Araştırma Makalesi
BibTex RIS Kaynak Göster

BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ

Yıl 2018, Cilt: 6 Sayı: 4, 767 - 778, 01.12.2018
https://doi.org/10.15317/Scitech.2018.166

Öz

Bu çalışma kapsamında, alt yapısı kazıklar ile modellenen açık deniz platformunun yapısal davranışı farklı akışkan-yapı etkileşim analiz yöntemlerine göre belirlenmiştir. Yapılan analizlerde, öncelikle çift yönlü akışkan-yapı etkileşimi gerçekleştirilmiştir. Yapı çevresindeki akım, nonlineer dalga teorilerinden Stokes 5 dalga teorisi ile modellenmiştir. Çift yönlü akışkan yapı etkileşiminde Stokes 5 dalga teorisine ait hız profili Abaqus/CFD çözücüsü kullanılarak modellenmiştir. Akışkanı oluşturan deniz ortamı, Abaqus/CFD çözücüsünde modellenirken, platform Abaqus/Explicit çözücüsünde modellenmiştir. Akışkan-yapı etkileşim (FSI) modülü ile iki çözücünün etkileşimi sağlanmıştır. Sonlu elemanlar modelinde kullanılacak eleman sayısını belirleyen hassaslık analizi modal analiz üzerinden gerçekleştirilmiştir. Sonlu elemanlar analizi ile yapının modal davranışının yanında, deplasman ve gerilme değerleri elde edilmiştir. Çift yönlü etkileşim analizi ile akışkana ait çıktılar sayısal ve görsel olarak elde edilmiş ve yapı etrafındaki akış yapısı gözlemlenmiştir. Çalışmada ikincil olarak, tek yönlü akışkan yapı etkileşim analizi yapılmıştır. Bu analizde yapı, yarı analitik çok serbestlik dereceli (MDOF) sistem olarak modellenmiştir. Dalga hızları, ilk yöntemde olduğu gibi Stokes 5 dalga teorisi ile hesaplanmıştır. Dalga kuvvetleri Morrison denklemi üzerinden sayısal olarak elde edilmiştir. Bu kuvvetler hareket denkleminde dış kuvveti oluşturmuştur. Hareket denklemi ile yapının deplasman ve doğal frekans değerleri elde edilmiştir. Her iki analizden elde edilen sonuçların uyumu gözlemlenmiştir.

Kaynakça

  • Abaqus User’s Manual, Version 6.10, SIMULIA, Dassault Systèmes Simulia Corp., 2010.
  • Barltrop, N.D.P., Adams, A.J., 1991, Dynamics of Fixed Marine Structures, Butterworth-Heinemann, England.
  • Dean, R.G., Dalrymple, R.A., 1991, Water Wave Mechanics for Engineers and Scientists, World Scientific Publishing Company, England.
  • Farrugia, R., Sant, T., Micallef, D., 2014, “Investigating the Aerodynamic Performance of a Model Offshore Floating Wind Turbine”, Renewable Energy, Vol. 70, pp. 24-30.
  • Fernandez, R.P., Pardo, M.L., 2013, “Offshore Concrete Structures”, Ocean Engineering, Vol. 58, pp. 304–316.
  • Froehle, B., Persson P.O., 2014, “A High-Order Discontinuous Galerkin Method for fluid–Structure Interaction with Efficient Implicit–Explicit Time Stepping”, Journal of Computational Physics, Vol. 272, pp. 455–470.
  • Gücüyen, E., Erdem, R.T., 2014, “Corrosion Effects on Structural Behaviour, of Jacket Type Offshore Structures”, Građevinar, Vol. 66, No. 11, pp. 981-986.
  • Gücüyen, E., Erdem, R.T., 2016, “Açık Deniz Uzay Kafes Sistemin Çevresel Yükler Altında Akışkan-Yapı Etkileşimli Analizi”, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, Cilt 7, Sayı 3, pp. 433-444.
  • Haldar, S., Sharma, J., Basu, D., 2018, “Probabilistic Analysis of Monopile-Supported Offshore Wind Turbine in Clay”, Soil Dynamics and Earthquake Engineering, Vol. 105, pp. 171–183.
  • Hall, M., Buckham, B., Crawford, C., 2014, “Hydrodynamics-Based Floating Wind Turbine Support Platform Optimization: A Basis Function Approach, Renewable Energy, Vol. 66, pp. 559-569.
  • Hartnett, M., Mitchell, P., 2000, “An Analysis of the Effects of the Leg-Spacing on Spectral Response of Offshore Structures”, Advances in Engineering Software, Vol. 31, pp. 991–998.
  • Lamas-Pardo, M., Iglesias, G., Carral, L., 2015, “A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses”, Ocean Engineering, Vol. 109, pp. 677–690.
  • Li, M., Zhang, H., Guan, H., 2011, “Study of Offshore Monopile Behaviour due to Ocean Waves” Ocean Engineering, Vol. 38, No. 17–18, pp. 1946–1956.
  • Li, W., Huang, Y., Tian, Y., 2017, “Experimental Study of the Ice Loads on Multi-Piled Oil Piers in Bohai Sea”, Marine Structures, Vol. 56, pp. 1-23.
  • Park, Y., Kim, K., 2013, “Semi-Active Vibration Control of Space Truss Structures By Friction Damper For Maximization of Modal Damping Ratio”, Journal of Sound and Vibration, Vol. 332, pp. 4817–4828.
  • Reddy, J.N., 2004, An Introduction to the Finite Element Analysis, Oxford University Press, USA.
  • Shi, W., Han, J., Kim, C., Lee, D., Shin, H., Park, H., 2015, “Feasibility Study of Offshore Wind Turbine Substructures for Southwest Offshore Wind Farm Project in Korea”, Renewable Energy, Vol. 74, pp. 406-413.
  • Wang, X., Yang, X., Zeng, X., 2017, “Seismic Centrifuge Modelling of Suction Bucket Foundation for Offshore Wind Turbine”, Renewable Energy, Vol. 114, pp. 1013-1022.
  • Yan, H.K., Wang, N., Wu, N., Lin, W., 2018, “Maritime Construction Site Selection from the Perspective of Ecological Protection: the Relationship Between the Dalian Offshore Airport and Spotted Seals (Phoca Largha) in China Based on the Noise Pollution”, Ocean and Coastal Management, Vol. pp. 152, 145–153.
  • Yee, A.A., 2007, Precast and Prestressed Concrete, McGraw-Hill, New York.
  • Zhang, Q., Zhou, X.L., Wang, J.H., 2017a, “Numerical Investigation of Local Scour Around Three Adjacent Piles with Different Arrangements under Current”, Ocean Engineering, Vol. 142, pp. 625–638.
  • Zhang, Q., Zhou X.L., Wang, J.H., Guo, J.J., 2017b, “Wave-Induced Seabed Response around an Offshore Pile Foundation Platform”, Ocean Engineering, Vol. 130, pp. 567–582.

Analysis of Offshore Structure with Concrete Piles

Yıl 2018, Cilt: 6 Sayı: 4, 767 - 778, 01.12.2018
https://doi.org/10.15317/Scitech.2018.166

Öz

In the scope of this study, structural behavior of the offshore platform whose substructure is modeled by piles is determined according to different fluid-structure interaction analysis methods. Bilateral fluid-structure interaction is primarily performed in the analyses. Flow around the structure is modeled by Stokes 5 wave theory which is an example of nonlinear wave theories. Velocity profile of Stokes 5 wave theory is modeled by using Abaqus/CFD solver in the bilateral fluid-structure interaction. While the marine environment of the fluid is modeled by Abaqus/CFD solver, the platform is modeled by Abaqus/Explicit solver. Fluid-structure interaction (FSI) is provided by the interaction of two solvers. Sensitivity analysis that determines number of nodes and elements in the finite elements model is performed through modal analysis. Displacement and stress values are obtained as well as the modal behavior of the structure by finite elements analysis. Wave velocity profiles are determined by both numerically and visually by bilateral interaction analysis and flow structure around the structure is observed. Secondarily, unidirectional fluid-structure interaction analysis is performed in the study. In this analysis, the structure is modeled as semi analytical multi degree of freedom (MDOF) system. Wave velocities are calculated by Stokes 5 wave theory same as in the case of the first method. Wave forces are numerically determined by Morrison equation. These forces constitute the external force in the equation of motion. Displacement and natural frequency values of the structure are determined by the equation of motion. The compatibility between the results of both analyses is observed.

Kaynakça

  • Abaqus User’s Manual, Version 6.10, SIMULIA, Dassault Systèmes Simulia Corp., 2010.
  • Barltrop, N.D.P., Adams, A.J., 1991, Dynamics of Fixed Marine Structures, Butterworth-Heinemann, England.
  • Dean, R.G., Dalrymple, R.A., 1991, Water Wave Mechanics for Engineers and Scientists, World Scientific Publishing Company, England.
  • Farrugia, R., Sant, T., Micallef, D., 2014, “Investigating the Aerodynamic Performance of a Model Offshore Floating Wind Turbine”, Renewable Energy, Vol. 70, pp. 24-30.
  • Fernandez, R.P., Pardo, M.L., 2013, “Offshore Concrete Structures”, Ocean Engineering, Vol. 58, pp. 304–316.
  • Froehle, B., Persson P.O., 2014, “A High-Order Discontinuous Galerkin Method for fluid–Structure Interaction with Efficient Implicit–Explicit Time Stepping”, Journal of Computational Physics, Vol. 272, pp. 455–470.
  • Gücüyen, E., Erdem, R.T., 2014, “Corrosion Effects on Structural Behaviour, of Jacket Type Offshore Structures”, Građevinar, Vol. 66, No. 11, pp. 981-986.
  • Gücüyen, E., Erdem, R.T., 2016, “Açık Deniz Uzay Kafes Sistemin Çevresel Yükler Altında Akışkan-Yapı Etkileşimli Analizi”, Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, Cilt 7, Sayı 3, pp. 433-444.
  • Haldar, S., Sharma, J., Basu, D., 2018, “Probabilistic Analysis of Monopile-Supported Offshore Wind Turbine in Clay”, Soil Dynamics and Earthquake Engineering, Vol. 105, pp. 171–183.
  • Hall, M., Buckham, B., Crawford, C., 2014, “Hydrodynamics-Based Floating Wind Turbine Support Platform Optimization: A Basis Function Approach, Renewable Energy, Vol. 66, pp. 559-569.
  • Hartnett, M., Mitchell, P., 2000, “An Analysis of the Effects of the Leg-Spacing on Spectral Response of Offshore Structures”, Advances in Engineering Software, Vol. 31, pp. 991–998.
  • Lamas-Pardo, M., Iglesias, G., Carral, L., 2015, “A Review of Very Large Floating Structures (VLFS) for Coastal and Offshore Uses”, Ocean Engineering, Vol. 109, pp. 677–690.
  • Li, M., Zhang, H., Guan, H., 2011, “Study of Offshore Monopile Behaviour due to Ocean Waves” Ocean Engineering, Vol. 38, No. 17–18, pp. 1946–1956.
  • Li, W., Huang, Y., Tian, Y., 2017, “Experimental Study of the Ice Loads on Multi-Piled Oil Piers in Bohai Sea”, Marine Structures, Vol. 56, pp. 1-23.
  • Park, Y., Kim, K., 2013, “Semi-Active Vibration Control of Space Truss Structures By Friction Damper For Maximization of Modal Damping Ratio”, Journal of Sound and Vibration, Vol. 332, pp. 4817–4828.
  • Reddy, J.N., 2004, An Introduction to the Finite Element Analysis, Oxford University Press, USA.
  • Shi, W., Han, J., Kim, C., Lee, D., Shin, H., Park, H., 2015, “Feasibility Study of Offshore Wind Turbine Substructures for Southwest Offshore Wind Farm Project in Korea”, Renewable Energy, Vol. 74, pp. 406-413.
  • Wang, X., Yang, X., Zeng, X., 2017, “Seismic Centrifuge Modelling of Suction Bucket Foundation for Offshore Wind Turbine”, Renewable Energy, Vol. 114, pp. 1013-1022.
  • Yan, H.K., Wang, N., Wu, N., Lin, W., 2018, “Maritime Construction Site Selection from the Perspective of Ecological Protection: the Relationship Between the Dalian Offshore Airport and Spotted Seals (Phoca Largha) in China Based on the Noise Pollution”, Ocean and Coastal Management, Vol. pp. 152, 145–153.
  • Yee, A.A., 2007, Precast and Prestressed Concrete, McGraw-Hill, New York.
  • Zhang, Q., Zhou, X.L., Wang, J.H., 2017a, “Numerical Investigation of Local Scour Around Three Adjacent Piles with Different Arrangements under Current”, Ocean Engineering, Vol. 142, pp. 625–638.
  • Zhang, Q., Zhou X.L., Wang, J.H., Guo, J.J., 2017b, “Wave-Induced Seabed Response around an Offshore Pile Foundation Platform”, Ocean Engineering, Vol. 130, pp. 567–582.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Engin Gücüyen Bu kişi benim

Recep Tuğrul Erdem

Yayımlanma Tarihi 1 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 4

Kaynak Göster

APA Gücüyen, E., & Erdem, R. T. (2018). BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 6(4), 767-778. https://doi.org/10.15317/Scitech.2018.166
AMA Gücüyen E, Erdem RT. BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ. sujest. Aralık 2018;6(4):767-778. doi:10.15317/Scitech.2018.166
Chicago Gücüyen, Engin, ve Recep Tuğrul Erdem. “BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6, sy. 4 (Aralık 2018): 767-78. https://doi.org/10.15317/Scitech.2018.166.
EndNote Gücüyen E, Erdem RT (01 Aralık 2018) BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6 4 767–778.
IEEE E. Gücüyen ve R. T. Erdem, “BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ”, sujest, c. 6, sy. 4, ss. 767–778, 2018, doi: 10.15317/Scitech.2018.166.
ISNAD Gücüyen, Engin - Erdem, Recep Tuğrul. “BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 6/4 (Aralık 2018), 767-778. https://doi.org/10.15317/Scitech.2018.166.
JAMA Gücüyen E, Erdem RT. BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ. sujest. 2018;6:767–778.
MLA Gücüyen, Engin ve Recep Tuğrul Erdem. “BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 6, sy. 4, 2018, ss. 767-78, doi:10.15317/Scitech.2018.166.
Vancouver Gücüyen E, Erdem RT. BETON KAZIKLI AÇIK DENİZ YAPISININ ANALİZİ. sujest. 2018;6(4):767-78.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz