Research Article
BibTex RIS Cite

Meander dynamics of the Karasu and Murat Rivers: A morphometric assessment for the period 1972–2022

Year 2025, Issue: 88, 25 - 40, 29.12.2025
https://doi.org/10.17211/tcd.1707663

Abstract

This study analyzes the temporal and spatial dynamics of the meandering channels of the Karasu and Murat rivers, which drain the Muş Plain in Eastern Anatolia, over the period from 1972 to 2022. Using ArcGIS-based morphometric measurements, key parameters such as channel length, number of meanders, sinuosity ratio, amplitude, and wavelength were determined, and the evolutionary processes of the rivers were quantitatively assessed. The findings reveal that both rivers naturally exhibit meandering flow characteristics due to the low-gradient nature of the plain. However, over time, significant morphological changes have occurred as a result of both natural processes (e.g., floods, sediment transport) and anthropogenic interventions (e.g., dam constructions, channel modifications). In the northern branch of the Murat River, a decrease in meander activity and increased channel stabilization were observed due to the influence of dam structures, whereas the western branch displayed more dynamic meandering activity. In the case of the Karasu River, a major channelization project carried out in 2008 led to the elimination of much of its natural meander pattern and altered the river’s flow regime.The results demonstrate how the natural evolution of river systems can be significantly altered by human interventions, with substantial geomorphological and ecological implications. This study emphasizes the need to monitor river morphodynamics by considering both natural and artificial processes together and highlights the importance of developing sustainable watershed management strategies. Furthermore, the morphometric data obtained from this research can contribute to decision-support mechanisms in applications such as flood risk analysis and land-use planning.

Project Number

: BAP-20-EMF-4901-01

References

  • Atalay, İ. (1990). Türkiye jeomorfolojisine giriş. Ege Üniversitesi Basımevi.
  • Avşin, N., Erturaç, M. K., Şahiner, E., & Demir, T. (2021). The Quaternary climatic and tectonic development of the Murat River Valley (Muş Basin, Eastern Turkey) as recorded by fluvial deposits dated by optically stimulated luminescence. Quaternary, 4(3), 29. https://doi.org/10.3390/quat4030029
  • Blanckaert, K. (2011). Hydrodynamic processes in sharp meander bends and their morphological implications. Journal of Geophysical Research: Earth Surface, 116(F1). https://doi.org/https://doi.org/10.1029/2010JF001806
  • Blanckaert, K., & De Vriend, H. J. (2010). Meander dynamics: A reduced-order nonlinear model without curvature restrictions for flow and bed morphology. Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/10.1029/2009JF001301
  • Charlton, R. (2007). Fundamentals of fluvial geomorphology. Routledge. https://doi.org/10.4324/9780203371084
  • Chen, A., Ng, Young Zhang, Erkuang Tian, Mingzhong. (2020). Meander Landscape. In A. Chen, Y. Ng, Y. Zhang, E. Tian, & M. Mingzhong (Eds.), Dictionary of geotourism (pp. 388-389). Springer. https://doi.org/10.1007/978-981-13-2538-0_1530
  • Cooper, M., Chakraborty, A., & Chakraborty, S. (2018). Rivers and society. Routledge.
  • Constantine, J. A., McLean, S. R., & Dunne, T. (2009). A mechanism of chute cutoff along large meandering rivers with uniform floodplain topography. Geological Society of America Bulletin, 122(5-6), 855-869. https://doi.org/: 10.1130/B26560.1
  • Crosato, A. (2009). Physical explanations of variations in river meander migration rates from model comparison. Earth Surface Processes and Landforms, 34(15), 2078-2086. https://doi.org/10.1002/esp.1898
  • Dhumal, H., Thakare, S., Londhe, S., Gavali, P., & Niyaz, M. (2021). Flood Mitigation in and Around Sangli, Maharashtra, India, by Modification of River Meander Geometry. In P. V. Timbadiya, P. L. Patel, V. P. Singh, & V. L. Manekar (Eds.), Flood forecasting and hydraulic structures: Proceedings of the 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021) (pp. 101–114). International Conference on Hydraulics, Water Resources and Coastal Engineering. https://link.springer.com/chapter/10.1007/978-981-99-1890-4_8]
  • Dölek, İ. (2013). Muş'ta yaşanan sel ve taşkınlara neden olan doğal faktörlerin analizi. Marmara Coğrafya Dergisi, (28), 408-422. https://dergipark.org.tr/tr/pub/marucog/issue/475/3939
  • Dölek, İ. (2015). Sungu beldesi ve yakın çevresinde (Muş) sel ve taşkına duyarlı alanların belirlenmesi. Marmara Coğrafya Dergisi, (31), 258-280. https://doi.org/10.14781/mcd.26466
  • Dölek, İ., & Avcı, V., (2017). Muş ilinin sel ve taşkın duyarlılık haritalarının oluşturulması. The Journal of Academic Social Science, 44(44), 190-204. DOI: 10.16992/ASOS.12089
  • Friedman, J. M., Osterkamp, W. R., Scott, M. L., & Auble, G. T. (1998). Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the Great Plains. Wetlands, 18(4), 619–633. https://l24.im/W0J4tl
  • Frothingham, K. M., & Rhoads, B. L. (2003). Three-dimensional flow structure and channel change in an evolving compound meander bend, Embarras River, Illinois. Earth Surface Processes and Landforms, 28(6), 625-644. https://doi.org/10.1002/esp.471
  • Garcia, X.-F., Schnauder, I., & Pusch, M. T. (2012). Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers. Hydrobiologia, 685, 49–68. https://doi.org/ 10.1007/s10750-011-0905-z
  • Gautier, E., Brunstein, D., Vauchel, P., Roulet, M., Fuertes, O., Guyot, J. L., & Darozzes, J. (2007). Temporal relations between meander migration and riparian vegetation dynamics in the Mamoré River, Bolivian Amazonia. Earth Surface Processes and Landforms, 32(2), 230-248. https://doi.org/ 10.1002/esp.1394
  • Günek, H., Sunkar, M., & Toprak, A. (2013, November 11–13). Muş şehrini etkileyen Çar ve Muş derelerinin bazı jeomorfometrik indislere göre analizleri [Konferans bildirisi]. In Proceedings of the TMMOB Coğrafi Bilgi Sistemleri Kongresi (pp. 1–12). Ankara, Turkey.
  • Gürbüz, A., & Kazancı, N. (2019). The Büyük Menderes River: Origin of meandering phenomenon. In Kuzucuoğlu, C., Çiner, A., & Kazancı, N. (Eds.), Landscapes and landforms of Turkey (pp. 509-519). Springer. https://link.springer.com/chapter/10.1007/978-3-030-03515-0_29
  • Gilvear, D., Winterbottom, S., & Sichingabula, H. (2000). Character of channel planform change and meander development: Luangwa River, Zambia. Earth Surface Processes and Landforms, 25(4), 421-436. https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<421::AID-ESP65>3.0.CO;2-Q
  • Huggett, R. J. (2024). Jeomorfolojinin temelleri (U. Doğan, Ed.; A. E. Erginal, C. Yıldırım, & diğerleri, Çev.). Nobel Akademik Yayıncılık. (Orijinal eser 2003 yılında yayımlanmıştır).
  • Hooke, J. M., & Yorke, L. (2010). Rates, distributions and mechanisms of change in meander morphology over decadal timescales, River Dane, UK. Earth Surface Processes and Landforms, 35(13), 1601-1614. https://doi.org/10.1002/esp.2079
  • Ielpi, A., & Lapôtre, M. G. A. (2020). A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience, 13, 82–86. https://www.nature.com/articles/s41561-019-0491-7
  • Islam, A., & Guchhait, S. K. (2017). Analysing the influence of Farakka Barrage Project on channel dynamics and meander geometry of Bhagirathi river of West Bengal, India. Arabian Journal of Geosciences, 10, 245. https://doi.org/10.1007/s12517-017-3004-2
  • Kalın, Ö. (2024). Muş havzası sel ve taşkın riski analizi (Tez No. 913237) [Yüksek lisans tezi, İzmir Katip Çelebi Üniversitesi]. YÖK Tez Merkezi.
  • Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., Abdul Aziz, N. A., Azid, A., Mohamed Zainuddin, S. F., & Sulaiman, W. N. A. (2014). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20(8), 1319–1334. https://doi.org/10.1007/s11027-014-9547-6
  • Kasvi, E., Laamanen, L., Lotsari, E., & Alho, P. (2013). Flow patterns and morphological changes in a sandy meander bend during a flood-spate. Geomorphology, 202, 265-278. https://doi.org/10.3390/w9020106
  • Knighton, D. (2014). Fluvial forms and processes: a new perspective. Routledge. https://doi.org/10.4324/9780203784662
  • Kondolf, G. M. (2006). River restoration and meanders. Ecology and Society, 11(2). http://www.ecologyandsociety.org/vol11/iss2/art42/
  • Kondolf, G. M., Piégay, H., & Landon, N. (2003). Tools in fluvial geomorphology. Wiley. https://doi.org/10.1002/9781118648551.ch9
  • Kumar, A., Kumar, P., & Sharma, A. (2023). Structure of turbulent flow in a meander gravel bed channel. In S. Dutta & V. Chembolu (Eds.), Recent development in river corridor management (RCRM 2022, Lecture Notes in Civil Engineering, Vol. 376, pp. 107–116). Springer. https://doi.org/10.1007/978-981-99-4423-1_8
  • Leopold, L. B., & Langbein, W. B. (1966). River meanders. Scientific American, 214(6), 6073. http://dx.doi.org/10.1038/scientificamerican0666-60
  • Leopold, L. B., Wolman, M. G., Miller, J. P., & Wohl, E. E. (2020). Fluvial processes in geomorphology. Courier Dover Publications. https://doi.org/https://doi.org/10.1007/978-981-13-2538-0_1530
  • Liaghat, A., Adib, A., & Gafouri, H. R. (2017). Evaluating the effects of dam construction on the morphological changes of downstream meandering rivers (Case study: Karkheh River). Engineering, Technology & Applied Science Research, 7(2), 1515-1522. https://doi.org/10.48084/etasr.969
  • Magdaleno, F., & Fernández-Yuste, J. A. (2011). Meander dynamics in a changing river corridor. Geomorphology, 130(3-4), 197-207. https://doi.org/10.1016/j.geomorph.2011.03.016
  • Marren, P. M., Grove, J. R., Webb, J. A., & Stewardson, M. J. (2014). The potential for dams to impact lowland meandering river floodplain geomorphology. The Scientific World Journal, 2014(1), 309673. https://doi.org/10.1155/2014/309673
  • Motta, D., Abad, J. D., Langendoen, E. J., & Garcia, M. H. (2012). A simplified 2D model for meander migration with physically-based bank evolution. Geomorphology, 163–164, 10–25. https://doi.org/10.1016/j.geomorph.2011.03.016
  • Mitsudera, H., Waseda, T., Yoshikawa, Y., & Taguchi, B. (2001). Anticyclonic eddies and Kuroshio meander formation. Geophysical Research Letters, 28(10), 2025-2028. https://doi.org/10.1029/2000GL012668
  • Micheli, E. R., Kirchner, J. W., & Larsen, E. W. (2004). Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, Central Sacramento River, California, USA. River Research and Applications, 20(5), 537-548. https://doi.org/10.1002/rra.756
  • Nicoll, T. J., & Hickin, E. J. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 116(1-2), 37-47. https://doi.org/10.1016/j.geomorph.2009.10.005
  • Nnaji, C. C., Akeke, G., & Afangideh, C. (2023). Investigating the effects of river channel meander on bridge hydraulics.In C. Aigbavboa, W. Thwala, & D. Aghimien (Eds.), Towards a sustainable construction industry: The role of innovation and digitalisation (CIDB 2022, pp. 598–605). Springer. https://doi.org/10.1007/978-3-031-22434-8_58
  • Oktay, H. E., Erdoğan, R., & Oktay, F. B. (2016). Akarsular ve akarsularda rekreasyon olanakları. İnönü Üniversitesi Sanat ve Tasarım Dergisi, 6(13), 1–14. https://doi.org/10.16950/iustd.48892
  • Osterkamp, W. R., Scott, M. L., & Auble, G. T. (1998). Downstream effects of dams on channel geometry and bottomland vegetation: regional patterns in the Great Plains. Wetlands, 18(4), 619-633.
  • Revelli, R., Boano, F., Camporeale, C., & Ridolfi, L. (2008). Intra-meander hyporheic flow in alluvial rivers. Water Resources Research, 44(12). https://doi.org/10.1029/2008WR007081 Rüther, N. (2007). Computational fluid dynamics in fluvial sedimentation engineering [PhD Thesis, Norwegian University of Science and Technology]. http://hdl.handle.net/11250/242072
  • Saroglu, F., & Guner, Y. (1981). Dogu Anadolu'nun Jeomorfolojik gelişimine etki eden öğeler: Jeomorfoloji, teketonik, volkanizma ilişkileri. Türkiye Jeoloji Kurumu Bülteni, 24, 39-50. https://bit.ly/3TDdWlo
  • Schumm, S. A., & Lichty, R. W. (1963). Channel widening and flood-plain construction along Cimarron River in southwestern Kansas. US Government Printing Office. https://l24.im/ksNl Schumm, S. A. (1963). Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74(9), 1089-1100. https://doi.org/10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2
  • Schwenk, J., & Foufoula-Georgiou, E. (2016). Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening. Geophysical Research Letters, 43(24), 12-437. https://doi.org/10.1002/2016GL071670
  • Toprak, A., & Sunkar, M. (2017). Muş Ovasını drene eden Karasu Çayı havzasının (Muş) hidromorfometrik analizi. In Proceedings of the International Geomorphology Symposium (IGS 2017) (pp. 184–191). Kastamonu University. Uzelli, T. (2019). Varto ve Muş havzalarındaki (Doğu Anadolu, Türkiye) jeotermal sistemlerin yapısal kontrolleri [Basılmamış doktora tezi]. Hacettepe Üniversitesi.
  • W. B., & Leopold, L. B. (1966). River meanders and the theory of minimum variance. In Rivers and river terraces (pp. 238-263). Springer. https://doi.org/10.1007/978-1-349-15382-4_9
  • Wellmeyer, J. L., Slattery, M. C., & Phillips, J. D. (2005). Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas. Geomorphology, 69(1-4), 1-13. https://doi.org/10.1016/j.geomorph.2004.09.034
  • Xu, H., Tokinaga, H., & Xie, S. P. (2010). Atmospheric effects of the Kuroshio large meander during 2004–05. Journal of Climate, 23, 4704–4715. https://doi.org/10.1175/2010JCLI3267.1
  • Yousefi, S., Pourghasemi, H. R., Hooke, J., Navratil, O., & Kidová, A. (2016). Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology, 271, 55–64. https://doi.org/10.1016/j.geomorph.2016.07.034
  • Zhou, T., & Endreny, T. (2020). The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services. Water, 12(6), 1680. https://doi.org/10.3390/w12061680
  • Zinger, J. A.,Rhoads, B. L., Best, J. L., & Johnson, K. K. (2013). Flowstructureandchannelmorphodynamics of meanderbendchutecutoffs: A casestudy of theWabashRiver, USA. Journal of GeophysicalResearch: Earth Surface, 118(4), 2468-2487. https://doi.org/10.1002/jgrf.20155

Karasu ve Murat Nehirlerinin mendereslenme dinamikleri: 1972–2022 dönemine ait morfometrik bir değerlendirme

Year 2025, Issue: 88, 25 - 40, 29.12.2025
https://doi.org/10.17211/tcd.1707663

Abstract

Bu çalışma, Doğu Anadolu Bölgesi'nde yer alan Muş Ovası'nı drene eden Karasu ve Murat nehirlerinin menderesli kanal dinamiklerini, 1972–2022 yılları arasındaki zamansal ve mekânsal değişimleri temel alarak analiz etmektedir. Çalışmada, ArcGIS tabanlı morfometrik ölçümlerle kanal uzunluğu, menderes sayısı, sinüozite oranı, amplitüd ve dalga boyu gibi temel parametreler kullanılarak, nehirlerin evrimsel süreçleri nicel verilerle değerlendirilmiştir. Bulgular, her iki nehrin de ovanın düşük eğimli yapısına bağlı olarak doğal olarak menderesli akış karakteri gösterdiğini, ancak zaman içerisinde hem doğal süreçler (taşkınlar, sediman taşınımı) hem de beşerî müdahaleler (baraj inşaatları, kanal düzenlemeleri) sonucunda morfolojik değişimler geçirdiğini ortaya koymaktadır. Murat Nehri'nin kuzey kolunda inşa edilen Alparslan I ve Alparslan II baraj yapılarının etkisiyle menderes aktivitesinde azalma ve kanal stabilizasyonu gözlenirken, batı kolunda daha yüksek menderes dinamikleri tespit edilmiştir. Karasu Nehri’nde ise 2008 yılında gerçekleştirilen kapsamlı yatak ıslahı müdahalesi, doğal menderes yapısının büyük ölçüde ortadan kalkmasına ve akım rejiminin değişmesine neden olmuştur. Elde edilen sonuçlar, nehir sistemlerinin doğal evriminin antropojenik müdahalelerle nasıl değişebileceğini ve bunun hem jeomorfolojik hem de ekolojik sonuçlar doğurabileceğini göstermektedir. Çalışma, doğal ve yapay süreçlerin birlikte ele alınarak nehir morfodinamiğinin izlenmesi ve sürdürülebilir havza yönetimi stratejilerinin geliştirilmesi gerektiğini vurgulamaktadır. Ayrıca elde edilen morfometrik veriler, taşkın risk analizi ve arazi kullanım planlaması gibi uygulamalarda karar destek mekanizmalarına katkı sunabilecek niteliktedir.

Supporting Institution

MUŞ ALPARSLAN ÜNİVERSİTESİ BAP BİRİMİ

Project Number

: BAP-20-EMF-4901-01

Thanks

Muş ALPARSLAN ÜNİVERİSTESİ BAP BİRİMİNE, Doç. Dr. Alper Gürbüz'e, Dr. Fuat Saroğlu'na arazi çalışmalarında sundukları katkıdan dolayı teşekkür ederim.

References

  • Atalay, İ. (1990). Türkiye jeomorfolojisine giriş. Ege Üniversitesi Basımevi.
  • Avşin, N., Erturaç, M. K., Şahiner, E., & Demir, T. (2021). The Quaternary climatic and tectonic development of the Murat River Valley (Muş Basin, Eastern Turkey) as recorded by fluvial deposits dated by optically stimulated luminescence. Quaternary, 4(3), 29. https://doi.org/10.3390/quat4030029
  • Blanckaert, K. (2011). Hydrodynamic processes in sharp meander bends and their morphological implications. Journal of Geophysical Research: Earth Surface, 116(F1). https://doi.org/https://doi.org/10.1029/2010JF001806
  • Blanckaert, K., & De Vriend, H. J. (2010). Meander dynamics: A reduced-order nonlinear model without curvature restrictions for flow and bed morphology. Journal of Geophysical Research: Earth Surface, 115(F4). https://doi.org/10.1029/2009JF001301
  • Charlton, R. (2007). Fundamentals of fluvial geomorphology. Routledge. https://doi.org/10.4324/9780203371084
  • Chen, A., Ng, Young Zhang, Erkuang Tian, Mingzhong. (2020). Meander Landscape. In A. Chen, Y. Ng, Y. Zhang, E. Tian, & M. Mingzhong (Eds.), Dictionary of geotourism (pp. 388-389). Springer. https://doi.org/10.1007/978-981-13-2538-0_1530
  • Cooper, M., Chakraborty, A., & Chakraborty, S. (2018). Rivers and society. Routledge.
  • Constantine, J. A., McLean, S. R., & Dunne, T. (2009). A mechanism of chute cutoff along large meandering rivers with uniform floodplain topography. Geological Society of America Bulletin, 122(5-6), 855-869. https://doi.org/: 10.1130/B26560.1
  • Crosato, A. (2009). Physical explanations of variations in river meander migration rates from model comparison. Earth Surface Processes and Landforms, 34(15), 2078-2086. https://doi.org/10.1002/esp.1898
  • Dhumal, H., Thakare, S., Londhe, S., Gavali, P., & Niyaz, M. (2021). Flood Mitigation in and Around Sangli, Maharashtra, India, by Modification of River Meander Geometry. In P. V. Timbadiya, P. L. Patel, V. P. Singh, & V. L. Manekar (Eds.), Flood forecasting and hydraulic structures: Proceedings of the 26th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2021) (pp. 101–114). International Conference on Hydraulics, Water Resources and Coastal Engineering. https://link.springer.com/chapter/10.1007/978-981-99-1890-4_8]
  • Dölek, İ. (2013). Muş'ta yaşanan sel ve taşkınlara neden olan doğal faktörlerin analizi. Marmara Coğrafya Dergisi, (28), 408-422. https://dergipark.org.tr/tr/pub/marucog/issue/475/3939
  • Dölek, İ. (2015). Sungu beldesi ve yakın çevresinde (Muş) sel ve taşkına duyarlı alanların belirlenmesi. Marmara Coğrafya Dergisi, (31), 258-280. https://doi.org/10.14781/mcd.26466
  • Dölek, İ., & Avcı, V., (2017). Muş ilinin sel ve taşkın duyarlılık haritalarının oluşturulması. The Journal of Academic Social Science, 44(44), 190-204. DOI: 10.16992/ASOS.12089
  • Friedman, J. M., Osterkamp, W. R., Scott, M. L., & Auble, G. T. (1998). Downstream effects of dams on channel geometry and bottomland vegetation: Regional patterns in the Great Plains. Wetlands, 18(4), 619–633. https://l24.im/W0J4tl
  • Frothingham, K. M., & Rhoads, B. L. (2003). Three-dimensional flow structure and channel change in an evolving compound meander bend, Embarras River, Illinois. Earth Surface Processes and Landforms, 28(6), 625-644. https://doi.org/10.1002/esp.471
  • Garcia, X.-F., Schnauder, I., & Pusch, M. T. (2012). Complex hydromorphology of meanders can support benthic invertebrate diversity in rivers. Hydrobiologia, 685, 49–68. https://doi.org/ 10.1007/s10750-011-0905-z
  • Gautier, E., Brunstein, D., Vauchel, P., Roulet, M., Fuertes, O., Guyot, J. L., & Darozzes, J. (2007). Temporal relations between meander migration and riparian vegetation dynamics in the Mamoré River, Bolivian Amazonia. Earth Surface Processes and Landforms, 32(2), 230-248. https://doi.org/ 10.1002/esp.1394
  • Günek, H., Sunkar, M., & Toprak, A. (2013, November 11–13). Muş şehrini etkileyen Çar ve Muş derelerinin bazı jeomorfometrik indislere göre analizleri [Konferans bildirisi]. In Proceedings of the TMMOB Coğrafi Bilgi Sistemleri Kongresi (pp. 1–12). Ankara, Turkey.
  • Gürbüz, A., & Kazancı, N. (2019). The Büyük Menderes River: Origin of meandering phenomenon. In Kuzucuoğlu, C., Çiner, A., & Kazancı, N. (Eds.), Landscapes and landforms of Turkey (pp. 509-519). Springer. https://link.springer.com/chapter/10.1007/978-3-030-03515-0_29
  • Gilvear, D., Winterbottom, S., & Sichingabula, H. (2000). Character of channel planform change and meander development: Luangwa River, Zambia. Earth Surface Processes and Landforms, 25(4), 421-436. https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<421::AID-ESP65>3.0.CO;2-Q
  • Huggett, R. J. (2024). Jeomorfolojinin temelleri (U. Doğan, Ed.; A. E. Erginal, C. Yıldırım, & diğerleri, Çev.). Nobel Akademik Yayıncılık. (Orijinal eser 2003 yılında yayımlanmıştır).
  • Hooke, J. M., & Yorke, L. (2010). Rates, distributions and mechanisms of change in meander morphology over decadal timescales, River Dane, UK. Earth Surface Processes and Landforms, 35(13), 1601-1614. https://doi.org/10.1002/esp.2079
  • Ielpi, A., & Lapôtre, M. G. A. (2020). A tenfold slowdown in river meander migration driven by plant life. Nature Geoscience, 13, 82–86. https://www.nature.com/articles/s41561-019-0491-7
  • Islam, A., & Guchhait, S. K. (2017). Analysing the influence of Farakka Barrage Project on channel dynamics and meander geometry of Bhagirathi river of West Bengal, India. Arabian Journal of Geosciences, 10, 245. https://doi.org/10.1007/s12517-017-3004-2
  • Kalın, Ö. (2024). Muş havzası sel ve taşkın riski analizi (Tez No. 913237) [Yüksek lisans tezi, İzmir Katip Çelebi Üniversitesi]. YÖK Tez Merkezi.
  • Kamarudin, M. K. A., Toriman, M. E., Rosli, M. H., Juahir, H., Abdul Aziz, N. A., Azid, A., Mohamed Zainuddin, S. F., & Sulaiman, W. N. A. (2014). Analysis of meander evolution studies on effect from land use and climate change at the upstream reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies for Global Change, 20(8), 1319–1334. https://doi.org/10.1007/s11027-014-9547-6
  • Kasvi, E., Laamanen, L., Lotsari, E., & Alho, P. (2013). Flow patterns and morphological changes in a sandy meander bend during a flood-spate. Geomorphology, 202, 265-278. https://doi.org/10.3390/w9020106
  • Knighton, D. (2014). Fluvial forms and processes: a new perspective. Routledge. https://doi.org/10.4324/9780203784662
  • Kondolf, G. M. (2006). River restoration and meanders. Ecology and Society, 11(2). http://www.ecologyandsociety.org/vol11/iss2/art42/
  • Kondolf, G. M., Piégay, H., & Landon, N. (2003). Tools in fluvial geomorphology. Wiley. https://doi.org/10.1002/9781118648551.ch9
  • Kumar, A., Kumar, P., & Sharma, A. (2023). Structure of turbulent flow in a meander gravel bed channel. In S. Dutta & V. Chembolu (Eds.), Recent development in river corridor management (RCRM 2022, Lecture Notes in Civil Engineering, Vol. 376, pp. 107–116). Springer. https://doi.org/10.1007/978-981-99-4423-1_8
  • Leopold, L. B., & Langbein, W. B. (1966). River meanders. Scientific American, 214(6), 6073. http://dx.doi.org/10.1038/scientificamerican0666-60
  • Leopold, L. B., Wolman, M. G., Miller, J. P., & Wohl, E. E. (2020). Fluvial processes in geomorphology. Courier Dover Publications. https://doi.org/https://doi.org/10.1007/978-981-13-2538-0_1530
  • Liaghat, A., Adib, A., & Gafouri, H. R. (2017). Evaluating the effects of dam construction on the morphological changes of downstream meandering rivers (Case study: Karkheh River). Engineering, Technology & Applied Science Research, 7(2), 1515-1522. https://doi.org/10.48084/etasr.969
  • Magdaleno, F., & Fernández-Yuste, J. A. (2011). Meander dynamics in a changing river corridor. Geomorphology, 130(3-4), 197-207. https://doi.org/10.1016/j.geomorph.2011.03.016
  • Marren, P. M., Grove, J. R., Webb, J. A., & Stewardson, M. J. (2014). The potential for dams to impact lowland meandering river floodplain geomorphology. The Scientific World Journal, 2014(1), 309673. https://doi.org/10.1155/2014/309673
  • Motta, D., Abad, J. D., Langendoen, E. J., & Garcia, M. H. (2012). A simplified 2D model for meander migration with physically-based bank evolution. Geomorphology, 163–164, 10–25. https://doi.org/10.1016/j.geomorph.2011.03.016
  • Mitsudera, H., Waseda, T., Yoshikawa, Y., & Taguchi, B. (2001). Anticyclonic eddies and Kuroshio meander formation. Geophysical Research Letters, 28(10), 2025-2028. https://doi.org/10.1029/2000GL012668
  • Micheli, E. R., Kirchner, J. W., & Larsen, E. W. (2004). Quantifying the effect of riparian forest versus agricultural vegetation on river meander migration rates, Central Sacramento River, California, USA. River Research and Applications, 20(5), 537-548. https://doi.org/10.1002/rra.756
  • Nicoll, T. J., & Hickin, E. J. (2010). Planform geometry and channel migration of confined meandering rivers on the Canadian prairies. Geomorphology, 116(1-2), 37-47. https://doi.org/10.1016/j.geomorph.2009.10.005
  • Nnaji, C. C., Akeke, G., & Afangideh, C. (2023). Investigating the effects of river channel meander on bridge hydraulics.In C. Aigbavboa, W. Thwala, & D. Aghimien (Eds.), Towards a sustainable construction industry: The role of innovation and digitalisation (CIDB 2022, pp. 598–605). Springer. https://doi.org/10.1007/978-3-031-22434-8_58
  • Oktay, H. E., Erdoğan, R., & Oktay, F. B. (2016). Akarsular ve akarsularda rekreasyon olanakları. İnönü Üniversitesi Sanat ve Tasarım Dergisi, 6(13), 1–14. https://doi.org/10.16950/iustd.48892
  • Osterkamp, W. R., Scott, M. L., & Auble, G. T. (1998). Downstream effects of dams on channel geometry and bottomland vegetation: regional patterns in the Great Plains. Wetlands, 18(4), 619-633.
  • Revelli, R., Boano, F., Camporeale, C., & Ridolfi, L. (2008). Intra-meander hyporheic flow in alluvial rivers. Water Resources Research, 44(12). https://doi.org/10.1029/2008WR007081 Rüther, N. (2007). Computational fluid dynamics in fluvial sedimentation engineering [PhD Thesis, Norwegian University of Science and Technology]. http://hdl.handle.net/11250/242072
  • Saroglu, F., & Guner, Y. (1981). Dogu Anadolu'nun Jeomorfolojik gelişimine etki eden öğeler: Jeomorfoloji, teketonik, volkanizma ilişkileri. Türkiye Jeoloji Kurumu Bülteni, 24, 39-50. https://bit.ly/3TDdWlo
  • Schumm, S. A., & Lichty, R. W. (1963). Channel widening and flood-plain construction along Cimarron River in southwestern Kansas. US Government Printing Office. https://l24.im/ksNl Schumm, S. A. (1963). Sinuosity of alluvial rivers on the Great Plains. Geological Society of America Bulletin, 74(9), 1089-1100. https://doi.org/10.1130/0016-7606(1963)74[1089:SOAROT]2.0.CO;2
  • Schwenk, J., & Foufoula-Georgiou, E. (2016). Meander cutoffs nonlocally accelerate upstream and downstream migration and channel widening. Geophysical Research Letters, 43(24), 12-437. https://doi.org/10.1002/2016GL071670
  • Toprak, A., & Sunkar, M. (2017). Muş Ovasını drene eden Karasu Çayı havzasının (Muş) hidromorfometrik analizi. In Proceedings of the International Geomorphology Symposium (IGS 2017) (pp. 184–191). Kastamonu University. Uzelli, T. (2019). Varto ve Muş havzalarındaki (Doğu Anadolu, Türkiye) jeotermal sistemlerin yapısal kontrolleri [Basılmamış doktora tezi]. Hacettepe Üniversitesi.
  • W. B., & Leopold, L. B. (1966). River meanders and the theory of minimum variance. In Rivers and river terraces (pp. 238-263). Springer. https://doi.org/10.1007/978-1-349-15382-4_9
  • Wellmeyer, J. L., Slattery, M. C., & Phillips, J. D. (2005). Quantifying downstream impacts of impoundment on flow regime and channel planform, lower Trinity River, Texas. Geomorphology, 69(1-4), 1-13. https://doi.org/10.1016/j.geomorph.2004.09.034
  • Xu, H., Tokinaga, H., & Xie, S. P. (2010). Atmospheric effects of the Kuroshio large meander during 2004–05. Journal of Climate, 23, 4704–4715. https://doi.org/10.1175/2010JCLI3267.1
  • Yousefi, S., Pourghasemi, H. R., Hooke, J., Navratil, O., & Kidová, A. (2016). Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology, 271, 55–64. https://doi.org/10.1016/j.geomorph.2016.07.034
  • Zhou, T., & Endreny, T. (2020). The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services. Water, 12(6), 1680. https://doi.org/10.3390/w12061680
  • Zinger, J. A.,Rhoads, B. L., Best, J. L., & Johnson, K. K. (2013). Flowstructureandchannelmorphodynamics of meanderbendchutecutoffs: A casestudy of theWabashRiver, USA. Journal of GeophysicalResearch: Earth Surface, 118(4), 2468-2487. https://doi.org/10.1002/jgrf.20155
There are 54 citations in total.

Details

Primary Language Turkish
Subjects Physical Geography
Journal Section Research Article
Authors

İskender Dölek 0000-0002-5922-8515

Project Number : BAP-20-EMF-4901-01
Submission Date May 27, 2025
Acceptance Date September 10, 2025
Publication Date December 29, 2025
Published in Issue Year 2025 Issue: 88

Cite

APA Dölek, İ. (2025). Karasu ve Murat Nehirlerinin mendereslenme dinamikleri: 1972–2022 dönemine ait morfometrik bir değerlendirme. Türk Coğrafya Dergisi(88), 25-40. https://doi.org/10.17211/tcd.1707663

Publisher: Türk Coğrafya Kurumu / Turkish Geographical Society