Research Article
BibTex RIS Cite

Earthquake-Induced Sloshing Analysis of Circular Type Clarifier

Year 2021, , 149 - 166, 20.12.2021
https://doi.org/10.46464/tdad.1014192

Abstract

Wastewater treatment plants with large tanks and sensitive mixing equipment are earthquake-critical infrastructures. Damage to the structures in such facilities during earthquakes can cause environmental pollution and threaten public health. Since the embedded pools in the treatment plants are not of different geometries and sizes, they may exceed the air share of the wave height due to the sloshing event. As a result, overflows that may occur during an earthquake can cause environmental problems by polluting the groundwater. Besides, treatment units may be disabled due to damage to non-structural elements in these units during an earthquake. This situation will threaten public health as it will disrupt the service of the entire facility after the earthquake. In this study, sloshing analysis under Kocaeli 1999 earthquake signal of a circular type clarifier in Kullar Wastewater Treatment Plant located in Kocaeli district was analyzed using numerical modeling tools. Due to the sloshing, 90 cm high water surface displacement in the clarifier and 5000 Pa hydrodynamic pressure near the bottom of the clarifier wall were calculated.

References

  • Alpaslan M.N., Dölgen D., Sarptaş H., 2004. Atıksu Arıtma Tesisleri Tasarım ve İşletme Esasları, Dokuz Eylül Üniversitesi Çevre Araştırma ve Uygulama Merkezi (ÇEVMER), İzmir, Türkiye, 268 p.
  • Aslam M., Godden W.G., Scalise D.T., 1979. Earthquake Sloshing in Annular and Cylindrical Tanks, ASCE J. Eng. Mech. Div. 105 (3), 371-389.
  • Ballantyne D., Crouse C., 1997. Reliability and Restoration of Water Supply Systems for Fire Suppression and Drinking Following Earthquakes, National Institute of Standards and Technology, Report Number NIST/GCR-97-730, 206 p.
  • Barrows T., Orr J. 2021. Dynamics and Simulation of Flexible Rockets, Academic Press, 327p.
  • Bayon A., Valero D., Garcia-Bartual R., Valles-Moran F.J., Lopez-Jimenez P.A., 2016. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environmental Modelling and Software 80, 322-335. https://doi.org/10.1016/j.envsoft.2016.02.018.
  • Brizzolara S., Savio L., Viviani M., Chen Y., Temarel P., Couty N., Iglesias, A.S. 2009. Comparison of experimental and numerical sloshing loads in partially filled tanks. Analysis and Design of Marine Structures: Including CD-ROM, (Lloyd 1989), 13-26. https://doi.org/10.1201/9780203874981.ch2.
  • Buldakov E., 2013. Lagrangian modelling of fluid sloshing in moving tanks, Journal of Fluids and Structures 45 (1), 1-14. https://doi.org/10.1016/j.jfluidstructs.2013.12.003.
  • Caron P.A., Cruchaga M.A., Larreteguy A.E., 2018. Study of 3D sloshing in a vertical cylindrical tank, Physics of Fluids, 30 (8), 82112. https://doi.org/10.1063/1.5043366.
  • Chen S.C., Tfwala S. S., 2018. Performance assessment of FLOW-3D and X flow in the numerical modelling of fish-bone type fishway hydraulics, 7th IAHR International Symposium on Hydraulic Structures, 15-18 May 2018, Aachen-Germany, p:272-282. https://doi.org/10.15142/T3HH1J.
  • Chen Y., Xue M.A., 2018. Numerical Simulation of Liquid Sloshing with Different Filling Levels Using OpenFOAM and Experimental Validation, Water 10, 1752. https://doi.org/10.3390/w10121752.
  • Chen Z., Zong Z., Li H. T., Li J., 2013. An investigation into the pressure on solid walls in 2D sloshing using SPH method, Ocean Engineering 59 (1), 129-141. https://doi.org/10.1016/j.oceaneng.2012.12.013.
  • Chung R.M., Ballantyne D.B., Comeau E., Holzer T.L., Madrzykowski D.M., Schiff A.J., Stone W.C, Wilcoski J., Borcherdt R.D., Cooper J.D., Lew H.S., Moehle J.P., Sheng L.H., Taylor A.W., Bucker I., Hayes J.R., Leyendecker E.V., O’rourke T., Singh M.P., Whitney M., 1996. The January 17, 1995 Hyogoken-Nanbu (Kobe) Earthquake: Performance of Structures, Lifelines, and Fire Protection Systems, National Institute of Standards and Technology (NIST) Special Report, Gaithersburg, Maryland, USA.
  • Coleman H., Members C., 2009. ASME V&V 20-2009 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, (V&V20 Committee Chair and principal author), ASME.
  • Dikici M., Aksel M., Kaya E.S., İpek C., 2019. Earthquake Induced Sloshing Analysis for Circular Type Clarifier, VI. International Earthquake Symposium, 25-27 September 2019, Kocaeli, Türkiye, p: 548-552.
  • Dinçer A., 2019. Investigation of the Sloshing Behavior Due to Seismic Excitations Considering Two-Way Coupling of the Fluid and the Structure, Water 11, 2664. https://doi.org/10.3390/w11122664.
  • Du P., Chen J., Chen C., Liu Y., Liu J., Wang H., Zhang X., 2012. Environmental risk evaluation to minimize impacts within the area affected by the Wenchuan earthquake, Science of The Total Environment 419, 16-24. https://doi.org/10.1016/j.scitotenv.2011.12.017.
  • EERI, 1995. Earthquake of January 17, 1995: Reconnaissance Report, Earthquake Engineering Research Institute, Oakland, California, USA.
  • EERI, 2001. The Nisqually Earthquake of 28 February 2001: Preliminary Reconnaissance Report, Earthquake Engineering Research Institute, Oakland, California, USA.
  • EERI, 2010. El Mayor Cucapah, Baja California Earthquake of April 4, 2010: Reconnaissance Report, Earthquake Engineering Research Institute, Oakland, California, USA.
  • Eindinger J., 2002. Performance of water systems in the Mw 8.4 Atico (Peru) earthquake of June 23, 2001. (In: Atico, Peru, Mw 8.4 Earthquake of June 23, 2001: Lifeline Performance, Editor: Edwards, C.L., ASCE, 163 p), 27-30.
  • Eidinger J., Yashinsky M., 2004. Oil and water system performance - Denali M 7.9 earthquake of November 3, 2002. (In: San Simeon Earthquake of December 22, 2003 and Denali, Alaska, Earthquake of November 3, 2002, Editor: Yashinsky, M., ASCE, Reston VA, USA, 148 p), 53-56.
  • Eidinger J., Tang, A., Editors, 2012. Christchurch, New Zealand Earthquake Sequence of Mw 7.1 September 04, 2010 Mw 6.3 February 22, 2011 Mw 6.0 June 13, 2011: Lifeline Performance, Technical Council on Lifeline Earthquake Engineering, Monograph 40, ASCE, Reston, VA.
  • El Heloui M., Mimouni R., Hamadi F., 2016. Impact of treated wastewater on groundwater quality in the region of Tiznit (Morocco), Journal of Water Reuse and Desalination 6 (3), 454-463. https://doi.org/10.2166/wrd.2015.061.
  • Elahi R., Passandideh-Fard, M., Javanshir, A., 2016. Simulation of liquid sloshing in 2D containers using the volume of fluid method, Ocean Engineering, 96, 226-244. http://dx.doi.org/10.1016/j.oceaneng.2014.12.022.
  • Erdik M., 2001. Report on 1999 Kocaeli and Düzce (Turkey) Earthquakes, Structural Control for Civil and Infrastructure Engineering, World Scientific. Publishing, 149-186. https://doi.org/10.1142/9789812811707_0018.
  • Eswaran M., Saha U. 2011. Sloshing of liquids in partially filled tanks-A review of experimental investigations, Ocean Systems Engineering 1(2), 131-155. https://doi.org/10.12989/ose.2011.1.2.131.
  • Eswaran M., Saha U., 2012. Finite Difference Based Sigma - Transformation Approach for Liquid Sloshing in a Rectangular Tank under Regular Wave Excitation, CFD Letters, 4, 173-192.
  • Evans N.L., Mc Ghie C., 2011. The performance of lifeline utilities following the 27th February 2010 Maule Earthquake Chile, Proceedings of the 9th Pacific Conference on Earthquake Engineering Building and Earthquake.14-16 April 2011, Auckland, New Zealand, p:36.
  • Faltinsen O., 1974. A Nonlinear Theory of Sloshing in Rectangular Tanks, Journal of Ship Research 18, 224-241. https://doi.org/10.5957/jsr.1974.18.4.224.
  • Faltinsen O., Firoozkoohi R., Timokha A., 2011. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen, Journal of Engineering Mathematics 70, 93-109. https://doi.org/10.1007/s10665-010-9397-5.
  • Faltinsen O., Rognebakke O., Lukovsky I., Timokha A., 2000. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth, Journal of Fluid Mechanics 407, 201-234. https://doi.org/10.1017/S0022112099007569.
  • Faltinsen O., Timokha A., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank, Journal of Fluid Mechanics 432, 167-200. https://doi.org/10.1017/S0022112000003311.
  • FEMA (Federal Emergency Management Agency), 2003. Multi-hazard Loss Estimation Methodology (HAZUS) Manual.
  • FLOW-3D Version 12.0 Users Manual 2018. Flowscience 2019. FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. Erişim adresi: https://www.flow3d.com
  • Ghasemi M., Soltani-Gerdefaramarzi S., 2017. The Scour Bridge Simulation around a Cylindrical Pier Using Flow-3D, Journal of Hydrosciences and Environment 1(2), 46-54. https://doi.org/10.22111/JHE.2017.3357.
  • Guray E., Yazıcı G., Aksel M., 2018. Analysis of Seismic Sloshing Displacements in Rectangular Liquid Storage Tanks with SPH Method, Afyon Kocatepe University Journal of Sciences and Engineering 18(1), 375-381. https://doi.org/10.5578/fmbd.66714.
  • Hernandez H., Heredia-Zavoni E., Aldama-Rodríguez A., 2007. Nonlinear sloshing response of cylindrical tanks subjected to earthquake ground motion, Engineering Structures 29, 3364-3376. https://doi.org/10.1016/j.engstruct.2007.08.023.
  • Ibrahim R., Pilipchuk V., Ikeda T., 2001. Recent Advances in Liquid Sloshing Dynamics. Applied Mechanics Reviews 54 (2), 133-199. https://doi.org/10.1115/1.3097293.
  • Isaacson M., Subbiah K., 1991. Earthquake-induced sloshing in a rigid circular tank, Canadian Journal of Civil Engineering 18(6), 904-915. https://doi.org/10.1139/l91-112.
  • Ji Y., Shin Y., Park J., Hyun J., 2012. Experiments on non-resonant sloshing in a rectangular tank with large amplitude lateral oscillation, Ocean Engineering, 50, 10-22. https://doi.org/10.1016/j.oceaneng.2012.04.007.
  • Kakderi K., Argyroudis S., 2014. Fragility Functions of Water and Waste-Water Systems. In Geotechnical, Geological and Earthquake Engineering 27, 221-258. https://doi.org/10.1007/978-94-007-7872-6_8.
  • Kayen R., Collins B., Abrahamson N., Ashford S., Brandenberg S. J., Cluff L., Youso K., 2007. Investigation of the M6.6 Niigata-Chuetsu Oki, Japan, Earthquake of July 16, 2007, Report 2007-1365, USGS.
  • Kim Y., 2007. Experimental and numerical analyses of sloshing flows, Journal of Engineering Mathematics 58, 191-210. https://doi.org/10.1007/s10665-006-9124-4.
  • Kouadio I.K., Aljunid S., Kamigaki T., Hammad K., Oshitani H., 2012. Infectious diseases following natural disasters: prevention and control measures. Expert Review of Anti-Infective Therapy 10(1), 95-104. https://doi.org/10.1586/eri.11.155.
  • Kuraoka S., Rainer J. H., 1996. Damage to water distribution system caused by the 1995 Hyogo-ken Nanbu earthquake, Canadian Journal of Civil Engineering 23(3), 665-677. https://doi.org/10.1139/l96-882.
  • Lee J., Perera D., Glickman T., Taing L., 2020. Water-related disasters and their health impacts: A global review, Progress in Disaster Science 8, 100123. https://doi.org/10.1016/j.pdisas.2020.100123.
  • Lee T., Zhou Z., Cao Y., 2002. Numerical Simulations of Hydraulic Jumps in Water Sloshing and Water Impacting, Journal of Fluids Engineering 124(1), 215-226. https://doi.org/10.1115/1.1436097.
  • Li J., Alinaghian S., Joksimovic D., Chen L., 2020. An Integrated Hydraulic and Hydrologic Modeling Approach for Roadside Bio-Retention Facilities, Water 12(5), 1248. https://doi.org/10.3390/w12051248.
  • Liu D., Lin P., 2008. A numerical study of three-dimensional liquid sloshing in tanks, Journal of Computational Physics 227, 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006.
  • Liu D., Tang W., Wang J., Xue H., Wang K., 2016. Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing, Applied Ocean Research 59. https://doi.org/10.1016/j.apor.2016.07.012.
  • Liu M., Giovinazzi S., MacGeorge R., Beukman P., 2013. Wastewater Network Restoration Following the Canterbury, NZ Earthquake Sequence: Turning Post-Earthquake Recovery into Resilience Enhancement. Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, 28 May-1 June 2013, Chengdu, China, 160-167. https://doi.org/10.1061/9780784413234.021.
  • Luo Z., Chen Z., 2011. Sloshing simulation of standing wave with time-independent finite difference method for Euler equations, Applied Mathematics and Mechanics 32, 1475-1488. https://doi.org/10.1007/s10483-011-1516-6.
  • Ma C., Oka M., 2020. Numerical Investigation on Sloshing Pressure for Moss-Type LNG Tank Based on Different SPH Models, The 30th International Ocean and Polar Engineering Conference, Virtual, October 2020, 3248.
  • Maleki F., Hemati S., Pourashraf R., 2020. Prevalence Waterborne Infections after Earthquakes Considered as Serious Threat to Increasing Victims in Disaster-Affected Areas, Egyptian Journal of Veterinary Sciences 51(1), 111-117. https://doi.org/10.21608/ejvs.2019.18629.1114.
  • Marahatta S.B., 2015. Control of the Outbreak of Disease Aftermath Earthquake: an Overview, Nepal Journal of Epidemiology 5(2), 468-469. https://doi.org/10.3126/nje.v5i2.12828.
  • McArthur J.M., Sikdar P.K., Hoque M.A., Ghosal U., 2012. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam, Science of The Total Environment 437, 390-402. https://doi.org/10.1016/j.scitotenv.2012.07.068.
  • Meneses J., Anderson R., Angel J., Edwards C., Everingham L., Garcia-delgado V., Poland C., 2010. California Earthquake, Exponent Failure Analysis Associates, EERI Special Earthquake Report, July 2010.
  • Metcalf and Eddy I., 2003. Wastewater Engineering: Treatment and Reuse, 4th Edition, McGraw-Hill, New York, USA, 1819 p.
  • Minowa C., Kiyosumi K., 1997. Sloshing impact analysis of roof damaged water tank in Kobe earthquake, ASME Symposium Adv. Anal. Exper. Comp. Tech. Fluid Str. Trans. Nat. Hazards, 27-31 June 1997, Orlando, Florida, USA, 355, 271-278.
  • Musa A., Maliki Y., Ahmad M., Sani W.N., Yaakob, O., Samo, K., 2017. Numerical Simulation of Wave Flow Over the Overtopping Breakwater for Energy Conversion (OBREC) Device, Procedia Engineering 194, 166-173. https://doi.org/10.1016/j.proeng.2017.08.131.
  • Najafi-Jilani A., Niri M.Z., Naderi N., 2014. Simulating three dimensional wave run-up over breakwaters covered by antifer units, International Journal of Naval Architecture and Ocean Engineering 6(2), 297-306. https://doi.org/10.2478/IJNAOE-2013-0180.
  • Nelson E.J., Andrews J.R., Maples S., Barry M., Clemens J.D., 2015. Is a Cholera Outbreak Preventable in Post-earthquake Nepal?, PLOS Neglected Tropical Diseases 9(8), e0003961. https://doi.org/10.1371/journal.pntd.0003961.
  • Nezami M., Mohammadi M.M., Oveisi A., 2014. Liquid Sloshing in a Horizontal Circular Container with Eccentric Tube under External Excitation, Shock and Vibration 2014, 507281. https://doi.org/10.1155/2014/507281.
  • NIST, 2014. Disaster Resilience Framework, National Institute of Standards and Technology, USA, https://www.nist.gov/system/files/documents/el/building_materials/resilience/Disaster_Resilience_Chapter_9_Water_and_Wastewater_50-Draft_102014.pdf
  • Panico A., Basco A., Lanzano G., Pirozzi F., Santucci de Magistris F., Fabbrocino G., Salzano E., 2017. Evaluating the structural priorities for the seismic vulnerability of civilian and industrial wastewater treatment plants, Safety Science 97, 51-57. https://doi.org/10.1016/j.ssci.2015.12.030.
  • Panico A., Lanzano G., Salzano E., De Magistris F.S., Fabbrocino G., 2013. Seismic vulnerability of wastewater treatment plants, Chemical Engineering Transactions 32(January), 13-18. https://doi.org/10.3303/CET1332003.
  • Phan H. N., Paolacci F., Di Filippo R., Bursi O. S., 2020. Seismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regression, Bulletin of Earthquake Engineering 18(15), 6883-6906. https://doi.org/10.1007/s10518-020-00960-7.
  • Pilipchuk V., Ibrahim R., 1997. The dynamics of a non-linear system simulating liquid sloshing impact in moving structures, Journal of Sound and Vibration 205, 593-615. https://doi.org/10.1006/jsvi.1997.1034.
  • Pitilakis K., Anastasiadis A., Kakderi K., Argyroudis S., Alexoudi M., 2007. Vulnerability Assessment and Risk Management of Lifelines, Infrastructures and Critical Facilities: The Case of Thessaloniki’s Metropolitan Area, 4th International Conference on Earthquake Geotechnical Engineering, 25-28 June 2007, Thessaloniki, Greece, 1774.
  • Ransau S., Hansen E., 2006. Numerical Simulations of Sloshing in Rectangular Tanks, 25th International Conference on Offshore Mechanics and Arctic Engineering, 4-9 June 2006, Hamburg, Germany, 675-682. https://doi.org/10.1115/OMAE2006-92248.
  • Richardson J.E., Panchang V.G., 1998. Three-Dimensional Simulation of Scour-Inducing Flow at Bridge Piers, Journal of Hydraulic Engineering 124(5), 530-540, https://doi.org/10.1061/(ASCE)0733-9429(1998)124:5(530)
  • Rodriguez-Marek A., Williams J., Wartman J., Repetto, P., 2003. Ground motion and site response Southern Peru Earthquake of June 21, 2001, Earthquake Spectra 19 (1), 11-34. https://doi.org/10.1193%2F1.1737246.
  • Pradeepkumar K.S., Selvan V., Satheeshkumar K.R.P, 2020. Review of Numerical Methods for Sloshing, International Journal for Research in Applied Science and Engineering Technology 8 (6), 247-252. https://doi.org/10.22214/ijraset.2020.32116.
  • Schiff A.J., 1998. Hyogoken-Nanbu (Kobe), Earthquake of January 17, 1995, Lifeline Performance, Technical Council on Lifeline Earthquake Engineering (TCLEE) Monograph 14, ASCE, 335 p.
  • Shemer L., 1990. On the directly generated resonant standing waves in a rectangular tank, Journal of Fluid Mechanics 217, 143-165, https://doi.org/10.1017/S0022112090000660.
  • Smith H.D., Foster D.L., 2005. Modeling of Flow Around a Cylinder Over a Scoured Bed, Journal of Waterway, Port, Coastal, and Ocean Engineering 131(1), 14-24. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:1(14).
  • Solaas F., Faltinsen O.M., 1997. Combined numerical and analytical solution for sloshing in two-dimensional tanks of general shape, J. Ship Res. 41 (2), 118-129.
  • Standley L.J., Rudel R.A., Swartz C.H., Attfield K.R., Christian J., Erickson M., Brody J. G., 2008. Wastewater‐contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems, Environmental Toxicology and Chemistry 27(12), 2457-2468. https://doi.org/10.1897/07-604.1.
  • Strand C., Masek J., 2007. Sumatra-Andaman Islands Earthquake and Tsunami of December 26, 2004: Lifeline Performance. ASCE Reston, VA, USA, 342 p.
  • Sun Y., Zhou D., Wang J., Han H., 2020. Liquid Sloshing in a Cylindrical Tank with Multiple Baffles Under Horizontal and Pitching Motions, International Journal of Applied Mechanics 12(07), 2050080. https://doi.org/10.1142/S1758825120500805.
  • Tang A.K., Schiff A., 2010. Kashiwazaki, Japan, Earthquake of July 16, 2007: Lifeline Performance, ASCE, Reston VA, USA, 324 p.
  • Tang A.K., Eng P., Eng C.F., 2011. Lifelines Performance of the Mw 8.8 off Shore Biobío, Chile Earthquake, Procedia Engineering 14, 922-930. https://doi.org/10.1016/j.proeng.2011.07.116.
  • Wang X.Y., Fu A.M. 2011. Earthquake Impact on the Sewage Treatment Plant and Emergency Measures, Advanced Materials Research 243-249, 5076-5079, 5076-5079. https://doi.org/10.4028/www.scientific.net/AMR.243-249.5076.
  • Wareham D.G., Bourke M., 2013. The 2010-2011 Canterbury earthquakes: impact on the liquid waste management system of Christchurch, New Zealand, Civil Engineering and Environmental Systems 30(1), 1-14. https://doi.org/10.1080/10286608.2012.709507.
  • Waterhouse D., 1994. Resonant sloshing near a critical depth, Journal of Fluid Mechanics 281, 313-318. https://doi.org/10.1017/S0022112094003125.
  • Watson J.T., Gayer M., Connolly M.A., 2007. Epidemics after Natural Disasters, Emerging Infectious Diseases 13(1), 1-5. https://doi.org/10.3201/eid1301.060779.
  • Xu L., Dai L., 2005. A Numerical Approach of Assessing Fluid Oscillatory Motions in 3D Partially Filled Horizontal Cylindrical Tanks, In American Society of Mechanical Engineers, Design Engineering Division Publication, Vol. 118. https://doi.org/10.1115/IMECE2005-81301.
  • Xue M.A., Zheng J., Lin P., 2012. Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles, Journal of Applied Mathematics 2012, Article ID 245702, 21 p. https://doi.org/10.1155/2012/245702.
  • Yashinsky M., 2004. San Simeon Earthquake of December 22, 2003, and Denali, Alaska, Earthquake of November 3, 2002, ASCE, Reston, VA, USA, 147 p.
  • Yazıcı G., Köroglu A., Aksel M., Önen Y.H., 2015. Seismic Vulnerability of Treatment Plants in Istanbul, International Burdur Earthquake and Environment Symposium, 7-9 May 2015, Burdur, Türkiye, 260-266.
  • Zare M. R., Wilkinson S., Potangaroa R., 2010. Vulnerabılıty of Wastewater Treatment Plants and Wastewater Pumping Stations to Earthquakes, International Journal of Strategic Property Management 14(4), 408-420, https://doi.org/10.3846/ijspm.2010.30.
  • Zhang Q., Wei W., 2021. Numerical Simulation on the Sloshing Characteristics of Gasliquid Flow in Cargo Tank and Anti-sloshing Methods, Journal of Physics: Conference Series 1746, 12046, https://doi.org/10.1088/1742-6596/1746/1/012046.

Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi

Year 2021, , 149 - 166, 20.12.2021
https://doi.org/10.46464/tdad.1014192

Abstract

Büyük tanklar ve içinde hassas karıştırma ekipmanları bulunduran atık su arıtma tesisleri deprem açısından kritik altyapılardır. Depremler sırasında bu tür tesislerdeki yapıların hasar görmesi çevre kirliliğine neden olabilmekte ve halk sağlığına tehdit oluşturabilmektedir. Arıtma tesislerindeki gömülü havuzlar farklı geometri ve boyutlarda olmamasından dolayı çalkalanmaya bağlı dalga yüksekliğinin hava payını aşabilir. Bunu sonucunda deprem sırasında meydana gelebilecek taşmalar yeraltı suyunu kirleterek çevre problemine yol açabilir. Ayrıca bu havuzların içindeki yapısal olmayan elemanların deprem sırasında hasar görmesi sonucu arıtma birimleri devre dışı kalabilir. Bu durum deprem sonrasında tüm tesisin hizmet vermesini aksatacağı için halk sağlığını tehdit edecektir. Bu çalışma kapsamında Kocaeli il sınırları içinde yer alan Kullar Atıksu Arıtma Tesisindeki dairesel tipteki bir son çöktürme havuzunun Kocaeli 1999 deprem sinyali altındaki çalkalanma analizi sayısal modelleme yardımıyla incelenmiştir. Çalkalanmaya bağlı olarak havuz içinde 90 cm yüksekliğinde çalkantı dalgası ve havuz duvarının taban yakınında 5000 Pa hidrodinamik basınç hesaplanmıştır.

References

  • Alpaslan M.N., Dölgen D., Sarptaş H., 2004. Atıksu Arıtma Tesisleri Tasarım ve İşletme Esasları, Dokuz Eylül Üniversitesi Çevre Araştırma ve Uygulama Merkezi (ÇEVMER), İzmir, Türkiye, 268 p.
  • Aslam M., Godden W.G., Scalise D.T., 1979. Earthquake Sloshing in Annular and Cylindrical Tanks, ASCE J. Eng. Mech. Div. 105 (3), 371-389.
  • Ballantyne D., Crouse C., 1997. Reliability and Restoration of Water Supply Systems for Fire Suppression and Drinking Following Earthquakes, National Institute of Standards and Technology, Report Number NIST/GCR-97-730, 206 p.
  • Barrows T., Orr J. 2021. Dynamics and Simulation of Flexible Rockets, Academic Press, 327p.
  • Bayon A., Valero D., Garcia-Bartual R., Valles-Moran F.J., Lopez-Jimenez P.A., 2016. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environmental Modelling and Software 80, 322-335. https://doi.org/10.1016/j.envsoft.2016.02.018.
  • Brizzolara S., Savio L., Viviani M., Chen Y., Temarel P., Couty N., Iglesias, A.S. 2009. Comparison of experimental and numerical sloshing loads in partially filled tanks. Analysis and Design of Marine Structures: Including CD-ROM, (Lloyd 1989), 13-26. https://doi.org/10.1201/9780203874981.ch2.
  • Buldakov E., 2013. Lagrangian modelling of fluid sloshing in moving tanks, Journal of Fluids and Structures 45 (1), 1-14. https://doi.org/10.1016/j.jfluidstructs.2013.12.003.
  • Caron P.A., Cruchaga M.A., Larreteguy A.E., 2018. Study of 3D sloshing in a vertical cylindrical tank, Physics of Fluids, 30 (8), 82112. https://doi.org/10.1063/1.5043366.
  • Chen S.C., Tfwala S. S., 2018. Performance assessment of FLOW-3D and X flow in the numerical modelling of fish-bone type fishway hydraulics, 7th IAHR International Symposium on Hydraulic Structures, 15-18 May 2018, Aachen-Germany, p:272-282. https://doi.org/10.15142/T3HH1J.
  • Chen Y., Xue M.A., 2018. Numerical Simulation of Liquid Sloshing with Different Filling Levels Using OpenFOAM and Experimental Validation, Water 10, 1752. https://doi.org/10.3390/w10121752.
  • Chen Z., Zong Z., Li H. T., Li J., 2013. An investigation into the pressure on solid walls in 2D sloshing using SPH method, Ocean Engineering 59 (1), 129-141. https://doi.org/10.1016/j.oceaneng.2012.12.013.
  • Chung R.M., Ballantyne D.B., Comeau E., Holzer T.L., Madrzykowski D.M., Schiff A.J., Stone W.C, Wilcoski J., Borcherdt R.D., Cooper J.D., Lew H.S., Moehle J.P., Sheng L.H., Taylor A.W., Bucker I., Hayes J.R., Leyendecker E.V., O’rourke T., Singh M.P., Whitney M., 1996. The January 17, 1995 Hyogoken-Nanbu (Kobe) Earthquake: Performance of Structures, Lifelines, and Fire Protection Systems, National Institute of Standards and Technology (NIST) Special Report, Gaithersburg, Maryland, USA.
  • Coleman H., Members C., 2009. ASME V&V 20-2009 Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer, (V&V20 Committee Chair and principal author), ASME.
  • Dikici M., Aksel M., Kaya E.S., İpek C., 2019. Earthquake Induced Sloshing Analysis for Circular Type Clarifier, VI. International Earthquake Symposium, 25-27 September 2019, Kocaeli, Türkiye, p: 548-552.
  • Dinçer A., 2019. Investigation of the Sloshing Behavior Due to Seismic Excitations Considering Two-Way Coupling of the Fluid and the Structure, Water 11, 2664. https://doi.org/10.3390/w11122664.
  • Du P., Chen J., Chen C., Liu Y., Liu J., Wang H., Zhang X., 2012. Environmental risk evaluation to minimize impacts within the area affected by the Wenchuan earthquake, Science of The Total Environment 419, 16-24. https://doi.org/10.1016/j.scitotenv.2011.12.017.
  • EERI, 1995. Earthquake of January 17, 1995: Reconnaissance Report, Earthquake Engineering Research Institute, Oakland, California, USA.
  • EERI, 2001. The Nisqually Earthquake of 28 February 2001: Preliminary Reconnaissance Report, Earthquake Engineering Research Institute, Oakland, California, USA.
  • EERI, 2010. El Mayor Cucapah, Baja California Earthquake of April 4, 2010: Reconnaissance Report, Earthquake Engineering Research Institute, Oakland, California, USA.
  • Eindinger J., 2002. Performance of water systems in the Mw 8.4 Atico (Peru) earthquake of June 23, 2001. (In: Atico, Peru, Mw 8.4 Earthquake of June 23, 2001: Lifeline Performance, Editor: Edwards, C.L., ASCE, 163 p), 27-30.
  • Eidinger J., Yashinsky M., 2004. Oil and water system performance - Denali M 7.9 earthquake of November 3, 2002. (In: San Simeon Earthquake of December 22, 2003 and Denali, Alaska, Earthquake of November 3, 2002, Editor: Yashinsky, M., ASCE, Reston VA, USA, 148 p), 53-56.
  • Eidinger J., Tang, A., Editors, 2012. Christchurch, New Zealand Earthquake Sequence of Mw 7.1 September 04, 2010 Mw 6.3 February 22, 2011 Mw 6.0 June 13, 2011: Lifeline Performance, Technical Council on Lifeline Earthquake Engineering, Monograph 40, ASCE, Reston, VA.
  • El Heloui M., Mimouni R., Hamadi F., 2016. Impact of treated wastewater on groundwater quality in the region of Tiznit (Morocco), Journal of Water Reuse and Desalination 6 (3), 454-463. https://doi.org/10.2166/wrd.2015.061.
  • Elahi R., Passandideh-Fard, M., Javanshir, A., 2016. Simulation of liquid sloshing in 2D containers using the volume of fluid method, Ocean Engineering, 96, 226-244. http://dx.doi.org/10.1016/j.oceaneng.2014.12.022.
  • Erdik M., 2001. Report on 1999 Kocaeli and Düzce (Turkey) Earthquakes, Structural Control for Civil and Infrastructure Engineering, World Scientific. Publishing, 149-186. https://doi.org/10.1142/9789812811707_0018.
  • Eswaran M., Saha U. 2011. Sloshing of liquids in partially filled tanks-A review of experimental investigations, Ocean Systems Engineering 1(2), 131-155. https://doi.org/10.12989/ose.2011.1.2.131.
  • Eswaran M., Saha U., 2012. Finite Difference Based Sigma - Transformation Approach for Liquid Sloshing in a Rectangular Tank under Regular Wave Excitation, CFD Letters, 4, 173-192.
  • Evans N.L., Mc Ghie C., 2011. The performance of lifeline utilities following the 27th February 2010 Maule Earthquake Chile, Proceedings of the 9th Pacific Conference on Earthquake Engineering Building and Earthquake.14-16 April 2011, Auckland, New Zealand, p:36.
  • Faltinsen O., 1974. A Nonlinear Theory of Sloshing in Rectangular Tanks, Journal of Ship Research 18, 224-241. https://doi.org/10.5957/jsr.1974.18.4.224.
  • Faltinsen O., Firoozkoohi R., Timokha A., 2011. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen, Journal of Engineering Mathematics 70, 93-109. https://doi.org/10.1007/s10665-010-9397-5.
  • Faltinsen O., Rognebakke O., Lukovsky I., Timokha A., 2000. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth, Journal of Fluid Mechanics 407, 201-234. https://doi.org/10.1017/S0022112099007569.
  • Faltinsen O., Timokha A., 2001. An adaptive multimodal approach to nonlinear sloshing in a rectangular tank, Journal of Fluid Mechanics 432, 167-200. https://doi.org/10.1017/S0022112000003311.
  • FEMA (Federal Emergency Management Agency), 2003. Multi-hazard Loss Estimation Methodology (HAZUS) Manual.
  • FLOW-3D Version 12.0 Users Manual 2018. Flowscience 2019. FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. Erişim adresi: https://www.flow3d.com
  • Ghasemi M., Soltani-Gerdefaramarzi S., 2017. The Scour Bridge Simulation around a Cylindrical Pier Using Flow-3D, Journal of Hydrosciences and Environment 1(2), 46-54. https://doi.org/10.22111/JHE.2017.3357.
  • Guray E., Yazıcı G., Aksel M., 2018. Analysis of Seismic Sloshing Displacements in Rectangular Liquid Storage Tanks with SPH Method, Afyon Kocatepe University Journal of Sciences and Engineering 18(1), 375-381. https://doi.org/10.5578/fmbd.66714.
  • Hernandez H., Heredia-Zavoni E., Aldama-Rodríguez A., 2007. Nonlinear sloshing response of cylindrical tanks subjected to earthquake ground motion, Engineering Structures 29, 3364-3376. https://doi.org/10.1016/j.engstruct.2007.08.023.
  • Ibrahim R., Pilipchuk V., Ikeda T., 2001. Recent Advances in Liquid Sloshing Dynamics. Applied Mechanics Reviews 54 (2), 133-199. https://doi.org/10.1115/1.3097293.
  • Isaacson M., Subbiah K., 1991. Earthquake-induced sloshing in a rigid circular tank, Canadian Journal of Civil Engineering 18(6), 904-915. https://doi.org/10.1139/l91-112.
  • Ji Y., Shin Y., Park J., Hyun J., 2012. Experiments on non-resonant sloshing in a rectangular tank with large amplitude lateral oscillation, Ocean Engineering, 50, 10-22. https://doi.org/10.1016/j.oceaneng.2012.04.007.
  • Kakderi K., Argyroudis S., 2014. Fragility Functions of Water and Waste-Water Systems. In Geotechnical, Geological and Earthquake Engineering 27, 221-258. https://doi.org/10.1007/978-94-007-7872-6_8.
  • Kayen R., Collins B., Abrahamson N., Ashford S., Brandenberg S. J., Cluff L., Youso K., 2007. Investigation of the M6.6 Niigata-Chuetsu Oki, Japan, Earthquake of July 16, 2007, Report 2007-1365, USGS.
  • Kim Y., 2007. Experimental and numerical analyses of sloshing flows, Journal of Engineering Mathematics 58, 191-210. https://doi.org/10.1007/s10665-006-9124-4.
  • Kouadio I.K., Aljunid S., Kamigaki T., Hammad K., Oshitani H., 2012. Infectious diseases following natural disasters: prevention and control measures. Expert Review of Anti-Infective Therapy 10(1), 95-104. https://doi.org/10.1586/eri.11.155.
  • Kuraoka S., Rainer J. H., 1996. Damage to water distribution system caused by the 1995 Hyogo-ken Nanbu earthquake, Canadian Journal of Civil Engineering 23(3), 665-677. https://doi.org/10.1139/l96-882.
  • Lee J., Perera D., Glickman T., Taing L., 2020. Water-related disasters and their health impacts: A global review, Progress in Disaster Science 8, 100123. https://doi.org/10.1016/j.pdisas.2020.100123.
  • Lee T., Zhou Z., Cao Y., 2002. Numerical Simulations of Hydraulic Jumps in Water Sloshing and Water Impacting, Journal of Fluids Engineering 124(1), 215-226. https://doi.org/10.1115/1.1436097.
  • Li J., Alinaghian S., Joksimovic D., Chen L., 2020. An Integrated Hydraulic and Hydrologic Modeling Approach for Roadside Bio-Retention Facilities, Water 12(5), 1248. https://doi.org/10.3390/w12051248.
  • Liu D., Lin P., 2008. A numerical study of three-dimensional liquid sloshing in tanks, Journal of Computational Physics 227, 3921-3939. https://doi.org/10.1016/j.jcp.2007.12.006.
  • Liu D., Tang W., Wang J., Xue H., Wang K., 2016. Comparison of laminar model, RANS, LES and VLES for simulation of liquid sloshing, Applied Ocean Research 59. https://doi.org/10.1016/j.apor.2016.07.012.
  • Liu M., Giovinazzi S., MacGeorge R., Beukman P., 2013. Wastewater Network Restoration Following the Canterbury, NZ Earthquake Sequence: Turning Post-Earthquake Recovery into Resilience Enhancement. Sixth China-Japan-US Trilateral Symposium on Lifeline Earthquake Engineering, 28 May-1 June 2013, Chengdu, China, 160-167. https://doi.org/10.1061/9780784413234.021.
  • Luo Z., Chen Z., 2011. Sloshing simulation of standing wave with time-independent finite difference method for Euler equations, Applied Mathematics and Mechanics 32, 1475-1488. https://doi.org/10.1007/s10483-011-1516-6.
  • Ma C., Oka M., 2020. Numerical Investigation on Sloshing Pressure for Moss-Type LNG Tank Based on Different SPH Models, The 30th International Ocean and Polar Engineering Conference, Virtual, October 2020, 3248.
  • Maleki F., Hemati S., Pourashraf R., 2020. Prevalence Waterborne Infections after Earthquakes Considered as Serious Threat to Increasing Victims in Disaster-Affected Areas, Egyptian Journal of Veterinary Sciences 51(1), 111-117. https://doi.org/10.21608/ejvs.2019.18629.1114.
  • Marahatta S.B., 2015. Control of the Outbreak of Disease Aftermath Earthquake: an Overview, Nepal Journal of Epidemiology 5(2), 468-469. https://doi.org/10.3126/nje.v5i2.12828.
  • McArthur J.M., Sikdar P.K., Hoque M.A., Ghosal U., 2012. Waste-water impacts on groundwater: Cl/Br ratios and implications for arsenic pollution of groundwater in the Bengal Basin and Red River Basin, Vietnam, Science of The Total Environment 437, 390-402. https://doi.org/10.1016/j.scitotenv.2012.07.068.
  • Meneses J., Anderson R., Angel J., Edwards C., Everingham L., Garcia-delgado V., Poland C., 2010. California Earthquake, Exponent Failure Analysis Associates, EERI Special Earthquake Report, July 2010.
  • Metcalf and Eddy I., 2003. Wastewater Engineering: Treatment and Reuse, 4th Edition, McGraw-Hill, New York, USA, 1819 p.
  • Minowa C., Kiyosumi K., 1997. Sloshing impact analysis of roof damaged water tank in Kobe earthquake, ASME Symposium Adv. Anal. Exper. Comp. Tech. Fluid Str. Trans. Nat. Hazards, 27-31 June 1997, Orlando, Florida, USA, 355, 271-278.
  • Musa A., Maliki Y., Ahmad M., Sani W.N., Yaakob, O., Samo, K., 2017. Numerical Simulation of Wave Flow Over the Overtopping Breakwater for Energy Conversion (OBREC) Device, Procedia Engineering 194, 166-173. https://doi.org/10.1016/j.proeng.2017.08.131.
  • Najafi-Jilani A., Niri M.Z., Naderi N., 2014. Simulating three dimensional wave run-up over breakwaters covered by antifer units, International Journal of Naval Architecture and Ocean Engineering 6(2), 297-306. https://doi.org/10.2478/IJNAOE-2013-0180.
  • Nelson E.J., Andrews J.R., Maples S., Barry M., Clemens J.D., 2015. Is a Cholera Outbreak Preventable in Post-earthquake Nepal?, PLOS Neglected Tropical Diseases 9(8), e0003961. https://doi.org/10.1371/journal.pntd.0003961.
  • Nezami M., Mohammadi M.M., Oveisi A., 2014. Liquid Sloshing in a Horizontal Circular Container with Eccentric Tube under External Excitation, Shock and Vibration 2014, 507281. https://doi.org/10.1155/2014/507281.
  • NIST, 2014. Disaster Resilience Framework, National Institute of Standards and Technology, USA, https://www.nist.gov/system/files/documents/el/building_materials/resilience/Disaster_Resilience_Chapter_9_Water_and_Wastewater_50-Draft_102014.pdf
  • Panico A., Basco A., Lanzano G., Pirozzi F., Santucci de Magistris F., Fabbrocino G., Salzano E., 2017. Evaluating the structural priorities for the seismic vulnerability of civilian and industrial wastewater treatment plants, Safety Science 97, 51-57. https://doi.org/10.1016/j.ssci.2015.12.030.
  • Panico A., Lanzano G., Salzano E., De Magistris F.S., Fabbrocino G., 2013. Seismic vulnerability of wastewater treatment plants, Chemical Engineering Transactions 32(January), 13-18. https://doi.org/10.3303/CET1332003.
  • Phan H. N., Paolacci F., Di Filippo R., Bursi O. S., 2020. Seismic vulnerability of above-ground storage tanks with unanchored support conditions for Na-tech risks based on Gaussian process regression, Bulletin of Earthquake Engineering 18(15), 6883-6906. https://doi.org/10.1007/s10518-020-00960-7.
  • Pilipchuk V., Ibrahim R., 1997. The dynamics of a non-linear system simulating liquid sloshing impact in moving structures, Journal of Sound and Vibration 205, 593-615. https://doi.org/10.1006/jsvi.1997.1034.
  • Pitilakis K., Anastasiadis A., Kakderi K., Argyroudis S., Alexoudi M., 2007. Vulnerability Assessment and Risk Management of Lifelines, Infrastructures and Critical Facilities: The Case of Thessaloniki’s Metropolitan Area, 4th International Conference on Earthquake Geotechnical Engineering, 25-28 June 2007, Thessaloniki, Greece, 1774.
  • Ransau S., Hansen E., 2006. Numerical Simulations of Sloshing in Rectangular Tanks, 25th International Conference on Offshore Mechanics and Arctic Engineering, 4-9 June 2006, Hamburg, Germany, 675-682. https://doi.org/10.1115/OMAE2006-92248.
  • Richardson J.E., Panchang V.G., 1998. Three-Dimensional Simulation of Scour-Inducing Flow at Bridge Piers, Journal of Hydraulic Engineering 124(5), 530-540, https://doi.org/10.1061/(ASCE)0733-9429(1998)124:5(530)
  • Rodriguez-Marek A., Williams J., Wartman J., Repetto, P., 2003. Ground motion and site response Southern Peru Earthquake of June 21, 2001, Earthquake Spectra 19 (1), 11-34. https://doi.org/10.1193%2F1.1737246.
  • Pradeepkumar K.S., Selvan V., Satheeshkumar K.R.P, 2020. Review of Numerical Methods for Sloshing, International Journal for Research in Applied Science and Engineering Technology 8 (6), 247-252. https://doi.org/10.22214/ijraset.2020.32116.
  • Schiff A.J., 1998. Hyogoken-Nanbu (Kobe), Earthquake of January 17, 1995, Lifeline Performance, Technical Council on Lifeline Earthquake Engineering (TCLEE) Monograph 14, ASCE, 335 p.
  • Shemer L., 1990. On the directly generated resonant standing waves in a rectangular tank, Journal of Fluid Mechanics 217, 143-165, https://doi.org/10.1017/S0022112090000660.
  • Smith H.D., Foster D.L., 2005. Modeling of Flow Around a Cylinder Over a Scoured Bed, Journal of Waterway, Port, Coastal, and Ocean Engineering 131(1), 14-24. https://doi.org/10.1061/(ASCE)0733-950X(2005)131:1(14).
  • Solaas F., Faltinsen O.M., 1997. Combined numerical and analytical solution for sloshing in two-dimensional tanks of general shape, J. Ship Res. 41 (2), 118-129.
  • Standley L.J., Rudel R.A., Swartz C.H., Attfield K.R., Christian J., Erickson M., Brody J. G., 2008. Wastewater‐contaminated groundwater as a source of endogenous hormones and pharmaceuticals to surface water ecosystems, Environmental Toxicology and Chemistry 27(12), 2457-2468. https://doi.org/10.1897/07-604.1.
  • Strand C., Masek J., 2007. Sumatra-Andaman Islands Earthquake and Tsunami of December 26, 2004: Lifeline Performance. ASCE Reston, VA, USA, 342 p.
  • Sun Y., Zhou D., Wang J., Han H., 2020. Liquid Sloshing in a Cylindrical Tank with Multiple Baffles Under Horizontal and Pitching Motions, International Journal of Applied Mechanics 12(07), 2050080. https://doi.org/10.1142/S1758825120500805.
  • Tang A.K., Schiff A., 2010. Kashiwazaki, Japan, Earthquake of July 16, 2007: Lifeline Performance, ASCE, Reston VA, USA, 324 p.
  • Tang A.K., Eng P., Eng C.F., 2011. Lifelines Performance of the Mw 8.8 off Shore Biobío, Chile Earthquake, Procedia Engineering 14, 922-930. https://doi.org/10.1016/j.proeng.2011.07.116.
  • Wang X.Y., Fu A.M. 2011. Earthquake Impact on the Sewage Treatment Plant and Emergency Measures, Advanced Materials Research 243-249, 5076-5079, 5076-5079. https://doi.org/10.4028/www.scientific.net/AMR.243-249.5076.
  • Wareham D.G., Bourke M., 2013. The 2010-2011 Canterbury earthquakes: impact on the liquid waste management system of Christchurch, New Zealand, Civil Engineering and Environmental Systems 30(1), 1-14. https://doi.org/10.1080/10286608.2012.709507.
  • Waterhouse D., 1994. Resonant sloshing near a critical depth, Journal of Fluid Mechanics 281, 313-318. https://doi.org/10.1017/S0022112094003125.
  • Watson J.T., Gayer M., Connolly M.A., 2007. Epidemics after Natural Disasters, Emerging Infectious Diseases 13(1), 1-5. https://doi.org/10.3201/eid1301.060779.
  • Xu L., Dai L., 2005. A Numerical Approach of Assessing Fluid Oscillatory Motions in 3D Partially Filled Horizontal Cylindrical Tanks, In American Society of Mechanical Engineers, Design Engineering Division Publication, Vol. 118. https://doi.org/10.1115/IMECE2005-81301.
  • Xue M.A., Zheng J., Lin P., 2012. Numerical Simulation of Sloshing Phenomena in Cubic Tank with Multiple Baffles, Journal of Applied Mathematics 2012, Article ID 245702, 21 p. https://doi.org/10.1155/2012/245702.
  • Yashinsky M., 2004. San Simeon Earthquake of December 22, 2003, and Denali, Alaska, Earthquake of November 3, 2002, ASCE, Reston, VA, USA, 147 p.
  • Yazıcı G., Köroglu A., Aksel M., Önen Y.H., 2015. Seismic Vulnerability of Treatment Plants in Istanbul, International Burdur Earthquake and Environment Symposium, 7-9 May 2015, Burdur, Türkiye, 260-266.
  • Zare M. R., Wilkinson S., Potangaroa R., 2010. Vulnerabılıty of Wastewater Treatment Plants and Wastewater Pumping Stations to Earthquakes, International Journal of Strategic Property Management 14(4), 408-420, https://doi.org/10.3846/ijspm.2010.30.
  • Zhang Q., Wei W., 2021. Numerical Simulation on the Sloshing Characteristics of Gasliquid Flow in Cargo Tank and Anti-sloshing Methods, Journal of Physics: Conference Series 1746, 12046, https://doi.org/10.1088/1742-6596/1746/1/012046.
There are 92 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Murat Aksel 0000-0002-6456-4396

Publication Date December 20, 2021
Submission Date October 25, 2021
Published in Issue Year 2021

Cite

APA Aksel, M. (2021). Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi. Türk Deprem Araştırma Dergisi, 3(2), 149-166. https://doi.org/10.46464/tdad.1014192
AMA Aksel M. Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi. TDAD. December 2021;3(2):149-166. doi:10.46464/tdad.1014192
Chicago Aksel, Murat. “Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi”. Türk Deprem Araştırma Dergisi 3, no. 2 (December 2021): 149-66. https://doi.org/10.46464/tdad.1014192.
EndNote Aksel M (December 1, 2021) Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi. Türk Deprem Araştırma Dergisi 3 2 149–166.
IEEE M. Aksel, “Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi”, TDAD, vol. 3, no. 2, pp. 149–166, 2021, doi: 10.46464/tdad.1014192.
ISNAD Aksel, Murat. “Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi”. Türk Deprem Araştırma Dergisi 3/2 (December 2021), 149-166. https://doi.org/10.46464/tdad.1014192.
JAMA Aksel M. Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi. TDAD. 2021;3:149–166.
MLA Aksel, Murat. “Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi”. Türk Deprem Araştırma Dergisi, vol. 3, no. 2, 2021, pp. 149-66, doi:10.46464/tdad.1014192.
Vancouver Aksel M. Dairesel Tipteki Çöktürme Havuzunun Deprem Altındaki Çalkalanma Analizi. TDAD. 2021;3(2):149-66.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter