Research Article
BibTex RIS Cite

Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması

Year 2021, Volume: 3 Issue: 1, 20 - 32, 30.06.2021
https://doi.org/10.46464/tdad.911133

Abstract

Depremlerin yıkıcı etkilerini azaltmak için yapılan çalışmalar, son zamanlarda üzerinde durulan araştırma konuları arasındadır. Bu çalışmada, kare, üçgen, sinüs ve daire olmak üzere dört farklı saha dizisinde çelik metamalzemeler kullanılarak titreşim etkilerini azaltmak için bir dizi simülasyon çalışmaları gerçekleştirilmiştir. Oluşan iletim kayıpları sonlu elamanlar yöntemi (FEM) kullanılarak belirlenmiştir. Simülasyon çalışmasında, çelik yapıların çap ve malzeme özellikleri ile zemin yapısı ve boyutları sabit tutulurken parametrik tanımlamalar yapılmış, kazıkların dizilişleri geometrik olarak birbirinden farklı tutulmuştur. Çalışmanın amacı, çelik için en uygun saha uygulamasını belirlemek ve saha dizilimleri sonucunda ortaya çıkan farklılıkları incelemektir. Simülasyonlar sonucunda bütün uygulamalarda yüzey titreşimlerinin 5.8 ve 8.5 Hz frekans değerlerinde önemli ölçüde kısıtlandığı görülmüştür. Ancak uygulanan saha yapıları karşılaştırıldığında, üçgen dizilimindeki sahanın diğer saha uygulamalarına göre yüzey dalgalarını daha fazla engellediği sonucuna varılmıştır.

Supporting Institution

Türkiye Cumhuriyeti İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı

Project Number

(UDAP-Ç-19-21)

Thanks

Maddi desteklerinden dolayı T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığına (UDAP-Ç-19-21) teşekkür ederiz.

References

  • Achaoui Y., Antonakakis T., Brule S., Craster R.V., Enoch S., Guenneau S., 2017. Clamped seismic metamaterials: ultra-low frequency stop bands, New Journal of Physics 19 (6), 063022
  • Brule S., Javelaud E., Guenneau S., Enoch S., Komatitsch, D., 2012. Seismic metamaterials, ETOPIM9 book abstract, S. Guenneau, S. Enoch, Sep 2012, Marseille, France. ffhal-01343908
  • Casablanca O., Ventura G., Garesci F., Azzerboni B., Chiaia B., Chiappini M., Finocchio G., 2018. Seismic isolation of buildings using composite foundations based on metamaterials, Journal of Applied Physics 123 (17), 174903
  • Chen Y., Qian F., Scarpa F., Zuo L., Zhuang X., 2019. Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps, Materials and Design 175, 107813
  • Du Q., Zeng Y., Huang G., Yang, H., 2017. Elastic metamaterial-based seismic shield for both Lamb and surface waves, AIP Advances 7 (7), 075015
  • Du Q., Zeng Y., Xu Y., Yang H., Zeng Z., 2018. H-fractal seismic metamaterial with broadband low-frequency bandgaps, Journal of Physics D: Applied Physics 51 (10), 105104
  • Dudchenko, A.V., Dias, D., Kuznetsov, S.V. 2021. Vertical wave barriers for vibration reduction. Archive of Applied Mechanics, 91(1), 257-276 doi 10.1007/s00419-020-01768-2
  • Geng Q., Zhu S., Chong K.P., 2018. Issues in design of one-dimensional metamaterials for seismic protection, Soil Dynamics and Earthquake Engineering 107, 264-278
  • Kacin S., Ozturk M., Sevim U.K., et al., 2021. Seismic metamaterials for low-frequency mechanical wave attenuation, Natural Hazards 107, 213-229 doi 10.1007/s11069-021-04580-5
  • Kikuchi M., Black C.J., Aiken I.D., 2008. On the response of yielding seismically isolated structures, Earthquake Engineering and Structural Dynamics 37 (5), 659-679
  • Kim, S., 2014. U.S. Patent Application No. 14/359, 338
  • Lott M., Roux P., Garambois S., Gueguen P., Colombi, A., 2020. Evidence of metamaterial physics at the geophysics scale: the METAFORET experiment, Geophysical Journal International 220 (2), 1330-1339
  • Mandal P., Somala S.N., 2020. Periodic pile-soil system as a barrier for seismic surface waves, SN Applied Sciences 2, 1-8
  • Mendhe S.E., Kosta Y.P., 2011. Metamaterial properties and applications, International Journal of Information Technology and Knowledge Management 4 (1), 85-89
  • Miniaci M., Krushynska A., Bosia F., Pugno N.M., 2016. Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18 (8), 083041
  • Mu D., Shu H., Zhao L., An S., 2020. A Review of Research on Seismic Metamaterials, Advanced Engineering Materials 22 (4), 1901148
  • Prati E., 2006. Microwave propagation in round guiding structures based on double negative metamaterials, International Journal of Infrared and Millimeter Waves 27 (9), 1227
  • Shelar A., Thaker, M. 2019. Earthquake resisting structure using seismic cloaked foundation, International Research Journal of Engineering and Technology (IRJET), 06 (02), 2280-2285
  • Shelby R.A., Smith D.R., Schultz S., 2001. Experimental verification of a negative index of refraction, Science 292 (5514), 77-79
  • Veselago V.G., 2009. Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium, Physics-Uspekhi 52 (6), 649
  • Wagner P.R., Dertimanis V.K., Chatzi E N., Antoniadis I.A., 2016. Design of metamaterials for seismic isolation, In Dynamics of Civil Structures 2, 275-287
  • Wagner P.R., Dertimanis V.K., Chatzi E.N., Beck J.L., 2018. Robust-to-uncertainties optimal design of seismic metamaterials, Journal of Engineering Mechanics 144 (3), 04017181
  • Yamamoto S., Kikuchi M., Ueda M., Aiken I.D., 2009. A mechanical model for elastomeric seismic isolation bearings including the influence of axial load, Earthquake Engineering and Structural Dynamics 38 (2), 157-180

Reducing Seismic Effects by Using Steel Metamaterials in Different Configurations

Year 2021, Volume: 3 Issue: 1, 20 - 32, 30.06.2021
https://doi.org/10.46464/tdad.911133

Abstract

Studies conducted to reduce the destructive effects of earthquakes are among the research topics that have been focused on recently. In this study, a series of simulation studies were carried out to reduce vibration effects by using steel metamaterials in four different field sequences: square, triangle, sine and circle. The resulting transmission losses are determined using the finite integration method (FEM). In the simulation study, parametric definitions were made while keeping the steel structures and ground constant, and the arrangement of the piles were kept geometrically different from each other. The aim of the study is to determine the most appropriate field application for steel and to examine the differences that arise as a result of the field alignments. As a result of the simulations, it has been observed that the surface vibrations are significantly restricted at 5.8 and 8.5 Hz frequency values in all applications. However, when the applied field structures were compared, it was concluded that the field in the triangular arrangement prevented surface waves more than other field applications.

Project Number

(UDAP-Ç-19-21)

References

  • Achaoui Y., Antonakakis T., Brule S., Craster R.V., Enoch S., Guenneau S., 2017. Clamped seismic metamaterials: ultra-low frequency stop bands, New Journal of Physics 19 (6), 063022
  • Brule S., Javelaud E., Guenneau S., Enoch S., Komatitsch, D., 2012. Seismic metamaterials, ETOPIM9 book abstract, S. Guenneau, S. Enoch, Sep 2012, Marseille, France. ffhal-01343908
  • Casablanca O., Ventura G., Garesci F., Azzerboni B., Chiaia B., Chiappini M., Finocchio G., 2018. Seismic isolation of buildings using composite foundations based on metamaterials, Journal of Applied Physics 123 (17), 174903
  • Chen Y., Qian F., Scarpa F., Zuo L., Zhuang X., 2019. Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps, Materials and Design 175, 107813
  • Du Q., Zeng Y., Huang G., Yang, H., 2017. Elastic metamaterial-based seismic shield for both Lamb and surface waves, AIP Advances 7 (7), 075015
  • Du Q., Zeng Y., Xu Y., Yang H., Zeng Z., 2018. H-fractal seismic metamaterial with broadband low-frequency bandgaps, Journal of Physics D: Applied Physics 51 (10), 105104
  • Dudchenko, A.V., Dias, D., Kuznetsov, S.V. 2021. Vertical wave barriers for vibration reduction. Archive of Applied Mechanics, 91(1), 257-276 doi 10.1007/s00419-020-01768-2
  • Geng Q., Zhu S., Chong K.P., 2018. Issues in design of one-dimensional metamaterials for seismic protection, Soil Dynamics and Earthquake Engineering 107, 264-278
  • Kacin S., Ozturk M., Sevim U.K., et al., 2021. Seismic metamaterials for low-frequency mechanical wave attenuation, Natural Hazards 107, 213-229 doi 10.1007/s11069-021-04580-5
  • Kikuchi M., Black C.J., Aiken I.D., 2008. On the response of yielding seismically isolated structures, Earthquake Engineering and Structural Dynamics 37 (5), 659-679
  • Kim, S., 2014. U.S. Patent Application No. 14/359, 338
  • Lott M., Roux P., Garambois S., Gueguen P., Colombi, A., 2020. Evidence of metamaterial physics at the geophysics scale: the METAFORET experiment, Geophysical Journal International 220 (2), 1330-1339
  • Mandal P., Somala S.N., 2020. Periodic pile-soil system as a barrier for seismic surface waves, SN Applied Sciences 2, 1-8
  • Mendhe S.E., Kosta Y.P., 2011. Metamaterial properties and applications, International Journal of Information Technology and Knowledge Management 4 (1), 85-89
  • Miniaci M., Krushynska A., Bosia F., Pugno N.M., 2016. Large scale mechanical metamaterials as seismic shields, New Journal of Physics 18 (8), 083041
  • Mu D., Shu H., Zhao L., An S., 2020. A Review of Research on Seismic Metamaterials, Advanced Engineering Materials 22 (4), 1901148
  • Prati E., 2006. Microwave propagation in round guiding structures based on double negative metamaterials, International Journal of Infrared and Millimeter Waves 27 (9), 1227
  • Shelar A., Thaker, M. 2019. Earthquake resisting structure using seismic cloaked foundation, International Research Journal of Engineering and Technology (IRJET), 06 (02), 2280-2285
  • Shelby R.A., Smith D.R., Schultz S., 2001. Experimental verification of a negative index of refraction, Science 292 (5514), 77-79
  • Veselago V.G., 2009. Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium, Physics-Uspekhi 52 (6), 649
  • Wagner P.R., Dertimanis V.K., Chatzi E N., Antoniadis I.A., 2016. Design of metamaterials for seismic isolation, In Dynamics of Civil Structures 2, 275-287
  • Wagner P.R., Dertimanis V.K., Chatzi E.N., Beck J.L., 2018. Robust-to-uncertainties optimal design of seismic metamaterials, Journal of Engineering Mechanics 144 (3), 04017181
  • Yamamoto S., Kikuchi M., Ueda M., Aiken I.D., 2009. A mechanical model for elastomeric seismic isolation bearings including the influence of axial load, Earthquake Engineering and Structural Dynamics 38 (2), 157-180
There are 23 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Articles
Authors

Selçuk Kaçın 0000-0001-5406-5756

Umur Korkut Sevim 0000-0002-6268-4909

Murat Öztürk This is me 0000-0003-3389-4883

Muharrem Karaaslan 0000-0003-0923-1959

Mustafa Demirci 0000-0002-3249-2586

Oğuzhan Akgöl 0000-0002-1423-1569

Emin Ünal 0000-0002-4088-8353

Zafer Özer 0000-0001-7118-938X

Mustafa Başar 0000-0002-3108-8995

Bayram Ali Mert 0000-0002-3492-9817

Şeyda Kaya 0000-0002-7018-9377

Maide Erdoğan Alkurt 0000-0003-1858-510X

Fatih Özkan Alkurt 0000-0002-9940-0658

Project Number (UDAP-Ç-19-21)
Publication Date June 30, 2021
Submission Date April 26, 2021
Published in Issue Year 2021 Volume: 3 Issue: 1

Cite

APA Kaçın, S., Sevim, U. K., Öztürk, M., Karaaslan, M., et al. (2021). Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması. Türk Deprem Araştırma Dergisi, 3(1), 20-32. https://doi.org/10.46464/tdad.911133
AMA Kaçın S, Sevim UK, Öztürk M, Karaaslan M, Demirci M, Akgöl O, Ünal E, Özer Z, Başar M, Mert BA, Kaya Ş, Erdoğan Alkurt M, Alkurt FÖ. Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması. TDAD. June 2021;3(1):20-32. doi:10.46464/tdad.911133
Chicago Kaçın, Selçuk, Umur Korkut Sevim, Murat Öztürk, Muharrem Karaaslan, Mustafa Demirci, Oğuzhan Akgöl, Emin Ünal, Zafer Özer, Mustafa Başar, Bayram Ali Mert, Şeyda Kaya, Maide Erdoğan Alkurt, and Fatih Özkan Alkurt. “Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması”. Türk Deprem Araştırma Dergisi 3, no. 1 (June 2021): 20-32. https://doi.org/10.46464/tdad.911133.
EndNote Kaçın S, Sevim UK, Öztürk M, Karaaslan M, Demirci M, Akgöl O, Ünal E, Özer Z, Başar M, Mert BA, Kaya Ş, Erdoğan Alkurt M, Alkurt FÖ (June 1, 2021) Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması. Türk Deprem Araştırma Dergisi 3 1 20–32.
IEEE S. Kaçın, “Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması”, TDAD, vol. 3, no. 1, pp. 20–32, 2021, doi: 10.46464/tdad.911133.
ISNAD Kaçın, Selçuk et al. “Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması”. Türk Deprem Araştırma Dergisi 3/1 (June 2021), 20-32. https://doi.org/10.46464/tdad.911133.
JAMA Kaçın S, Sevim UK, Öztürk M, Karaaslan M, Demirci M, Akgöl O, Ünal E, Özer Z, Başar M, Mert BA, Kaya Ş, Erdoğan Alkurt M, Alkurt FÖ. Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması. TDAD. 2021;3:20–32.
MLA Kaçın, Selçuk et al. “Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması”. Türk Deprem Araştırma Dergisi, vol. 3, no. 1, 2021, pp. 20-32, doi:10.46464/tdad.911133.
Vancouver Kaçın S, Sevim UK, Öztürk M, Karaaslan M, Demirci M, Akgöl O, Ünal E, Özer Z, Başar M, Mert BA, Kaya Ş, Erdoğan Alkurt M, Alkurt FÖ. Farklı Konfigürasyonlarda Çelik Metamalzemeler Kullanarak Sismik Etkilerin Azaltılması. TDAD. 2021;3(1):20-32.

Cited By


Detection of underway gaps in rail systems by simulative and experimental methods
Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
https://doi.org/10.1177/09544089231153271

OPEN ACCESS AND CC LICENSE

Content of this journal is licensed under a Creative Commons Attribution 4.0 International Non-Commercial License





Flag Counter