Research Article
BibTex RIS Cite

An Analysis of Turkish Deposit Banks’ Customer Forecasting with Machine Learning Methods

Year 2021, Volume: 29 Issue: 50, 413 - 432, 31.10.2021
https://doi.org/10.17233/sosyoekonomi.2021.04.19

Abstract

Banks have expanded their marketing activities to uphold their existing customers and gain new customers to accentuate their market share in the sector. This study aims to emphasize the importance of customer forecasting and investigate the factors that are effective in determining the number of customer forecasting. Machine learning, artificial neural networks, and support vector machines methods are used. The variables commonly used in the literature, such as number of branches, number of employees, total deposits, total loans, were selected to determine customer estimates by considering the monthly data of deposit banks in the Turkish banking sector for the period 2011-2020. As a result of the analysis, the number of customers estimates of deposit banks in Turkey was successfully obtained. In light of these estimates, it is thought that banks can facilitate the creation of targets for identifying target customers they aim to provide services to in the future.

References

  • Altuğ, N. & Ş. Özhan (2018), Pazarlamada Güncel Gelişmeler, Nobel.
  • Altunöz, U. (2013), “Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği”, DEÜ İİBF Dergisi, 28(2), 189-217.
  • Arasli, H. et al. (2005), “A comparison of service quality in the banking industry”, International Journal of Bank Marketing, 23(7), 508-526.
  • Aydın, S. & A. Tavukçu (2019), “İlişkisel pazarlama uygulamalarının müşteri sadakati, müşteri memnuniyeti ve müşterilerin tavsiye etme eğilimi üzerine etkisi: Türk katılım bankacılığı sektöründe bir araştırma”, Proceedings of the International Congress on Business and Marketing, İstanbul, Türkiye.
  • Azamathulla, H.M. et al. (2010), “Machine learning approach to predict sediment load-a case study”, CLEAN-Soil, Air, Water, 38(10), 969-976.
  • Balcioglu, Y. & B. Sezen (2019), “Yapay Sinir Ağları ile Banka Müşterilerinin Bankadan Ayrılma Olasılığının Tahmini”, Business and Organization Research, Izmir.
  • Başar, A. vd. (2015), “Banka Şubeleri İçin Uygun Yer Seçiminin Belirlenmesine Yönelik Tabu Arama Yaklaşımı: Bir Türk Bankası Uygulaması”, Endüstri Mühendisliği Dergisi, 26(3), 2-22.
  • Bilal-Zorić, A. (2016), “Predicting customer churn in banking industry using neural networks”, Interdisciplinary Description of Complex Systems: INDECS, 14(2), 116-124.
  • Bülbül, S. (2019), “Türk bankacılık sektöründe müşteri memnuniyetinin katılım ve mevduat bankalarında karşılaştırmalı olarak değerlendirilmesi”, Yüksek Lisans Tezi, Gebze Teknik Üniversitesi, Gebze.
  • Chang, T.-C. & R.-J. Chao (2006), “Application of back-propagation networks in debris flow prediction”, Engineering Geology, 85(3-4), 270-280.
  • Colgate, M. & R. Hedge (2001), “An investigation into the switching process in retail banking services”, International Journal of Bank Marketing, 19(5), 201-212.
  • Colgate, M. et al. (1996), “Customer defection: a study of the student market in Ireland”, International Journal of Bank Marketing, 14(3), 23-29.
  • Cortes, C. & V. Vapnik (1995), “Support-vector networks”, Machine Learning, 20(3), 273-297.
  • Demir, F.O. & Y. Kırdar (2007), “Müşteri ilişkileri yönetimi: CRM. Review of Social”, Economic & Business Studies, 8, 293-308.
  • Farquad, M.A.H. et al. (2014), “Churn prediction using comprehensible support vector machine: An analytical CRM application”, Applied Soft Computing, 19, 31-40.
  • Fornell, C. & B. Wernerfelt (1987), “Defensive marketing strategy by customer complaint management: a theoretical analysis”, Journal of Marketing Research, 24(4), 337-346.
  • Frederick, F.R. & W.E. Sasser (1990), “Zero defections: quality comes to services”, Harvard Business Review, 68(5), 105.
  • Gençtürk, M. vd. (2011), “Bireysel Bankacılıkta Müşteri Memnuniyetini Etkileyen Faktörler: Burdur ve Isparta İllerinde Bir Uygulama”, SDÜ İİBF Dergisi, 16(2), 59-77.
  • Gordini, N. & V. Veglio (2017), “Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry”, Industrial Marketing Management, 62, 100-107.
  • Güldoğan, E. (2017), “Çeşitli çekirdek fonksiyonlari ile oluşturulan destek vektör makinesi modellerinin performanslarinin incelenmesi: Bir klinik uygulama”, İnönü Üniversitesi ve Mersin Üniversitesi Biyoistatistik ve Tıp Bilişimi Anabilim Dalı, Doktora Tezi.
  • Gürbüz, F. (2016), “Bankacılık Sektöründe Müşteri Değerlendirme Kriterleri Seçiminde Örnek Bir Karar Verme Süreci”, Nevşehir Bilim ve Teknoloji Dergisi, 5(2), 167-184.
  • Hancke, G.P. & R. Malan (1998), “A modal analysis technique for the on-line particle size measurement of pneumatically conveyed pulverized coal”, IEEE Transactions on Instrumentation and Measurement, 47(1), 114-122.
  • Hsu, C.-W. & C.-J. Lin (2002), “A comparison of methods for multiclass support vector machines”, IEEE transactions on Neural Networks, 13(2), 415-425.
  • Johnston, R. (1997), “Identifying the critical determinants of service quality in retail banking: importance and effect”, International Journal of Bank Marketing, 15(4), 111-116.
  • Keaveney, S.M. (1995), “Customer switching behavior in service industries: An exploratory study”, Journal of Marketing, 59(2), 71-82.
  • Khashei, M. et al. (2012), “A novel hybrid classification model of artificial neural networks and multiple linear regression models”, Expert Systems with Applications, 39(3), 2606-2620.
  • Lijuan, W. & C. Guohua (2016), “Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow”, Knowledge-Based Systems, 110, 157-166.
  • Lu, C.-J. et al. (2009), “Financial time series forecasting using independent component analysis and support vector regression”, Decision Support Systems, 47(2), 115-125.
  • Mesroghli, S. et al. (2009), “Estimation of gross calorific value based on coal analysis using regression and artificial neural networks”, International Journal of Coal Geology, 79(1-2), 49-54.
  • Moeyersoms, J. & D. Martens (2015), “Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector”, Decision Support Systems, 72, 72-81.
  • Nazari, M. & M. Alidadi (2013), “Measuring credit risk of bank customers using artificial neural network”, Journal of Management Research, 5(2), 17.
  • Özdemir, İ. (2012), “Bankacılıkta halkla ilişkiler ve müşteri ilişkileri”, Bankacılık ve Sigortacılık Araştırmaları Dergisi, 1(3), 4-15.
  • Pacelli, V. & M. Azzollini (2011), “An artificial neural network approach for credit risk management”, Journal of Intelligent Learning Systems and Applications, 3(02), 103.
  • Patel, S.U. et al. (2007), “Estimation of gross calorific value of coals using artificial neural networks”, Fuel, 86(3), 334-344.
  • Rao, B.V. & S. Gopalakrishna (2009), “Hardgrove grindability index prediction using support vector regression”, International Journal of Mineral Processing, 91(1-2), 55-59.
  • Sayıcı, S.C. (2018), “İhtiyaç kredilerinde yapay sinir ağları uygulaması”, Doktora Tezi, Kadir Has Üniversitesi, İstanbul.
  • Sönmez, F. vd. (2015), “Mevduat bankalarının karlılığının yapay sinir ağları ile tahmini: Bir yazılım modeli tasarımı”, BDDK Bankacılık ve Finansal Piyasalar Dergisi, 9(1), 9-46.
  • Tan, P. et al. (2015), “Estimation of higher heating value of coal based on proximate analysis using support vector regression”, Fuel Processing Technology, 138, 298-304.
  • TBB (2021), Bankacılık Sisteminde Banka, Çalışan ve Şube Sayıları Mart 2021, <https://www.tbb.org.tr/Content/Upload/istatistikiraporlar/ekler/1575/Banka_Calisan_ve_Sube_Sayilari-Mart_2021.pdf>, 20.04.2021.
  • Tsai, C.-F. & Y.-H. Lu (2009), “Customer churn prediction by hybrid neural networks”, Expert Systems with Applications, 36(10), 12547-12553.
  • Vapnik, V. (2013), “The nature of statistical learning theory”, Springer Science & Business Media.
  • Veri Bilimci (2021), Makine Öğrenmesi MSE, RMSE, MAE, MAPE ve Diğer Metrikler, <https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir>, 11.07.2021.
  • Wu, C.-H. et al. (2004), “Travel-time prediction with support vector regression”, IEEE Transactions on Intelligent Transportation Systems, 5(4), 276-281.
  • Xie, Y. & X Li (2008), “Churn prediction with linear discriminant boosting algorithm”, 2008 International Conference on Machine Learning and Cybernetics.
  • Yazıcı, M. (2007), “Bankalarda kobi kredilerini değerlendirmeye ilişkin bir yaklaşım: Yapay sinir ağları”, Doktora Tezi, Kadir Has Üniversitesi İstanbul.
  • Zhang, G.P. (2001), “An investigation of neural networks for linear time-series forecasting”, Computers & Operations Research, 28(12), 1183-1202.
  • Zhao, Y. et al. (2005), “Customer churn prediction using improved one-class support vector machine”, International Conference on Advanced Data Mining and Applications.

Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama

Year 2021, Volume: 29 Issue: 50, 413 - 432, 31.10.2021
https://doi.org/10.17233/sosyoekonomi.2021.04.19

Abstract

Bankalar, sektördeki pazar paylarını artırmak için pazarlama faaliyetlerini mevcut müşteriyi koruma ve yeni müşteri kazanma konusunda genişletmişlerdir. Çalışmanın amacı, müşteri sayısı tahmininin önemini vurgulamak ve müşteri sayısı tahmini belirlemede etkili olan etmenleri araştırmaktır. Çalışmada makine öğrenmesi yöntemlerinden yapay sinir ağları ve destek vektör makineleri kullanılmıştır. Çalışmada, Türk Bankacılık sektöründeki mevduat bankaların 2011-2020 dönemi aylık verileri kullanılarak şube sayısı, çalışan sayısı, toplam mevduat, toplam krediler gibi literatürde kullanılan değişkenler müşteri tahminini tespit etmede seçilmiştir. Analiz sonucunda, Türkiye’deki mevduat bankalarının müşteri sayısı tahminleri başarılı bir şekilde elde edilmiştir. Bu çalışmanın bankaların hizmet sunmayı hedeflediği hedef müşterileri belirleme aşamasında bankalara yol göstereceği düşünülmektedir.

References

  • Altuğ, N. & Ş. Özhan (2018), Pazarlamada Güncel Gelişmeler, Nobel.
  • Altunöz, U. (2013), “Bankaların Finansal Başarısızlıklarının Yapay Sinir Ağları Modeli Çerçevesinde Tahmin Edilebilirliği”, DEÜ İİBF Dergisi, 28(2), 189-217.
  • Arasli, H. et al. (2005), “A comparison of service quality in the banking industry”, International Journal of Bank Marketing, 23(7), 508-526.
  • Aydın, S. & A. Tavukçu (2019), “İlişkisel pazarlama uygulamalarının müşteri sadakati, müşteri memnuniyeti ve müşterilerin tavsiye etme eğilimi üzerine etkisi: Türk katılım bankacılığı sektöründe bir araştırma”, Proceedings of the International Congress on Business and Marketing, İstanbul, Türkiye.
  • Azamathulla, H.M. et al. (2010), “Machine learning approach to predict sediment load-a case study”, CLEAN-Soil, Air, Water, 38(10), 969-976.
  • Balcioglu, Y. & B. Sezen (2019), “Yapay Sinir Ağları ile Banka Müşterilerinin Bankadan Ayrılma Olasılığının Tahmini”, Business and Organization Research, Izmir.
  • Başar, A. vd. (2015), “Banka Şubeleri İçin Uygun Yer Seçiminin Belirlenmesine Yönelik Tabu Arama Yaklaşımı: Bir Türk Bankası Uygulaması”, Endüstri Mühendisliği Dergisi, 26(3), 2-22.
  • Bilal-Zorić, A. (2016), “Predicting customer churn in banking industry using neural networks”, Interdisciplinary Description of Complex Systems: INDECS, 14(2), 116-124.
  • Bülbül, S. (2019), “Türk bankacılık sektöründe müşteri memnuniyetinin katılım ve mevduat bankalarında karşılaştırmalı olarak değerlendirilmesi”, Yüksek Lisans Tezi, Gebze Teknik Üniversitesi, Gebze.
  • Chang, T.-C. & R.-J. Chao (2006), “Application of back-propagation networks in debris flow prediction”, Engineering Geology, 85(3-4), 270-280.
  • Colgate, M. & R. Hedge (2001), “An investigation into the switching process in retail banking services”, International Journal of Bank Marketing, 19(5), 201-212.
  • Colgate, M. et al. (1996), “Customer defection: a study of the student market in Ireland”, International Journal of Bank Marketing, 14(3), 23-29.
  • Cortes, C. & V. Vapnik (1995), “Support-vector networks”, Machine Learning, 20(3), 273-297.
  • Demir, F.O. & Y. Kırdar (2007), “Müşteri ilişkileri yönetimi: CRM. Review of Social”, Economic & Business Studies, 8, 293-308.
  • Farquad, M.A.H. et al. (2014), “Churn prediction using comprehensible support vector machine: An analytical CRM application”, Applied Soft Computing, 19, 31-40.
  • Fornell, C. & B. Wernerfelt (1987), “Defensive marketing strategy by customer complaint management: a theoretical analysis”, Journal of Marketing Research, 24(4), 337-346.
  • Frederick, F.R. & W.E. Sasser (1990), “Zero defections: quality comes to services”, Harvard Business Review, 68(5), 105.
  • Gençtürk, M. vd. (2011), “Bireysel Bankacılıkta Müşteri Memnuniyetini Etkileyen Faktörler: Burdur ve Isparta İllerinde Bir Uygulama”, SDÜ İİBF Dergisi, 16(2), 59-77.
  • Gordini, N. & V. Veglio (2017), “Customers churn prediction and marketing retention strategies. An application of support vector machines based on the AUC parameter-selection technique in B2B e-commerce industry”, Industrial Marketing Management, 62, 100-107.
  • Güldoğan, E. (2017), “Çeşitli çekirdek fonksiyonlari ile oluşturulan destek vektör makinesi modellerinin performanslarinin incelenmesi: Bir klinik uygulama”, İnönü Üniversitesi ve Mersin Üniversitesi Biyoistatistik ve Tıp Bilişimi Anabilim Dalı, Doktora Tezi.
  • Gürbüz, F. (2016), “Bankacılık Sektöründe Müşteri Değerlendirme Kriterleri Seçiminde Örnek Bir Karar Verme Süreci”, Nevşehir Bilim ve Teknoloji Dergisi, 5(2), 167-184.
  • Hancke, G.P. & R. Malan (1998), “A modal analysis technique for the on-line particle size measurement of pneumatically conveyed pulverized coal”, IEEE Transactions on Instrumentation and Measurement, 47(1), 114-122.
  • Hsu, C.-W. & C.-J. Lin (2002), “A comparison of methods for multiclass support vector machines”, IEEE transactions on Neural Networks, 13(2), 415-425.
  • Johnston, R. (1997), “Identifying the critical determinants of service quality in retail banking: importance and effect”, International Journal of Bank Marketing, 15(4), 111-116.
  • Keaveney, S.M. (1995), “Customer switching behavior in service industries: An exploratory study”, Journal of Marketing, 59(2), 71-82.
  • Khashei, M. et al. (2012), “A novel hybrid classification model of artificial neural networks and multiple linear regression models”, Expert Systems with Applications, 39(3), 2606-2620.
  • Lijuan, W. & C. Guohua (2016), “Seasonal SVR with FOA algorithm for single-step and multi-step ahead forecasting in monthly inbound tourist flow”, Knowledge-Based Systems, 110, 157-166.
  • Lu, C.-J. et al. (2009), “Financial time series forecasting using independent component analysis and support vector regression”, Decision Support Systems, 47(2), 115-125.
  • Mesroghli, S. et al. (2009), “Estimation of gross calorific value based on coal analysis using regression and artificial neural networks”, International Journal of Coal Geology, 79(1-2), 49-54.
  • Moeyersoms, J. & D. Martens (2015), “Including high-cardinality attributes in predictive models: A case study in churn prediction in the energy sector”, Decision Support Systems, 72, 72-81.
  • Nazari, M. & M. Alidadi (2013), “Measuring credit risk of bank customers using artificial neural network”, Journal of Management Research, 5(2), 17.
  • Özdemir, İ. (2012), “Bankacılıkta halkla ilişkiler ve müşteri ilişkileri”, Bankacılık ve Sigortacılık Araştırmaları Dergisi, 1(3), 4-15.
  • Pacelli, V. & M. Azzollini (2011), “An artificial neural network approach for credit risk management”, Journal of Intelligent Learning Systems and Applications, 3(02), 103.
  • Patel, S.U. et al. (2007), “Estimation of gross calorific value of coals using artificial neural networks”, Fuel, 86(3), 334-344.
  • Rao, B.V. & S. Gopalakrishna (2009), “Hardgrove grindability index prediction using support vector regression”, International Journal of Mineral Processing, 91(1-2), 55-59.
  • Sayıcı, S.C. (2018), “İhtiyaç kredilerinde yapay sinir ağları uygulaması”, Doktora Tezi, Kadir Has Üniversitesi, İstanbul.
  • Sönmez, F. vd. (2015), “Mevduat bankalarının karlılığının yapay sinir ağları ile tahmini: Bir yazılım modeli tasarımı”, BDDK Bankacılık ve Finansal Piyasalar Dergisi, 9(1), 9-46.
  • Tan, P. et al. (2015), “Estimation of higher heating value of coal based on proximate analysis using support vector regression”, Fuel Processing Technology, 138, 298-304.
  • TBB (2021), Bankacılık Sisteminde Banka, Çalışan ve Şube Sayıları Mart 2021, <https://www.tbb.org.tr/Content/Upload/istatistikiraporlar/ekler/1575/Banka_Calisan_ve_Sube_Sayilari-Mart_2021.pdf>, 20.04.2021.
  • Tsai, C.-F. & Y.-H. Lu (2009), “Customer churn prediction by hybrid neural networks”, Expert Systems with Applications, 36(10), 12547-12553.
  • Vapnik, V. (2013), “The nature of statistical learning theory”, Springer Science & Business Media.
  • Veri Bilimci (2021), Makine Öğrenmesi MSE, RMSE, MAE, MAPE ve Diğer Metrikler, <https://veribilimcisi.com/2017/07/14/mse-rmse-mae-mape-metrikleri-nedir>, 11.07.2021.
  • Wu, C.-H. et al. (2004), “Travel-time prediction with support vector regression”, IEEE Transactions on Intelligent Transportation Systems, 5(4), 276-281.
  • Xie, Y. & X Li (2008), “Churn prediction with linear discriminant boosting algorithm”, 2008 International Conference on Machine Learning and Cybernetics.
  • Yazıcı, M. (2007), “Bankalarda kobi kredilerini değerlendirmeye ilişkin bir yaklaşım: Yapay sinir ağları”, Doktora Tezi, Kadir Has Üniversitesi İstanbul.
  • Zhang, G.P. (2001), “An investigation of neural networks for linear time-series forecasting”, Computers & Operations Research, 28(12), 1183-1202.
  • Zhao, Y. et al. (2005), “Customer churn prediction using improved one-class support vector machine”, International Conference on Advanced Data Mining and Applications.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Economics
Journal Section Articles
Authors

Filiz Yetiz 0000-0001-5480-9268

Mustafa Terzioğlu 0000-0002-4614-7185

Mehmet Kayakuş 0000-0003-0394-5862

Publication Date October 31, 2021
Submission Date December 26, 2020
Published in Issue Year 2021 Volume: 29 Issue: 50

Cite

APA Yetiz, F., Terzioğlu, M., & Kayakuş, M. (2021). Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama. Sosyoekonomi, 29(50), 413-432. https://doi.org/10.17233/sosyoekonomi.2021.04.19
AMA Yetiz F, Terzioğlu M, Kayakuş M. Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama. Sosyoekonomi. October 2021;29(50):413-432. doi:10.17233/sosyoekonomi.2021.04.19
Chicago Yetiz, Filiz, Mustafa Terzioğlu, and Mehmet Kayakuş. “Makina Öğrenmesi Yöntemleri Ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama”. Sosyoekonomi 29, no. 50 (October 2021): 413-32. https://doi.org/10.17233/sosyoekonomi.2021.04.19.
EndNote Yetiz F, Terzioğlu M, Kayakuş M (October 1, 2021) Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama. Sosyoekonomi 29 50 413–432.
IEEE F. Yetiz, M. Terzioğlu, and M. Kayakuş, “Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama”, Sosyoekonomi, vol. 29, no. 50, pp. 413–432, 2021, doi: 10.17233/sosyoekonomi.2021.04.19.
ISNAD Yetiz, Filiz et al. “Makina Öğrenmesi Yöntemleri Ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama”. Sosyoekonomi 29/50 (October 2021), 413-432. https://doi.org/10.17233/sosyoekonomi.2021.04.19.
JAMA Yetiz F, Terzioğlu M, Kayakuş M. Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama. Sosyoekonomi. 2021;29:413–432.
MLA Yetiz, Filiz et al. “Makina Öğrenmesi Yöntemleri Ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama”. Sosyoekonomi, vol. 29, no. 50, 2021, pp. 413-32, doi:10.17233/sosyoekonomi.2021.04.19.
Vancouver Yetiz F, Terzioğlu M, Kayakuş M. Makina Öğrenmesi Yöntemleri ile Türk Mevduat Bankalarının Müşteri Tahminine Yönelik Bir Uygulama. Sosyoekonomi. 2021;29(50):413-32.