Research Article
BibTex RIS Cite

The Conner Conjecture for Compact Group Actions on Equivariant CW Complexes

Year 2024, Volume: 9 Issue: 2, 534 - 550, 29.12.2024
https://doi.org/10.33484/sinopfbd.1526629

Abstract

Let $X$ be a paracompact space of finite cohomological dimension over $\Lambda $ ($\mathbb{Z}$, $\mathbb{Z}_{p}$ or $\mathbb{Q}$) and $G$ be a compact Lie group acting on $X$ with finite many orbit types. It has been proven by R. Oliver that if $X$ is acyclic over $\Lambda $, then the orbit space $X/G$ is also acyclic over $\Lambda $. In this study, for rational coefficients, this result will be proven for finite-dimensional compact (non-Lie) group actions on finite dimensional equivariant CW complexes with finitely many connective orbit types. Furthermore, it will be showen that the fixed point space of an acyclic space over rationals is acyclic for compact connected (non-Lie) group actions on paracompact spaces under certain conditions.

References

  • Allday, C., Puppe, V. (1993). Cohomological Methods in Transformation Groups. Cambridge, UK: Cambridge University Press.
  • Borel, A. (1960). Seminar on Transformation Groups. Princeton, NJ, USA: Princeton University Press.
  • Bredon, G. E. (1972). Introduction to Compact Transformation Groups. Academic Press, New York.
  • Bredon, G. E. (1997). Sheaf Theory. 2nd ed. Graduate Texts in Mathematics 170. New York, NY, USA: Springer.
  • Conner, P. E. (1957). On the action of the circle group. Michigan Mathematical Journal, 4, 241-247. https://doi.org/10.1307/mmj/1028997955
  • Conner, P. E. (1960). Retraction properties of the orbit space of a compact topological transformation group. Duke Mathematical Journal, 27, 341-57. https://doi.org/10.1215/S0012-7094-60-02732-0
  • Deo, S. (1983). On some local and global cohomological properties which pass on to the orbit space. Indian Journal of Pure and Applied Mathematics, 14, 1319-1326.
  • Deo, S., Singh, T. B., & Shukla, R. A. (1982). On an extension of localization theorem and generalized Conner conjecture. Transactions of the American Mathematical Society, 269, 395-402. https://doi.org/10.1090/S0002-9947-1982-0637697-0
  • Ku, H. T. (1967). Cohomology structure of compact transformation groups. PhD, Tulane University.
  • Ku, M. C. (1967). Some topics in compact transformation groups. (Publication No. 6717927) [Doctoral dissertation, Tulane University].
  • Oliver, R. (1976). A proof of the Conner conjecture. Annals of Mathematics, 103, 637-644. https://doi.org/10.2307/1970955
  • Quillen, D. (1971). The spectrum of an equivariant cohomology ring I. Annals of Mathematics, 94(2), 549-572. https://doi.org/10.2307/1970770
  • Hofmann, K. H., & Mostert, P. S. (1966). Elements of Compact Semigroups. Charles E. Merrill, Columbus, Ohio.
  • Hofmann, K. H., & Morris, S. A. (2013). The Structure of Compact Groups. 3rd ed. Berlin, Germany: de Gruyter.
  • Bredon, G. E., Raymond, F., & Williams, R. F. (1961). p-Adic Groups of Transformations. Transactions of the American Mathematical Society, 99(3), 488-498. https://doi.org/10.2307/1993558
  • Montgomery, D., & Zippin, L. (1955). Topological transformation groups. Interscience Publishers, New York.
  • Pontryagin, L. S. (1986). Topological Groups. 3rd ed. Gordon and Breach Science Publishers, New York.
  • Hofmann, K. H., & Morris, S. A. (2007). The Lie Theory of Connected Pro-Lie Groups. European Mathematical Society, Zürich.
  • Onat, M. (2018). Kompakt Grup Etkilerinin Kohomoloji Teorisi. (Tez no. 531232) [Doktora Tezi, Çukurova Üniversitesi].
  • Milnor, J. (1956). Construction of universal bundles II. Annals of Mathematics, 63, 430–436.
  • Lück, W. (1989). Transformation groups and algebraic K-theory. Springer-Verlag, Berlin, Heidelberg, New York.
  • Onat, M. (2022). The Borsuk-Ulam Type Theorems for Finite-Dimensional Compact Group Actions. Bulletin of the Iranian Mathematical Society, 48, 1339-1349. https://doi.org/10.1007/s41980-021-00581-z
  • Spanier, E. (1966). Algebraic Topology. McGraw–Hill, New York.
  • Hsiang, W. Y. (1975). Cohomology Theory of Topological Transformation Groups. Springer-Verlag, Berlin-Heidelberg-New York.
  • Özkurt, A. A., & Onat, M. (2018). The localization theorem for finite-dimensional compact group actions. Turkish Journal of Mathematics, 42(4), 1556-1565. https://doi.org/10.3906/mat-1609-47
  • Hofmann, K. H., & Morris, S. A. (2003). Projective limits of finite dimensional Lie groups. Proceedings of the London Mathematical Society, 87(3), 647-676. https://doi.org/10.1112/S0024611503014254
  • Hofmann, K. H., & Mostert, P. S. (1973). Cohomology Theories for Compact Abelian Groups. Springer-Verlag, Berlin, Heidelberg, New York.
  • Özkurt, A. A. (2014). On the equivariant cohomology algebra for solenoidal actions. Turkish Journal of Mathematics, 38(6), 1081-1089. https://doi.org/10.3906/mat-1310-6
  • Deo, S., & Tripathi, H. S. (1982). Compact Lie Group Actions on Finistic Spaces. Topology, 21, 393-399. https://doi.org/10.1016/0040-9383(82)90019-2
  • Deo, S., & Singh, M. (1983). On certain constructions in finitistic spaces. International Journal of Mathematics and Mathematical Sciences, 6, 477-482. https://doi.org/10.1155/S0161171283000423

Ekivaryant CW Kompleksler Üzerine Kompakt Grup Etkileri İçin Conner'in Sanısı

Year 2024, Volume: 9 Issue: 2, 534 - 550, 29.12.2024
https://doi.org/10.33484/sinopfbd.1526629

Abstract

$X$, $\Lambda $ ($\mathbb{Z}$, $\mathbb{Z}_{p}$ or $\mathbb{Q}$) üzerinde sonlu kohomolojik boyuta sahip bir parakompakt uzay ve $G$, $X$ üzerine sonlu sayıda orbit tipi ile etki eden kompakt bir Lie grubu olsun. R. Oliver tarafIndan kanıtlandı ki eğer $X$, $\Lambda $ üzerinde asiklik bir uzay ise $X/G$ orbit uzayı da $\Lambda $ üzerinde asiklik bir uzaydır. Bu çalışmada, sonlu sayıda bağlantılı orbit tipli, sonlu boyutlu ekivaryant CW kompleksler üzerine sonlu boyutlu kompakt grup (Lie grubu olmayabilir) etkileri için bu sonuş kanıtlanacaktır. Ayrıca, bazı koşullar altında parakompakt uzaylar üzerine etki eden kompakt bağlantılı grup (Lie grubu olmayabilir) etkileri için rasyonel sayılar üzerinde bir asiklik uzayın sabit nokta uzayının asiklik olduğu gösterilecektir.

Thanks

Yazar, yorumları ve önerileri ile bu makalenin geli¸stirilmesine ve netle¸stirilmesine yardımcı olan hakemlere te¸sekkür etmeyi bir borç bilir.

References

  • Allday, C., Puppe, V. (1993). Cohomological Methods in Transformation Groups. Cambridge, UK: Cambridge University Press.
  • Borel, A. (1960). Seminar on Transformation Groups. Princeton, NJ, USA: Princeton University Press.
  • Bredon, G. E. (1972). Introduction to Compact Transformation Groups. Academic Press, New York.
  • Bredon, G. E. (1997). Sheaf Theory. 2nd ed. Graduate Texts in Mathematics 170. New York, NY, USA: Springer.
  • Conner, P. E. (1957). On the action of the circle group. Michigan Mathematical Journal, 4, 241-247. https://doi.org/10.1307/mmj/1028997955
  • Conner, P. E. (1960). Retraction properties of the orbit space of a compact topological transformation group. Duke Mathematical Journal, 27, 341-57. https://doi.org/10.1215/S0012-7094-60-02732-0
  • Deo, S. (1983). On some local and global cohomological properties which pass on to the orbit space. Indian Journal of Pure and Applied Mathematics, 14, 1319-1326.
  • Deo, S., Singh, T. B., & Shukla, R. A. (1982). On an extension of localization theorem and generalized Conner conjecture. Transactions of the American Mathematical Society, 269, 395-402. https://doi.org/10.1090/S0002-9947-1982-0637697-0
  • Ku, H. T. (1967). Cohomology structure of compact transformation groups. PhD, Tulane University.
  • Ku, M. C. (1967). Some topics in compact transformation groups. (Publication No. 6717927) [Doctoral dissertation, Tulane University].
  • Oliver, R. (1976). A proof of the Conner conjecture. Annals of Mathematics, 103, 637-644. https://doi.org/10.2307/1970955
  • Quillen, D. (1971). The spectrum of an equivariant cohomology ring I. Annals of Mathematics, 94(2), 549-572. https://doi.org/10.2307/1970770
  • Hofmann, K. H., & Mostert, P. S. (1966). Elements of Compact Semigroups. Charles E. Merrill, Columbus, Ohio.
  • Hofmann, K. H., & Morris, S. A. (2013). The Structure of Compact Groups. 3rd ed. Berlin, Germany: de Gruyter.
  • Bredon, G. E., Raymond, F., & Williams, R. F. (1961). p-Adic Groups of Transformations. Transactions of the American Mathematical Society, 99(3), 488-498. https://doi.org/10.2307/1993558
  • Montgomery, D., & Zippin, L. (1955). Topological transformation groups. Interscience Publishers, New York.
  • Pontryagin, L. S. (1986). Topological Groups. 3rd ed. Gordon and Breach Science Publishers, New York.
  • Hofmann, K. H., & Morris, S. A. (2007). The Lie Theory of Connected Pro-Lie Groups. European Mathematical Society, Zürich.
  • Onat, M. (2018). Kompakt Grup Etkilerinin Kohomoloji Teorisi. (Tez no. 531232) [Doktora Tezi, Çukurova Üniversitesi].
  • Milnor, J. (1956). Construction of universal bundles II. Annals of Mathematics, 63, 430–436.
  • Lück, W. (1989). Transformation groups and algebraic K-theory. Springer-Verlag, Berlin, Heidelberg, New York.
  • Onat, M. (2022). The Borsuk-Ulam Type Theorems for Finite-Dimensional Compact Group Actions. Bulletin of the Iranian Mathematical Society, 48, 1339-1349. https://doi.org/10.1007/s41980-021-00581-z
  • Spanier, E. (1966). Algebraic Topology. McGraw–Hill, New York.
  • Hsiang, W. Y. (1975). Cohomology Theory of Topological Transformation Groups. Springer-Verlag, Berlin-Heidelberg-New York.
  • Özkurt, A. A., & Onat, M. (2018). The localization theorem for finite-dimensional compact group actions. Turkish Journal of Mathematics, 42(4), 1556-1565. https://doi.org/10.3906/mat-1609-47
  • Hofmann, K. H., & Morris, S. A. (2003). Projective limits of finite dimensional Lie groups. Proceedings of the London Mathematical Society, 87(3), 647-676. https://doi.org/10.1112/S0024611503014254
  • Hofmann, K. H., & Mostert, P. S. (1973). Cohomology Theories for Compact Abelian Groups. Springer-Verlag, Berlin, Heidelberg, New York.
  • Özkurt, A. A. (2014). On the equivariant cohomology algebra for solenoidal actions. Turkish Journal of Mathematics, 38(6), 1081-1089. https://doi.org/10.3906/mat-1310-6
  • Deo, S., & Tripathi, H. S. (1982). Compact Lie Group Actions on Finistic Spaces. Topology, 21, 393-399. https://doi.org/10.1016/0040-9383(82)90019-2
  • Deo, S., & Singh, M. (1983). On certain constructions in finitistic spaces. International Journal of Mathematics and Mathematical Sciences, 6, 477-482. https://doi.org/10.1155/S0161171283000423
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Topology
Journal Section Research Articles
Authors

Mehmet Onat 0000-0002-6538-6624

Publication Date December 29, 2024
Submission Date August 1, 2024
Acceptance Date December 27, 2024
Published in Issue Year 2024 Volume: 9 Issue: 2

Cite

APA Onat, M. (2024). Ekivaryant CW Kompleksler Üzerine Kompakt Grup Etkileri İçin Conner’in Sanısı. Sinop Üniversitesi Fen Bilimleri Dergisi, 9(2), 534-550. https://doi.org/10.33484/sinopfbd.1526629


Articles published in Sinopjns are licensed under CC BY-NC 4.0.