/imiens.2023.4
  • Mahi, A. B. S. (2023). Heart disease dataset (Version 1) [Dataset]. Kaggle. https://www.kaggle.com/datasets/abubakarsiddiquemahi/heart-disease-dataset, Community Data License Agreement – Sharing, Version 1.0
  • Ozkan, I. A., & Koklu, M. (2017). Skin lesion classification using machine learning algorithms. International Journal of Intelligent Systems and Applications in Engineering, 5(4), 285-289.
  • Ozkan, I. A., Koklu, M., & Sert, I. U. (2018). Diagnosis of urinary tract infection based on artificial intelligence methods. Computer Methods and Programs in Biomedicine, 166, 51-59. https://doi.org/10.1016/j.cmpb.2018.10.007
  • Koklu, M., & Unal, Y. (2013). Analysis of a population of diabetic patients databases with classifiers. International Journal of Biomedical and Biological Engineering, 7(8), 481-483.
  • Tunc, A., Tasdemir, S., Koklu, M., & Cinar, A. C. (2022). Age group and gender classification using convolutional neural networks with a fuzzy logic-based filter method for noise reduction. Journal of Intelligent & Fuzzy Systems, 42(1), 491-501. https://doi.org/10.3233/JIFS-219206
  • Prasad S. k. (2022). Heart disease prediction with gradio deployment (Version 1) [Dataset]. Kaggle. https://www.kaggle.com/code/sumitkumarprasad/heart-disease-prediction-with-gradio-deployment/notebook
  • Butuner, R., Cinar, I., Taspinar, Y. S., Kursun, R., Calp, M. H., & Koklu, M. (2023). Classification of deep image features of lentil varieties with machine learning techniques. European Food Research and Technology, 249, 1303–1316. https://doi.org/10.1007/s00217-023-04214-z
  • Taspinar, Y. S., Koklu, M., & Altin, M. (2021). Fire Detection in Images Using Framework Based on Image Processing, Motion Detection and Convolutional Neural Network. International Journal of Intelligent Systems and Applications in Engineering, 9(4), 171-177. https://doi.org/10.18201/ijisae.2021473636
  • Yasin, E. T., & Koklu, M. (2023, April 28-30). Classification of Organic and Recyclable Waste based on Feature Extraction and Machine Learning Algorithms. International Conference on Intelligent Systems and New Applications (ICISNA’23). Liverpool, United Kingdom. 59-65.
  • Yasin, E. T., Ozkan, I. A., & Koklu, M. (2023). Detection of fish freshness using artificial intelligence methods. European Food Research and Technology, 249, 1979-1990. https://doi.org/10.1007/s00217-023-04271-4
  • Koklu, M., & Sabanci, K. (2015). The classification of eye state by using kNN and MLP classification models according to the EEG signals. International Journal of Intelligent Systems and Applications in Engineering, 3(4), 127-130.
  • Cinar, I., & Koklu, M. (2021). Determination of effective and specific physical features of rice varieties by computer vision in exterior quality inspection. Selcuk Journal of Agriculture and Food Sciences, 35(3), 229-243.
  • Al Bataineh, A., & Manacek, S. (2022). MLP-PSO hybrid algorithm for heart disease prediction. Journal of Personalized Medicine, 12(8), 1208. https://doi.org/10.3390/jpm12081208
  • Cinar, I., Taspinar, Y. S., Kursun, R., & Koklu, M. (2022). Identification of Corneal Ulcers with Pre-Trained AlexNet Based on Transfer Learning. 2022 11th Mediterranean Conference on Embedded Computing (MECO). Budva, Montenegro, 1-4. https://doi.org/10.1109/MECO55406.2022.9797218
  • Tutuncu, K., Cinar, I., Kursun, R., & Koklu, M. (2022). Edible and poisonous mushrooms classification by machine learning algorithms. 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 1-4. https://doi.org/10.1109/MECO55406.2022.9797212
  • Mahesh, T., Dhilip Kumar, V., Vinoth Kumar, V., Asghar, J., Geman, O., Arulkumaran, G., & Arun, N. (2022). AdaBoost ensemble methods using K-fold cross validation for survivability with the early detection of heart disease. Computational intelligence and neuroscience, 2022, Article ID 9005278, https://doi.org/10.1155/2022/9005278.
  • Cui, S., Yin, Y., Wang, D., Li, Z., & Wang, Y. (2021). A stacking-based ensemble learning method for earthquake casualty prediction. Applied Soft Computing, 101, 107038. https://doi.org/10.1016/j.asoc.2020.107038
  • Taspinar, Y. S., Cinar, I., & Koklu, M. (2022). Classification by a stacking model using CNN features for COVID-19 infection diagnosis. Journal of X-ray Science and Technology, 30(1), 73-88.
  • Chiu, C.-C., Wu, C.-M., Chien, T.-N., Kao, L.-J., Li, C., & Jiang, H.-L. (2022). Applying an improved stacking ensemble model to predict the mortality of ICU patients with heart failure. Journal of Clinical Medicine, 11(21), 6460. https://doi.org/10.3390/jcm11216460
  • Papouskova, M., & Hajek, P. (2019). Two-stage consumer credit risk modelling using heterogeneous ensemble learning. Decision Support Systems, 118, 33-45. https://doi.org/10.1016/j.dss.2019.01.002
  • Jiang, M., Liu, J., Zhang, L., & Liu, C. (2020). An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Physica A: Statistical Mechanics and its Applications, 541, 122272. https://doi.org/10.1016/j.physa.2019.122272
  • Dong, Y., Zhang, H., Wang, C., & Zhou, X. (2021). Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm. Neurocomputing, 462, 169-184. https://doi.org/10.1016/j.neucom.2021.07.084
  • Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967. https://doi.org/10.1007/s10462-020-09896-5
  • Koklu, M., Kahramanli, H., & Allahverdi, N. (2014). A new accurate and efficient approach to extract classification rules. Journal of the Faculty of Engineering and Architecture of Gazi University, 29(3), 477-486.
  • Koklu, M., Kahramanli, H., & Allahverdi, N. (2012). A new approach to classification rule extraction problem by the real value coding. International Journal of Innovative Computing, Information and Control, 8(9), 6303-6315
  • Koklu, M., Kahramanli, H., & Allahverdi, N. (2015. May 27-29). Applications of rule based classification techniques for thoracic surgery. Managing Intellectual Capital and Innovation for Sustainable and Inclusive Society: Managing Intellectual Capital and Innovation; Proceedings of the MakeLearn and TIIM Joint International Conference 2. Bari, Italy. 1991-1998.

Classification of Heart Diseases with Ensemble Learning Algorithms

Year 2024, Volume: 9 Issue: 2, 369 - 387, 29.12.2024
https://doi.org/10.33484/sinopfbd.1458580

Abstract

The heart is one of the vital organs of the human body. Preserving heart health is a crucial factor that affects our overall well-being. Heart diseases are considered a prominent health issue of our time and are recognized as one of the leading causes of death worldwide. This underscores the importance of the heart once again. Understanding this critical health issue better, developing early diagnosis techniques, and creating effective treatment plans require continuous research and effort. In this study, performance measurements of three different machine learning algorithms were obtained using a dataset with 18 features from 319795 records of individuals with and without heart disease. The research results indicate that ensemble methods (AdaBoost, Stacking, and Gradient Boosting) can be successfully applied in the diagnosis of heart disease. The classification accuracies of these algorithms are as follows: 88.80% for AdaBoost, 91.50% for Stacking, and 91.60% for Gradient Boosting. Results from this study indicate that successful methods can be used to diagnose heart disease.

Project Number

23401163

References

  • Erdem, K., & Duman, A. (2023). Pulmonary artery pressures and right ventricular dimensions of post-COVID-19 patients without previous significant cardiovascular pathology. Heart & Lung, 57, 75-79. https://doi.org/10.1016/j.hrtlng.2022.08.023
  • Erdem, K., Kobat, M. A., Bilen, M. N., Balik, Y., Alkan, S., Cavlak, F., Poyraz, A. K., Barua, P. D., Tuncer, I., & Dogan, S. (2023). Hybrid‐Patch‐Alex: A new patch division and deep feature extraction‐based image classification model to detect COVID‐19, heart failure, and other lung conditions using medical images. International Journal of Imaging Systems and Technology, 33(4), 1144-1159. https://doi.org/10.1002/ima.22914
  • Kavitha, M., Gnaneswar, G., Dinesh, R., Sai, Y. R., & Suraj, R. S. (2021). Heart disease prediction using hybrid machine learning model. 2021 6th international conference on inventive computation technologies (ICICT). Coimbatore, India, 1329-1333. https://doi.org/10.1109/ICICT50816.2021.9358597
  • Buber, M., Fadime, S., Bulut, I., & Kursun, R. (2015). Cloud computing environments which can be used in health education. International Journal of Intelligent Systems and Applications in Engineering, 3(4), 124-126. https://doi.org/10.18201/ijisae.92756
  • Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542-81554. https://doi.org/10.1109/ACCESS.2019.2923707
  • Repaka, A. N., Ravikanti, S. D., & Franklin, R. G. (2019). Design and implementing heart disease prediction using naives Bayesian. 2019 3rd International conference on trends in electronics and informatics (ICOEI). Tirunelveli, India, 292-297, https://doi.org/10.1109/ICOEI.2019.8862604
  • Anitha, S., & Sridevi, N. (2019). Heart disease prediction using data mining techniques. Journal of Analysis and Computation, 7(2), 48-55.
  • Shah, D., Patel, S., & Bharti, S. K. (2020). Heart disease prediction using machine learning techniques. SN Computer Science, 1, 1-6. https://doi.org/10.1007/s42979-020-00365-y
  • Motarwar, P., Duraphe, A., Suganya, G., & Premalatha, M. (2020). Cognitive approach for heart disease prediction using machine learning. 2020 international conference on emerging trends in information technology and engineering (ic-ETITE). Vellore, India, 1-5, https://doi.org/10.1109/ic-ETITE47903.2020.242
  • Junaid, M. J. A., & Kumar, R. (2020). Data science and its application in heart disease prediction. 2020 International Conference on Intelligent Engineering and Management (ICIEM). London, UK, 396-400, https://doi.org/10.1109/ICIEM48762.2020.9160056
  • Sharma, S., & Parmar, M. (2020). Heart diseases prediction using deep learning neural network model. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(3), 2244-2248. https://doi.org/10.35940/ijitee.C9009.019320
  • Anbuselvan, P. (2020). Heart disease prediction using machine learning techniques. International Journal of Engineering Research & Technolog, 9(11), 515-518.
  • Rani, P., Kumar, R., Ahmed, N. M. S., & Jain, A. (2021). A decision support system for heart disease prediction based upon machine learning. Journal of Reliable Intelligent Environments, 7(3), 263-275. https://doi.org/10.1007/s40860-021-00133-6
  • Jindal, H., Agrawal, S., Khera, R., Jain, R., & Nagrath, P. (2021). Heart disease prediction using machine learning algorithms. IOP Conference Series: Materials Science and Engineering, 1022(1), 01-10. https://doi.org/ 10.1088/1757-899X/1022/1/012072
  • Goel, R. (2021). Heart disease prediction using various algorithms of machine learning. Proceedings of the International Conference on Innovative Computing & Communication (ICICC). Delhi, India, https://dx.doi.org/10.2139/ssrn.3884968
  • Boukhatem, C., Youssef, H. Y., & Nassif, A. B. (2022). Heart disease prediction using machine learning. 2022 Advances in Science and Engineering Technology International Conferences (ASET). Dubai, United Arab Emirates, 1-6, https://doi.org/10.1109/ASET53988.2022.9734880
  • Sugendran, G., & Sujatha, S. (2023). Earlier identification of heart disease using enhanced genetic algorithm and fuzzy weight based support vector machine algorithm. Measurement: Sensors, 100814. https://doi.org/10.1016/j.measen.2023.100814.
  • Erdem, K., Yildiz, M. B., Yasin, E. T., & Koklu, M. (2023). A Detailed Analysis of Detecting Heart Diseases Using Artificial Intelligence Methods. Intelligent Methods in Engineering Sciences, 2(4), 115-124. https://doi.org/10.58190/imiens.2023.4
  • Mahi, A. B. S. (2023). Heart disease dataset (Version 1) [Dataset]. Kaggle. https://www.kaggle.com/datasets/abubakarsiddiquemahi/heart-disease-dataset, Community Data License Agreement – Sharing, Version 1.0
  • Ozkan, I. A., & Koklu, M. (2017). Skin lesion classification using machine learning algorithms. International Journal of Intelligent Systems and Applications in Engineering, 5(4), 285-289.
  • Ozkan, I. A., Koklu, M., & Sert, I. U. (2018). Diagnosis of urinary tract infection based on artificial intelligence methods. Computer Methods and Programs in Biomedicine, 166, 51-59. https://doi.org/10.1016/j.cmpb.2018.10.007
  • Koklu, M., & Unal, Y. (2013). Analysis of a population of diabetic patients databases with classifiers. International Journal of Biomedical and Biological Engineering, 7(8), 481-483.
  • Tunc, A., Tasdemir, S., Koklu, M., & Cinar, A. C. (2022). Age group and gender classification using convolutional neural networks with a fuzzy logic-based filter method for noise reduction. Journal of Intelligent & Fuzzy Systems, 42(1), 491-501. https://doi.org/10.3233/JIFS-219206
  • Prasad S. k. (2022). Heart disease prediction with gradio deployment (Version 1) [Dataset]. Kaggle. https://www.kaggle.com/code/sumitkumarprasad/heart-disease-prediction-with-gradio-deployment/notebook
  • Butuner, R., Cinar, I., Taspinar, Y. S., Kursun, R., Calp, M. H., & Koklu, M. (2023). Classification of deep image features of lentil varieties with machine learning techniques. European Food Research and Technology, 249, 1303–1316. https://doi.org/10.1007/s00217-023-04214-z
  • Taspinar, Y. S., Koklu, M., & Altin, M. (2021). Fire Detection in Images Using Framework Based on Image Processing, Motion Detection and Convolutional Neural Network. International Journal of Intelligent Systems and Applications in Engineering, 9(4), 171-177. https://doi.org/10.18201/ijisae.2021473636
  • Yasin, E. T., & Koklu, M. (2023, April 28-30). Classification of Organic and Recyclable Waste based on Feature Extraction and Machine Learning Algorithms. International Conference on Intelligent Systems and New Applications (ICISNA’23). Liverpool, United Kingdom. 59-65.
  • Yasin, E. T., Ozkan, I. A., & Koklu, M. (2023). Detection of fish freshness using artificial intelligence methods. European Food Research and Technology, 249, 1979-1990. https://doi.org/10.1007/s00217-023-04271-4
  • Koklu, M., & Sabanci, K. (2015). The classification of eye state by using kNN and MLP classification models according to the EEG signals. International Journal of Intelligent Systems and Applications in Engineering, 3(4), 127-130.
  • Cinar, I., & Koklu, M. (2021). Determination of effective and specific physical features of rice varieties by computer vision in exterior quality inspection. Selcuk Journal of Agriculture and Food Sciences, 35(3), 229-243.
  • Al Bataineh, A., & Manacek, S. (2022). MLP-PSO hybrid algorithm for heart disease prediction. Journal of Personalized Medicine, 12(8), 1208. https://doi.org/10.3390/jpm12081208
  • Cinar, I., Taspinar, Y. S., Kursun, R., & Koklu, M. (2022). Identification of Corneal Ulcers with Pre-Trained AlexNet Based on Transfer Learning. 2022 11th Mediterranean Conference on Embedded Computing (MECO). Budva, Montenegro, 1-4. https://doi.org/10.1109/MECO55406.2022.9797218
  • Tutuncu, K., Cinar, I., Kursun, R., & Koklu, M. (2022). Edible and poisonous mushrooms classification by machine learning algorithms. 2022 11th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 1-4. https://doi.org/10.1109/MECO55406.2022.9797212
  • Mahesh, T., Dhilip Kumar, V., Vinoth Kumar, V., Asghar, J., Geman, O., Arulkumaran, G., & Arun, N. (2022). AdaBoost ensemble methods using K-fold cross validation for survivability with the early detection of heart disease. Computational intelligence and neuroscience, 2022, Article ID 9005278, https://doi.org/10.1155/2022/9005278.
  • Cui, S., Yin, Y., Wang, D., Li, Z., & Wang, Y. (2021). A stacking-based ensemble learning method for earthquake casualty prediction. Applied Soft Computing, 101, 107038. https://doi.org/10.1016/j.asoc.2020.107038
  • Taspinar, Y. S., Cinar, I., & Koklu, M. (2022). Classification by a stacking model using CNN features for COVID-19 infection diagnosis. Journal of X-ray Science and Technology, 30(1), 73-88.
  • Chiu, C.-C., Wu, C.-M., Chien, T.-N., Kao, L.-J., Li, C., & Jiang, H.-L. (2022). Applying an improved stacking ensemble model to predict the mortality of ICU patients with heart failure. Journal of Clinical Medicine, 11(21), 6460. https://doi.org/10.3390/jcm11216460
  • Papouskova, M., & Hajek, P. (2019). Two-stage consumer credit risk modelling using heterogeneous ensemble learning. Decision Support Systems, 118, 33-45. https://doi.org/10.1016/j.dss.2019.01.002
  • Jiang, M., Liu, J., Zhang, L., & Liu, C. (2020). An improved Stacking framework for stock index prediction by leveraging tree-based ensemble models and deep learning algorithms. Physica A: Statistical Mechanics and its Applications, 541, 122272. https://doi.org/10.1016/j.physa.2019.122272
  • Dong, Y., Zhang, H., Wang, C., & Zhou, X. (2021). Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm. Neurocomputing, 462, 169-184. https://doi.org/10.1016/j.neucom.2021.07.084
  • Bentéjac, C., Csörgő, A., & Martínez-Muñoz, G. (2021). A comparative analysis of gradient boosting algorithms. Artificial Intelligence Review, 54, 1937-1967. https://doi.org/10.1007/s10462-020-09896-5
  • Koklu, M., Kahramanli, H., & Allahverdi, N. (2014). A new accurate and efficient approach to extract classification rules. Journal of the Faculty of Engineering and Architecture of Gazi University, 29(3), 477-486.
  • Koklu, M., Kahramanli, H., & Allahverdi, N. (2012). A new approach to classification rule extraction problem by the real value coding. International Journal of Innovative Computing, Information and Control, 8(9), 6303-6315
  • Koklu, M., Kahramanli, H., & Allahverdi, N. (2015. May 27-29). Applications of rule based classification techniques for thoracic surgery. Managing Intellectual Capital and Innovation for Sustainable and Inclusive Society: Managing Intellectual Capital and Innovation; Proceedings of the MakeLearn and TIIM Joint International Conference 2. Bari, Italy. 1991-1998.
There are 44 citations in total.

Details

Primary Language English
Subjects Software Engineering (Other)
Journal Section Research Articles
Authors

Kenan Erdem 0000-0001-6002-5873

Elham Yasin 0000-0003-3246-6000

Müslüme Beyza Yıldız 0009-0002-0231-687X

Murat Koklu 0000-0002-2737-2360

Project Number 23401163
Publication Date December 29, 2024
Submission Date March 25, 2024
Acceptance Date August 5, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Erdem, K., Yasin, E., Yıldız, M. B., Koklu, M. (2024). Classification of Heart Diseases with Ensemble Learning Algorithms. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(2), 369-387. https://doi.org/10.33484/sinopfbd.1458580


Articles published in Sinopjns are licensed under CC BY-NC 4.0.