Background: Our study examines community youth workers’ perceptions, attitudes, and aspirations regarding the development of STEM programming for girls of color gathered through a focus-group discussion embedded in a professional development workshop. Results: Drawing upon these conversations, we learned that they perceived themselves as not belonging in STEM and as focused primarily on community mental health concerns. Although many of the workers commented about being unprepared to plan or offer STEM programming, they suggested that a collective community effort could be a worthwhile approach for increasing STEM programming for girls of color. Results also revealed that the middle school girls of color being served by the community agencies represented in the sample corroborated these results as they too perceived themselves as not belonging in STEM. However, when probed about how they wanted to spend their out-of-school time, many of the girls who asserted lack of interest or belonging in STEM suggested everyday activities that were, indeed, STEM-based. Conclusions: This pattern of results suggests that persuading girls of color to pursue STEM-related activities outside-of-school requires a reframing that considers their existing interests.
Adams, P. (2010). Understanding the different realities, experience, and use of self-esteem between Black and White adolescent girls. Journal of Black Psychology, 36(3), 255-276. doi.10.1177/0095798410361454
Aguilera, J. M. (2018). Relating food engineering to cooking and gastronomy. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1021-1039. doi:10.1111/1541-4337.12361
Amerasinghe, S. (2016). Women’s jobs at risk from tech disruption. The World Bank Blog. Retrieved from http://blogs.worldbank.org/jobs/women-s-jobs-risk-tech-disruption.
Aronson, B., & Laughter, J. (2018). The theory and practice of culturally relevant education: Expanding the conversation to include gender and sexuality equity. Gender and Education, 32(2), 262-279. doi:10.1080/09540253.2018.1496231.
Astroth, K., Garza, P., & Taylor, B. (2004). Getting down to business: Defining competencies for entry-level youth workers. New Directions for Youth Development, 2004(104), 25-37. doi:10.1002/yd.96
Baldridge, B. (2018). On educational advocacy and cultural work: Situating community-based youth work[ers] in broader educational discourse. Teachers College Record, 120(2), 1-28.
Borum, V., & Walker, E. (2011). Why didn't I know? Black women mathematicians and their avenues of exposure to the doctorate. Journal of Women and Minorities in Science and Engineering, 17(4), 357-369. doi:10.1615/JWomenMinorScienEng.2011003062
Braddock Clarke, S. E. (2018). Outfitting textiles, fashion+ architecture: The convergence+ interplay of construction+ engineering for the human form. Textile, 16(1), 62-77. doi:10.1080/14759756.2017.1332906
Brinkman, B. G., Marino, S., & Manning, L. (2018). Relationships are the heart of the work: Mentoring relationships within gender-responsive programs for Black girls. Journal of Feminist Family Therapy, 30(4), 191-213. doi:10.1080/08952833.2018.1490618
Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387. doi:10.1002/j.2168-9830.2008.tb00985.x
Brown, C. S., & Leaper, C. (2010). Latina and European American girls’ experiences with academic sexism and their self-concepts in mathematics and science during adolescence. Sex Roles, 63(11-12), 860-870. doi:10.1007/s11199-010-9856-5
Campbell, P. (1995). Redefining the girl problem in mathematics. In W. Secada, E. Fennema, & L.Bryd (Eds), New Directions for Equity in Mathematics Education (pp. 225-241). Cambridge University Press.
Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding in-depth semistructured interviews: Problems of unitization and intercoder reliability and agreement. Sociological Methods & Research, 42(3), 294-320. doi:10.1177/0049124113500475
Ceci, S. J., & Williams, W. (2007). Why aren’t more women in science. APA Books.
Christensen, K. M., & Rubin, R. O. (2020). Exploring competencies in context: Critical considerations for after-school youth program staff. Child & Youth Services, 1-26. doi:10.1080/0145935X.2020.1866983
Colvin, S., White, A. M., Akiva, T., & Wardrip, P. (2020). What do you think youth workers do? A comparative case study of library and afterschool workers. Children and Youth Services Review, 119, 1-19. doi:10.1002/jcop.22537
Conradty, C., & Bogner, F. (2018). From STEM to STEAM: How to monitor creativity. Creativity Research Journal, 30(3), 233-240. doi:10.1080/10400419.2018.1488195
Cooper, R., & Heaverlo, C. (2013). Problem solving and creativity and design: What influence do they have on girls' interest in STEM subject areas? American Journal of Engineering Education, 4(1), 27-38.
Cross, A. B., Gottfredson, D. C., Wilson, D. M., Rorie, M., Connell, N. (2010). Implementation quality and positive experiences in after-school programs. American Journal of Community Psychology, 45(3-4), 370–380. doi:10.1007/s10464-010-9295-z
Curran, F. C., & Kellogg, A. T. (2016). Understanding science achievement gaps by race/ethnicity and gender in kindergarten and first grade. Educational Researcher, 45(5), 273-282. doi:10.3102/0013189X16656611
Dasgupta, N. (2011). Ingroup experts and peers as social vaccines who inoculate the self-concept: The stereotype inoculation model. Psychological Inquiry, 22(4), 231- 246. doi:10.1080/1047840X.2011.607313
Dasgupta, N., & Stout, J.G. (2014). Girls and women in science, technology, engineering, and mathematics: STEMing the tide and broadening participation in STEM careers. Policy Insights from the Behavioral and Brain Sciences, 1(1), 21-29.
doi:10.1177/2372732214549471
Deaton, S., Carter, V., & Daugherty, M.K. (2018). Getting back to the roots of family and consumer sciences education: FCS and STEM integration. Journal of Family & Consumer Sciences, 110(1), 55-58. doi:10.14307/JFCS110.1.55
DeBacker, T. K., Heddy, B. C., Kershen, J. L., Crowson, H. M., Looney, K., & Goldman, J. A. (2018). Effects of a one-shot growth mindset intervention on beliefs about intelligence and achievement goals. Educational Psychology, 38(6), 711-733. doi:10.1080/01443410.2018.1426833
Donaldson, J. L., & Franck, K. L. (2020). Perceptions of youth, parents, community volunteers, corporate volunteers, and 4-H professionals about the 4-H STEM career pathway model. Journal of Agricultural Education, 61(4), 15-29. doi:10.5032/jae.2020.04015
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103-127. doi:10.1037/a0018851
English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 18 doi:10.1186/s40594-015-0027-7
Garner, P. W., Gabitova, N., Gupta, A., & Wood, T. (2018). Innovations in science education: Infusing social emotional principles into early STEM learning. Cultural Studies of Science Education, 13(4), 889-903. doi:10.1007/s11422-017-9826-0
Gholson, M. L. (2016). Clean corners and algebra: A critical examination of the constructed invisibility of Black girls and women in mathematics. The Journal of Negro Education, 85(3), 290-301. doi:10.7709/jnegroeducation.85.3.0290
Gholson, M., & Martin, D.B. (2014). Smart girls, Black girls, mean girls, and bullies: At the intersection of identities and the mediating role of young girls' social network in mathematical communities of practice. Journal of Education, 194(1), 19-33. doi: 10.1177/002205741419400105
Glaser, B.G., & Strauss, A.L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine de Gruyter.
Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 18(1), 59-82.
Guest, G., Namey, E., Taylor, J., Eley, N., & McKenna, K. (2017). Comparing focus groups and individual interviews: Findings from a randomized study. International Journal of Social Research Methodology, 20(6), 693-708.
Hanson, S. L. (2007). Success in science among young African American women: The role of minority families. Journal of Family Issues, 28(1), 3-33. doi:10.1177/0192513X06292694
Hirsch, B. J., Roffman, J. G., Deutsch, N. L., Flynn, C. A., Loder, T. L., & Pagano, M. E. (2000). Inner-city youth development organizations: Strengthening programs for adolescent girls. The Journal of Early Adolescence, 20(2), 210-230. doi:10.1177/0272431600020002005
Ihrig, L. M., Lane, E., Mahatmya, D., & Assouline, S. G. (2018). STEM excellence and leadership program: Increasing the level of STEM challenge and engagement for high-achieving students in economically disadvantaged rural communities. Journal for the Education of the Gifted, 41(1), 24-42. doi:10.1177/0162353217745158
Ireland, D. T., Freeman, K. E., Winston-Proctor, C. E., DeLaine, K. D., McDonald Lowe, S., & Woodson, K. M. (2018). (Un) hidden figures: A synthesis of research examining the intersectional experiences of Black women and girls in STEM education. Review of Research in Education, 42(1), 226-254. doi:10.3102/0091732X18759072
Jackson, C., Mohr-Schroeder, M.J., Bush, S.B., Maiorca, C., Roberts, T., Yost, C., & Fowler, A. (2021). Equity-oriented conceptual framework for K-12 STEM literacy. International Journal of STEM Education, 8. Article No. 38. doi:10.1186/s40594-021-00294-z
Joseph, N. M., Hailu, M., & Boston, D. (2017). Black women’s and girls’ persistence in the P-20 mathematics pipeline: Two decades of children, youth, and adult education research. Review of Research in Education, 41(1), 203-227. doi:10.3102/0091732X16689045
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, Article No.11. doi:10.1186/s40594-016-0046-z
Kerr, B., & Robinson Kurpius, S. E. (2004). Encouraging talented girls in math and science: Effects of a guidance intervention. High Ability Studies, 15(1), 85-102. doi:10.1080/1359813042000225357
King, N. S., & Pringle, R. M. (2019). Black girls speak STEM: Counterstories of informal and formal learning experiences. Journal of Research in Science Teaching, 56(5), 539-569. doi:10.1002/tea.21513
Lane, T. B., & Id-Deen, L. (2020). Nurturing the capital within: A qualitative investigation of Black women and girls in STEM summer programs. Urban Education. doi:10.1177/0042085920926225
Lardier Jr, D. T., Herr, K. G., Garcia-Reid, P., & Reid, R. J. (2018). Adult youth workers’ conceptions of their work in an under-resourced community in the United States. Journal of Youth Studies, 21(8), 1029-1044. doi:10.1080/13676261.2018.1442563
LeVasseur, J. J. (2003). The problem of bracketing in phenomenology. Qualitative Health Research, 13(3), 408-420. doi:10.1177/1049732302250337
Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board Task Force Report. American Psychologist, 73(1), 26-46. doi:10.1037/amp0000151
Levitt, H. M., Motulsky, S. L., Wertz, F. J., Morrow, S. L., & Ponterotto, J. G. (2017). Recommendations for designing and reviewing qualitative research in psychology: Promoting methodological integrity. Qualitative Psychology, 4(1), 4(1), 2-22. doi:10.1037/qup0000082
Lips, H. (2007). Gender and possible selves. New Directions for Adult and Continuing Education, 14, 51-59. doi:10.1002/ace.256
Markus, H., & Nurius, P. (1986). Possible selves. American Psychologist, 41(9), 954- 969. doi:10.1037/0003-066X.41.9.954
McClure, E. R., Guernsey, L., Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N., & Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. The Joan Ganz Cooney Center at Sesame Workshop.
McLaughlin, M. W., Irby, M. A., & Langman, J. (1994). Urban sanctuaries: Neighborhood organizations in the lives and futures of inner-city youth. Jossey-Bass.
Miller, D. I., Nolla, K. M., Eagly, A. H., & Uttal, D. H. (2018). The development of children's gender‐science stereotypes: a meta‐analysis of 5 decades of US draw‐a‐scientist studies. Child Development, 89(6), 1943-1955. doi:10.1111/cdev.13039
Moran, C., Kilbul, C., & Moran, G. (2021). Determining the students' attitudes towards STEM: E-Twinning Project from STEM Club to STEM School. Journal of STEAM Education, 4(2), 101-117.
Moss-Racusin, C. A., Molenda, A. K., & Cramer, C. R. (2015). Can evidence impact attitudes? Public reactions to evidence of gender bias in STEM fields. Psychology of Women Quarterly, 39(2), 194–209. doi:10.1177/0361684314565777
Mosatche, H., Matloff-Nieves, S., Kekelis, L., & Lawner, E. (2013). Effective STEM programs for adolescent girls: Three approaches and many lessons learned. Afterschool Matters, 17, 17–25.
National Science Board. (2016). Science and Engineering Indicators. Retrieved from https://
www.nsf.gov/statistics/2016/nsb20161/#/topics
National Science Foundation. (2015). Women, minorities and persons with disabilities in science and engineering: 2015. National Science Foundation, National Center for Science and Engineering Statistics.
Nelson, A., McClintock, C., Perez-Ferguson, A., Shawver, M. N., & Thompson, G. (2008). Storytelling narratives: Social bonding as key for youth at risk. Child & Youth Care Forum, 37(3), 127-137. doi:10.1007/s10566-008-9055-5
Nolas, S. M. (2014). Exploring young people's and youth workers' experiences of spaces for ‘youth development’: creating cultures of participation. Journal of Youth Studies, 17(1), 26-41.doi:10.1080/13676261.2013.793789
O'Brien, L. T., Blodorn, A., Adams, G., Garcia, D. M., & Hammer, E. (2015). Ethnic variation in gender-STEM stereotypes and STEM participation: An intersectional approach. Cultural Diversity and Ethnic Minority Psychology, 21(2), 169-180. doi:10.1037/a0037944
Ong, M. (2005). Body projects of young women of color in physics: Intersections of gender, race, and science. Social Problems52(4), 593-617. doi:10.1525/sp.2005.52.4.593
Ong, M., Smith, J. M., & Ko, L. T. (2018). Counterspaces for women of color in STEM higher education: Marginal and central spaces for persistence and success. Journal of Research in Science Teaching, 55(2), 206-245. doi:10.1002/tea.21417
Paik, S. J., Choe, S. M. M., Otto, W. J., & Rahman, Z. (2018). Learning about the lives and early experiences of notable Asian American women: Productive giftedness, childhood traits, and supportive conditions. Journal for the Education of the Gifted, 41(2), 160-192. doi:10.1177/0162353218763927
Perna, L., Lundy-Wagner, V., Drezner, N. D., Gasman, M., Yoon, S., Bose, E., & Gary, S.
(2009). The contribution of HBCUs to the preparation of African American women for STEM careers: A case study. Research in Higher Education, 50(1), 1-23. doi:10.1007/s11162-008-9110-y
Perry, B. L., Link, T., Boelter, C., & Leukefeld, C. (2012). Blinded to science: Gender differences in the effects of race, ethnicity, and socioeconomic status on academic and science attitudes among sixth graders. Gender and Education, 24(7), 725-743. doi:10.1080/09540253.2012.685702
Pringle, R. M., Brkich, K. M., Adams, T. L., West‐Olatunii, C., & Archer‐Banks, D. A. (2012). Factors influencing elementary teachers' Positioning of African American girls as science and mathematics learners. School Science and Mathematics, 112(4), 217-229. doi:10.1111/j.1949-8594.2012.00137.x
Root-Bernstein, R. (2015). Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students. Asia Pacific Education Review, 16(2), 203-212. doi:10.1007/s12564-015-9362-0
Riegle-Crumb, C., & King, B. (2010). Questioning a white male advantage in STEM: Examining disparities in college major by gender and race/ethnicity. Educational Researcher, 39(9), 656-664. doi:10.3102/0013189X10391657
Seymour, E., Hunter, A. B., Laursen, S. L., & DeAntoni, T. (2004). Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three‐year study. Science Education, 88(4), 493-534. doi:10.1002/sce.10131
Sharapan, H. (2012). From STEM to STEAM: How early childhood educators can apply Fred Rogers’ approach. Young Children, 67(1), 36-40.
Shields, S. (2008). Gender: An intersectionality perspective. Sex Roles, 59(5-6), 301-311.
doi:10.1007/s11199-008-9501-8
Shirley, L., & Kohler, J. (2012). Clothing and textiles: Reinforcing STEM education through family and consumer sciences curriculum. Journal of Family & Consumer Sciences Education, 30(2), 46-56.
Sinnes, A. T., & Løken, M. (2014). Gendered education in a gendered world: Looking beyond cosmetic solutions to the gender gap in science. Cultural Studies of Science Education, 9(2), 343-364. doi:10.1007/s11422-012-9433-z
Stapleton, S. (2015). Supporting teachers for race-, class-, and gender-responsive science teaching. Cultural Studies of Science Education 10(2), 411-418. doi:10.1007/s11422-014-9655-3
Starr, E., & Gannett, E. (2016). Credentialing for youth work: Expanding our thinking. In K. Pozzoboni & B. Kirshner (Eds.), The changing landscape of youth work: Theory and practice for an evolving field (pp. 31-49). Information Age Publishing.
Steinke, J., & Tavarez, P. (2018). Cultural representations of gender and STEM: Portrayals of female STEM characters in popular films 2002-2014. International Journal of Gender, Science and Technology 9(3), 244-277.
Stromquist, N., & Monkman, K., (2000). Globalization and education: Integration and
contestation across cultures. Rowman & Littlefield.
Tan, E., Calabrese Barton, A., Kang, H., & O'Neill, T. (2013). Desiring a career in STEM‐related fields: How middle school girls articulate and negotiate identities‐in‐practice in science. Journal of Research in Science Teaching, 50(10), 1143-1179. doi:10.1002/tea.21123
Tan, E., & Barton, A. (2012). Empowering science and mathematics education in urban schools. University of Chicago.
Thomas, E., & Magilvy, J. K. (2011). Qualitative rigor or research validity in qualitative research. Journal for Specialists in Pediatric Nursing, 16(2), 151-155. doi:10.1111/j.1744-6155.2011.00283.x
Thiry, H., Laursen, S., & Hunter, A. (2011). What experiences help students become scientists? A comparative study of research and other sources of personal and professional gains for STEM undergraduates. The Journal of Higher Education, 82(4), 357-388. doi:10.1080/00221546.2011.11777209
Tyson, W., Lee, R., Borman, K. M., & Hanson, M. A. (2007). Science, technology, engineering, and mathematics (STEM) pathways: High school science and math coursework and postsecondary degree attainment. Journal of Education for Students Placed at Risk, 12(3), 243-270. doi:10.1080/10824660701601266
Wright, B. L., Counsell, S. L., Goings, R. B., Freeman, H., & Peat, F. (2016). Creating access and opportunity: Preparing African-American male students for STEM trajectories PreK-12. Journal for Multicultural Education, 10(3), 384-404. doi:10.1108/JME-01-2016-0003
Zilanawala, A., Martin, M., Noguera, P. A., & Mincy, R. B. (2018). Math achievement trajectories among Black male students in the elementary-and middle-school years. Educational Studies, 54(2), 143-164. doi:10.1080/00131946.2017.1369414
Adams, P. (2010). Understanding the different realities, experience, and use of self-esteem between Black and White adolescent girls. Journal of Black Psychology, 36(3), 255-276. doi.10.1177/0095798410361454
Aguilera, J. M. (2018). Relating food engineering to cooking and gastronomy. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1021-1039. doi:10.1111/1541-4337.12361
Amerasinghe, S. (2016). Women’s jobs at risk from tech disruption. The World Bank Blog. Retrieved from http://blogs.worldbank.org/jobs/women-s-jobs-risk-tech-disruption.
Aronson, B., & Laughter, J. (2018). The theory and practice of culturally relevant education: Expanding the conversation to include gender and sexuality equity. Gender and Education, 32(2), 262-279. doi:10.1080/09540253.2018.1496231.
Astroth, K., Garza, P., & Taylor, B. (2004). Getting down to business: Defining competencies for entry-level youth workers. New Directions for Youth Development, 2004(104), 25-37. doi:10.1002/yd.96
Baldridge, B. (2018). On educational advocacy and cultural work: Situating community-based youth work[ers] in broader educational discourse. Teachers College Record, 120(2), 1-28.
Borum, V., & Walker, E. (2011). Why didn't I know? Black women mathematicians and their avenues of exposure to the doctorate. Journal of Women and Minorities in Science and Engineering, 17(4), 357-369. doi:10.1615/JWomenMinorScienEng.2011003062
Braddock Clarke, S. E. (2018). Outfitting textiles, fashion+ architecture: The convergence+ interplay of construction+ engineering for the human form. Textile, 16(1), 62-77. doi:10.1080/14759756.2017.1332906
Brinkman, B. G., Marino, S., & Manning, L. (2018). Relationships are the heart of the work: Mentoring relationships within gender-responsive programs for Black girls. Journal of Feminist Family Therapy, 30(4), 191-213. doi:10.1080/08952833.2018.1490618
Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P‐12 classrooms. Journal of Engineering Education, 97(3), 369-387. doi:10.1002/j.2168-9830.2008.tb00985.x
Brown, C. S., & Leaper, C. (2010). Latina and European American girls’ experiences with academic sexism and their self-concepts in mathematics and science during adolescence. Sex Roles, 63(11-12), 860-870. doi:10.1007/s11199-010-9856-5
Campbell, P. (1995). Redefining the girl problem in mathematics. In W. Secada, E. Fennema, & L.Bryd (Eds), New Directions for Equity in Mathematics Education (pp. 225-241). Cambridge University Press.
Campbell, J. L., Quincy, C., Osserman, J., & Pedersen, O. K. (2013). Coding in-depth semistructured interviews: Problems of unitization and intercoder reliability and agreement. Sociological Methods & Research, 42(3), 294-320. doi:10.1177/0049124113500475
Ceci, S. J., & Williams, W. (2007). Why aren’t more women in science. APA Books.
Christensen, K. M., & Rubin, R. O. (2020). Exploring competencies in context: Critical considerations for after-school youth program staff. Child & Youth Services, 1-26. doi:10.1080/0145935X.2020.1866983
Colvin, S., White, A. M., Akiva, T., & Wardrip, P. (2020). What do you think youth workers do? A comparative case study of library and afterschool workers. Children and Youth Services Review, 119, 1-19. doi:10.1002/jcop.22537
Conradty, C., & Bogner, F. (2018). From STEM to STEAM: How to monitor creativity. Creativity Research Journal, 30(3), 233-240. doi:10.1080/10400419.2018.1488195
Cooper, R., & Heaverlo, C. (2013). Problem solving and creativity and design: What influence do they have on girls' interest in STEM subject areas? American Journal of Engineering Education, 4(1), 27-38.
Cross, A. B., Gottfredson, D. C., Wilson, D. M., Rorie, M., Connell, N. (2010). Implementation quality and positive experiences in after-school programs. American Journal of Community Psychology, 45(3-4), 370–380. doi:10.1007/s10464-010-9295-z
Curran, F. C., & Kellogg, A. T. (2016). Understanding science achievement gaps by race/ethnicity and gender in kindergarten and first grade. Educational Researcher, 45(5), 273-282. doi:10.3102/0013189X16656611
Dasgupta, N. (2011). Ingroup experts and peers as social vaccines who inoculate the self-concept: The stereotype inoculation model. Psychological Inquiry, 22(4), 231- 246. doi:10.1080/1047840X.2011.607313
Dasgupta, N., & Stout, J.G. (2014). Girls and women in science, technology, engineering, and mathematics: STEMing the tide and broadening participation in STEM careers. Policy Insights from the Behavioral and Brain Sciences, 1(1), 21-29.
doi:10.1177/2372732214549471
Deaton, S., Carter, V., & Daugherty, M.K. (2018). Getting back to the roots of family and consumer sciences education: FCS and STEM integration. Journal of Family & Consumer Sciences, 110(1), 55-58. doi:10.14307/JFCS110.1.55
DeBacker, T. K., Heddy, B. C., Kershen, J. L., Crowson, H. M., Looney, K., & Goldman, J. A. (2018). Effects of a one-shot growth mindset intervention on beliefs about intelligence and achievement goals. Educational Psychology, 38(6), 711-733. doi:10.1080/01443410.2018.1426833
Donaldson, J. L., & Franck, K. L. (2020). Perceptions of youth, parents, community volunteers, corporate volunteers, and 4-H professionals about the 4-H STEM career pathway model. Journal of Agricultural Education, 61(4), 15-29. doi:10.5032/jae.2020.04015
Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103-127. doi:10.1037/a0018851
English, L. D., & King, D. T. (2015). STEM learning through engineering design: fourth-grade students’ investigations in aerospace. International Journal of STEM Education, 2(1), 18 doi:10.1186/s40594-015-0027-7
Garner, P. W., Gabitova, N., Gupta, A., & Wood, T. (2018). Innovations in science education: Infusing social emotional principles into early STEM learning. Cultural Studies of Science Education, 13(4), 889-903. doi:10.1007/s11422-017-9826-0
Gholson, M. L. (2016). Clean corners and algebra: A critical examination of the constructed invisibility of Black girls and women in mathematics. The Journal of Negro Education, 85(3), 290-301. doi:10.7709/jnegroeducation.85.3.0290
Gholson, M., & Martin, D.B. (2014). Smart girls, Black girls, mean girls, and bullies: At the intersection of identities and the mediating role of young girls' social network in mathematical communities of practice. Journal of Education, 194(1), 19-33. doi: 10.1177/002205741419400105
Glaser, B.G., & Strauss, A.L. (1967). The discovery of grounded theory: Strategies for qualitative research. Aldine de Gruyter.
Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 18(1), 59-82.
Guest, G., Namey, E., Taylor, J., Eley, N., & McKenna, K. (2017). Comparing focus groups and individual interviews: Findings from a randomized study. International Journal of Social Research Methodology, 20(6), 693-708.
Hanson, S. L. (2007). Success in science among young African American women: The role of minority families. Journal of Family Issues, 28(1), 3-33. doi:10.1177/0192513X06292694
Hirsch, B. J., Roffman, J. G., Deutsch, N. L., Flynn, C. A., Loder, T. L., & Pagano, M. E. (2000). Inner-city youth development organizations: Strengthening programs for adolescent girls. The Journal of Early Adolescence, 20(2), 210-230. doi:10.1177/0272431600020002005
Ihrig, L. M., Lane, E., Mahatmya, D., & Assouline, S. G. (2018). STEM excellence and leadership program: Increasing the level of STEM challenge and engagement for high-achieving students in economically disadvantaged rural communities. Journal for the Education of the Gifted, 41(1), 24-42. doi:10.1177/0162353217745158
Ireland, D. T., Freeman, K. E., Winston-Proctor, C. E., DeLaine, K. D., McDonald Lowe, S., & Woodson, K. M. (2018). (Un) hidden figures: A synthesis of research examining the intersectional experiences of Black women and girls in STEM education. Review of Research in Education, 42(1), 226-254. doi:10.3102/0091732X18759072
Jackson, C., Mohr-Schroeder, M.J., Bush, S.B., Maiorca, C., Roberts, T., Yost, C., & Fowler, A. (2021). Equity-oriented conceptual framework for K-12 STEM literacy. International Journal of STEM Education, 8. Article No. 38. doi:10.1186/s40594-021-00294-z
Joseph, N. M., Hailu, M., & Boston, D. (2017). Black women’s and girls’ persistence in the P-20 mathematics pipeline: Two decades of children, youth, and adult education research. Review of Research in Education, 41(1), 203-227. doi:10.3102/0091732X16689045
Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, Article No.11. doi:10.1186/s40594-016-0046-z
Kerr, B., & Robinson Kurpius, S. E. (2004). Encouraging talented girls in math and science: Effects of a guidance intervention. High Ability Studies, 15(1), 85-102. doi:10.1080/1359813042000225357
King, N. S., & Pringle, R. M. (2019). Black girls speak STEM: Counterstories of informal and formal learning experiences. Journal of Research in Science Teaching, 56(5), 539-569. doi:10.1002/tea.21513
Lane, T. B., & Id-Deen, L. (2020). Nurturing the capital within: A qualitative investigation of Black women and girls in STEM summer programs. Urban Education. doi:10.1177/0042085920926225
Lardier Jr, D. T., Herr, K. G., Garcia-Reid, P., & Reid, R. J. (2018). Adult youth workers’ conceptions of their work in an under-resourced community in the United States. Journal of Youth Studies, 21(8), 1029-1044. doi:10.1080/13676261.2018.1442563
LeVasseur, J. J. (2003). The problem of bracketing in phenomenology. Qualitative Health Research, 13(3), 408-420. doi:10.1177/1049732302250337
Levitt, H. M., Bamberg, M., Creswell, J. W., Frost, D. M., Josselson, R., & Suárez-Orozco, C. (2018). Journal article reporting standards for qualitative primary, qualitative meta-analytic, and mixed methods research in psychology: The APA Publications and Communications Board Task Force Report. American Psychologist, 73(1), 26-46. doi:10.1037/amp0000151
Levitt, H. M., Motulsky, S. L., Wertz, F. J., Morrow, S. L., & Ponterotto, J. G. (2017). Recommendations for designing and reviewing qualitative research in psychology: Promoting methodological integrity. Qualitative Psychology, 4(1), 4(1), 2-22. doi:10.1037/qup0000082
Lips, H. (2007). Gender and possible selves. New Directions for Adult and Continuing Education, 14, 51-59. doi:10.1002/ace.256
Markus, H., & Nurius, P. (1986). Possible selves. American Psychologist, 41(9), 954- 969. doi:10.1037/0003-066X.41.9.954
McClure, E. R., Guernsey, L., Clements, D. H., Bales, S. N., Nichols, J., Kendall-Taylor, N., & Levine, M. H. (2017). STEM starts early: Grounding science, technology, engineering, and math education in early childhood. The Joan Ganz Cooney Center at Sesame Workshop.
McLaughlin, M. W., Irby, M. A., & Langman, J. (1994). Urban sanctuaries: Neighborhood organizations in the lives and futures of inner-city youth. Jossey-Bass.
Miller, D. I., Nolla, K. M., Eagly, A. H., & Uttal, D. H. (2018). The development of children's gender‐science stereotypes: a meta‐analysis of 5 decades of US draw‐a‐scientist studies. Child Development, 89(6), 1943-1955. doi:10.1111/cdev.13039
Moran, C., Kilbul, C., & Moran, G. (2021). Determining the students' attitudes towards STEM: E-Twinning Project from STEM Club to STEM School. Journal of STEAM Education, 4(2), 101-117.
Moss-Racusin, C. A., Molenda, A. K., & Cramer, C. R. (2015). Can evidence impact attitudes? Public reactions to evidence of gender bias in STEM fields. Psychology of Women Quarterly, 39(2), 194–209. doi:10.1177/0361684314565777
Mosatche, H., Matloff-Nieves, S., Kekelis, L., & Lawner, E. (2013). Effective STEM programs for adolescent girls: Three approaches and many lessons learned. Afterschool Matters, 17, 17–25.
National Science Board. (2016). Science and Engineering Indicators. Retrieved from https://
www.nsf.gov/statistics/2016/nsb20161/#/topics
National Science Foundation. (2015). Women, minorities and persons with disabilities in science and engineering: 2015. National Science Foundation, National Center for Science and Engineering Statistics.
Nelson, A., McClintock, C., Perez-Ferguson, A., Shawver, M. N., & Thompson, G. (2008). Storytelling narratives: Social bonding as key for youth at risk. Child & Youth Care Forum, 37(3), 127-137. doi:10.1007/s10566-008-9055-5
Nolas, S. M. (2014). Exploring young people's and youth workers' experiences of spaces for ‘youth development’: creating cultures of participation. Journal of Youth Studies, 17(1), 26-41.doi:10.1080/13676261.2013.793789
O'Brien, L. T., Blodorn, A., Adams, G., Garcia, D. M., & Hammer, E. (2015). Ethnic variation in gender-STEM stereotypes and STEM participation: An intersectional approach. Cultural Diversity and Ethnic Minority Psychology, 21(2), 169-180. doi:10.1037/a0037944
Ong, M. (2005). Body projects of young women of color in physics: Intersections of gender, race, and science. Social Problems52(4), 593-617. doi:10.1525/sp.2005.52.4.593
Ong, M., Smith, J. M., & Ko, L. T. (2018). Counterspaces for women of color in STEM higher education: Marginal and central spaces for persistence and success. Journal of Research in Science Teaching, 55(2), 206-245. doi:10.1002/tea.21417
Paik, S. J., Choe, S. M. M., Otto, W. J., & Rahman, Z. (2018). Learning about the lives and early experiences of notable Asian American women: Productive giftedness, childhood traits, and supportive conditions. Journal for the Education of the Gifted, 41(2), 160-192. doi:10.1177/0162353218763927
Perna, L., Lundy-Wagner, V., Drezner, N. D., Gasman, M., Yoon, S., Bose, E., & Gary, S.
(2009). The contribution of HBCUs to the preparation of African American women for STEM careers: A case study. Research in Higher Education, 50(1), 1-23. doi:10.1007/s11162-008-9110-y
Perry, B. L., Link, T., Boelter, C., & Leukefeld, C. (2012). Blinded to science: Gender differences in the effects of race, ethnicity, and socioeconomic status on academic and science attitudes among sixth graders. Gender and Education, 24(7), 725-743. doi:10.1080/09540253.2012.685702
Pringle, R. M., Brkich, K. M., Adams, T. L., West‐Olatunii, C., & Archer‐Banks, D. A. (2012). Factors influencing elementary teachers' Positioning of African American girls as science and mathematics learners. School Science and Mathematics, 112(4), 217-229. doi:10.1111/j.1949-8594.2012.00137.x
Root-Bernstein, R. (2015). Arts and crafts as adjuncts to STEM education to foster creativity in gifted and talented students. Asia Pacific Education Review, 16(2), 203-212. doi:10.1007/s12564-015-9362-0
Riegle-Crumb, C., & King, B. (2010). Questioning a white male advantage in STEM: Examining disparities in college major by gender and race/ethnicity. Educational Researcher, 39(9), 656-664. doi:10.3102/0013189X10391657
Seymour, E., Hunter, A. B., Laursen, S. L., & DeAntoni, T. (2004). Establishing the benefits of research experiences for undergraduates in the sciences: First findings from a three‐year study. Science Education, 88(4), 493-534. doi:10.1002/sce.10131
Sharapan, H. (2012). From STEM to STEAM: How early childhood educators can apply Fred Rogers’ approach. Young Children, 67(1), 36-40.
Shields, S. (2008). Gender: An intersectionality perspective. Sex Roles, 59(5-6), 301-311.
doi:10.1007/s11199-008-9501-8
Shirley, L., & Kohler, J. (2012). Clothing and textiles: Reinforcing STEM education through family and consumer sciences curriculum. Journal of Family & Consumer Sciences Education, 30(2), 46-56.
Sinnes, A. T., & Løken, M. (2014). Gendered education in a gendered world: Looking beyond cosmetic solutions to the gender gap in science. Cultural Studies of Science Education, 9(2), 343-364. doi:10.1007/s11422-012-9433-z
Stapleton, S. (2015). Supporting teachers for race-, class-, and gender-responsive science teaching. Cultural Studies of Science Education 10(2), 411-418. doi:10.1007/s11422-014-9655-3
Starr, E., & Gannett, E. (2016). Credentialing for youth work: Expanding our thinking. In K. Pozzoboni & B. Kirshner (Eds.), The changing landscape of youth work: Theory and practice for an evolving field (pp. 31-49). Information Age Publishing.
Steinke, J., & Tavarez, P. (2018). Cultural representations of gender and STEM: Portrayals of female STEM characters in popular films 2002-2014. International Journal of Gender, Science and Technology 9(3), 244-277.
Stromquist, N., & Monkman, K., (2000). Globalization and education: Integration and
contestation across cultures. Rowman & Littlefield.
Tan, E., Calabrese Barton, A., Kang, H., & O'Neill, T. (2013). Desiring a career in STEM‐related fields: How middle school girls articulate and negotiate identities‐in‐practice in science. Journal of Research in Science Teaching, 50(10), 1143-1179. doi:10.1002/tea.21123
Tan, E., & Barton, A. (2012). Empowering science and mathematics education in urban schools. University of Chicago.
Thomas, E., & Magilvy, J. K. (2011). Qualitative rigor or research validity in qualitative research. Journal for Specialists in Pediatric Nursing, 16(2), 151-155. doi:10.1111/j.1744-6155.2011.00283.x
Thiry, H., Laursen, S., & Hunter, A. (2011). What experiences help students become scientists? A comparative study of research and other sources of personal and professional gains for STEM undergraduates. The Journal of Higher Education, 82(4), 357-388. doi:10.1080/00221546.2011.11777209
Tyson, W., Lee, R., Borman, K. M., & Hanson, M. A. (2007). Science, technology, engineering, and mathematics (STEM) pathways: High school science and math coursework and postsecondary degree attainment. Journal of Education for Students Placed at Risk, 12(3), 243-270. doi:10.1080/10824660701601266
Wright, B. L., Counsell, S. L., Goings, R. B., Freeman, H., & Peat, F. (2016). Creating access and opportunity: Preparing African-American male students for STEM trajectories PreK-12. Journal for Multicultural Education, 10(3), 384-404. doi:10.1108/JME-01-2016-0003
Zilanawala, A., Martin, M., Noguera, P. A., & Mincy, R. B. (2018). Math achievement trajectories among Black male students in the elementary-and middle-school years. Educational Studies, 54(2), 143-164. doi:10.1080/00131946.2017.1369414
Garner, P., Gabitova, N., & Dominick, T. (2022). Improving Access to STEM for Girls of Color through Community Programs. Journal of STEAM Education, 5(2), 149-166. https://doi.org/10.55290/steam.1060436