Research Article
BibTex RIS Cite

A New Method for the Evaluation of Interevent Time Distribution of Earthquakes, Case of Turkey

Year 2021, Volume: 3 Issue: 2, 193 - 207, 20.12.2021
https://doi.org/10.46464/tdad.996642

Abstract

Several distribution models are used in order to model the distribution of the inter-event times of earthquakes. The performances of these models are mostly tested through goodness-of-fit tests but not through putting the models into application. Moreover, there is not a definitive conclusion about which model can be the best fitting one. Within this context, the objective of study is to test a number of distribution models in simulating the distribution of Turkish earthquakes in temporal domain. The earthquake time series are subjected to analysis for its IET distribution and future earthquakes are simulated by using Monte-Carlo techniques. The variation of number of earthquakes per unit time and the standard deviations are monitored for each IET model. Finally, log-normal distribution is identified as the most successful distribution model in modelling and simulating the earthquake time series

References

  • Akkar S., Cagnan Z., Yenier E., Erdogan O., Sandikkaya M.A., Gulkan P., 2010. The recently compiled Turkish strong motion database: preliminary investigation for seismological parameters, J. Seismol. 14, 457-479.
  • Anagnos T., Kiremidjian A.S., 1988. A review of earthquake occurrence models for seismic hazard analysis, Probabilist Eng. Mech. 3(1), 3-11.
  • Bak P., Christensen K., Danon L., Scanlon T., 2002. Unified scaling law for earthquakes, Phys Rev Lett. 88(17), 178501,1–178501,4
  • Bayrak E., Yilmaz S., Bayrak Y., 2017. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey, J. Asian Earth Sci. 138, 1-11.
  • Bayrak E., Yılmaz S., Softa M., Türker T., Bayrak Y. 2015. Earthquake hazard analysis for East Anatolian Fault Zone, Turkey, Natural Hazards, 76(2) 1063-1077.
  • Bountzis P., Papadimitriou E., Tsaklidis G., 2018. Estimating the earthquake occurrence rates in Corinth Gulf (Greece) through Markovian arrival process modeling, J. Appl. Stat. 46(6), 995-1020.
  • Chen C., Wang J.P., Wu Y.M., Chan C.H., 2013. A study of earthquake interoccurrence distri-bution models in Taiwan, Natural Hazards 69(3),1335-1350.
  • Coban K.H., Sayıl N., 2019. Evaluation of earthquake recurrences with different distribution models in western Anatolia, J. Seismol. 23(5), 1405-1422.
  • Coban K.H., Sayıl N.L., 2020a. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones, Arab. J. Geosci. 13, 971.
  • Çoban K.H., Sayıl N.L., 2020b. 24 Ocak 2020 Sivrice (Elazığ) Depreminin Şartlı Olasılığının Değerlendirilmesi, Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi 35(4), 1009-1019.
  • Cornell A., 1968. Engineering Seismic Risk Analysis, Bull. Seism. Soc. Am. 58(5), 1583-1606.
  • Corral A., 2003. Local distributions and rate fluctuations in a unified scaling law for earth-quakes, Phys. Rev. E 68, 035102(R).
  • Davies P.M., Jackson D.D., Kagan Y.Y., 1989. The longer it has been since the last earthquake, the longer the expected time till the next?, Bull. Seism. Soc. Am. 79,1439-1456.
  • Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F., 2013. Açıklamalı Türkiye Diri Fay Haritası, Ölçek 1:1.250.000. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara. ISBN: 978-605-5310-56-1.
  • Gardner J.K., Knopoff L., 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seism. Soc. Am. 64(5),1363-1367.
  • Hasumi T., Chen C.C., Akimoto T., Aizawa Y., 2010. The Weibull-log Weibull transition of in-teroccurrence time for synthetic and natural earthquakes, Tectonophysics 485(1-4), 9-16.
  • KRDAE-BDTİM, 2020. Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi Deprem Kataloğu, Erişim adresi: http://www.koeri.boun.edu.tr/sismo/zeqdb
  • Musson R.M.W., 2002. A Power-Law Function for Earthquake Interarrival Time and Magnitude, Bull. Seism. Soc. Am. 92(5), 1783-1794.
  • Naylor M., Touati S., Main I.G., Bell, A.F., 2010. Earthquake inter-event time distributions reflect the proportion of dependent and independent events pairs and are therefore not universal, EGU General Assembly, May 2010, Austria.
  • Nishenko S.P., Buland R., 1987. A generic recurrence interval distribution for earthquake fore-casting, Bull. Seism. Soc. Am. 77(4), 1382-1399.
  • Ozturk S., 2011. Characteristics of seismic activity in the Western, Central and Eastern parts of the North Anatolian Fault Zone, Turkey: Temporal and spatial analysis, Acta Geophys. 59, 209-238.
  • Ozturk S., 2014. Türkiye’nin Batı Anadolu Bölgesi için Deprem İstatistiği ve Olası Güçlü Depremlerin Orta Vadede Bölgesel Olarak Tahmini Üzerine Bir Çalışma, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4(1) , 75-93.
  • Pasari S., Dikshit O., 2015. Earthquake interevent time distribution in Kachchh, Northwestern India, Earth Planets Space 67, article no. 129.
  • Pasari S., 2018. Stochastic modelling of earthquake interoccurrence times in Northwest Himalaya and adjoining regions, Geomatics, Natural Hazards and Risk, 9(1),568-588.
  • Parvez I.A., Ram A., 1997. Probabilistic Assessment of earthquake hazards in the north-east Indian Peninsula and Hindukush regions, Pure Appl. Geophys. 149, 731-746.
  • Polat O., Gok E., Yilmaz D., 2008. Earthquake hazard of Aegean Extension Region, Turkey, Turk, J, Earth Sci, 17, 593-614.
  • Sayil N.L., 2013. Long-term earthquake prediction in the Marmara region based on the regional time- and magnitude-predictable model, Acta Geophys. 61(2), 338-356.
  • Saichev A., Sornette D., 2007. Theory of earthquake recurrence times, J. Geophys. Res. 112, B04.
  • Sornette D., Knopoff L., 1997. The paradox of the expected time until the next earthquake, Bull. Seism. Soc. Am. 87, 789-798.
  • Stallone F., Marzocchi W., 2019. Features of Seismic Sequences Are Similar in Different Crustal Tectonic Regions, Bull. Seism. Soc. Am. 109(5), 1594-1604.
  • Touati S., Naylor M., Main I.G., 2009. Origin and Nonuniversality of the Earthquake Inter-event Time Distribution, Phys. Rev. Lett. 102(16), 168501.
  • Ulusay R., Tuncay, E., Sonmez H., Gokceoglu C., 2004. An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey, Eng. Geol. 74(3-4), 265-291.
  • Utsu T., 1984. Estimation of parameters for recurrence models of earthquakes, Bulletin of Earthquake Research Institute, University of Tokyo 59, 3-66.
  • Yazdani A., Kowsari M., 2011. Statistical prediction of the sequence of large earthquakes in Iran, International Journal of Engineering, Transactions B: Applications 24(4), 325-336.
  • Yılmaz V., Erişoğlu M., Çelik H.E., 2011. Probabilistic prediction of the next earthquake in the NAFZ (North Anatolian fault zone), Turkey. Doğuş Üniversitesi Dergisi, 5 (2), pp. 243-250.
  • Zare M., Amini H., Yazdi P., Sesetyan K., Demircioglu M.B., Kalafat, D. vd., 2014. Recent developments of the Middle East catalog, J. Seismol. 18, 749-772.

Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği

Year 2021, Volume: 3 Issue: 2, 193 - 207, 20.12.2021
https://doi.org/10.46464/tdad.996642

Abstract

Depremler arası sürelerin (DAS) dağılımlarını modellemek amacıyla birçok dağılım modeli kullanılmıştır. Kullanılan dağılım modellerinin başarı ölçütü olarak da, verilerin modellerle olan uyumu göz önüne alınmış ancak bu dağılım modellerinin uygulamadaki başarısı denenmemiştir. Ayrıca, hangi dağılım modelinin daha başarılı olduğu konusunda ise kesinlik derecesinde sonuç elde edilememiştir. Bu bağlamda, çalışmanın amacı Türkiye depremlerinin zaman alanında simülasyonunu gerçekleştirerek hangi modelin daha uyumlu veri ürettiğini test etmektir. Çalışma kapsamında, geçmiş depremlerin zamansal dağılımları kullanılarak DAS verileri elde edilmiş, Monte-Karlo (MK) yöntemi ile de yapay depremler üretilmiştir. Üretilen depremlerin zamansal dağılımları gözlemlenmiş, yıllık deprem sayılarının ortalama ve standart sapma değerleri hesaplanmıştır. Sonuç olarak, hem verilerin modellenmesi açısından hem de üretilen verilerin benzerliği göz önüne alındığında, log-normal dağılım modelinin en başarılı model olduğu görülmüştür.

References

  • Akkar S., Cagnan Z., Yenier E., Erdogan O., Sandikkaya M.A., Gulkan P., 2010. The recently compiled Turkish strong motion database: preliminary investigation for seismological parameters, J. Seismol. 14, 457-479.
  • Anagnos T., Kiremidjian A.S., 1988. A review of earthquake occurrence models for seismic hazard analysis, Probabilist Eng. Mech. 3(1), 3-11.
  • Bak P., Christensen K., Danon L., Scanlon T., 2002. Unified scaling law for earthquakes, Phys Rev Lett. 88(17), 178501,1–178501,4
  • Bayrak E., Yilmaz S., Bayrak Y., 2017. Temporal and spatial variations of Gutenberg-Richter parameter and fractal dimension in Western Anatolia, Turkey, J. Asian Earth Sci. 138, 1-11.
  • Bayrak E., Yılmaz S., Softa M., Türker T., Bayrak Y. 2015. Earthquake hazard analysis for East Anatolian Fault Zone, Turkey, Natural Hazards, 76(2) 1063-1077.
  • Bountzis P., Papadimitriou E., Tsaklidis G., 2018. Estimating the earthquake occurrence rates in Corinth Gulf (Greece) through Markovian arrival process modeling, J. Appl. Stat. 46(6), 995-1020.
  • Chen C., Wang J.P., Wu Y.M., Chan C.H., 2013. A study of earthquake interoccurrence distri-bution models in Taiwan, Natural Hazards 69(3),1335-1350.
  • Coban K.H., Sayıl N., 2019. Evaluation of earthquake recurrences with different distribution models in western Anatolia, J. Seismol. 23(5), 1405-1422.
  • Coban K.H., Sayıl N.L., 2020a. Different probabilistic models for earthquake occurrences along the North and East Anatolian fault zones, Arab. J. Geosci. 13, 971.
  • Çoban K.H., Sayıl N.L., 2020b. 24 Ocak 2020 Sivrice (Elazığ) Depreminin Şartlı Olasılığının Değerlendirilmesi, Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi 35(4), 1009-1019.
  • Cornell A., 1968. Engineering Seismic Risk Analysis, Bull. Seism. Soc. Am. 58(5), 1583-1606.
  • Corral A., 2003. Local distributions and rate fluctuations in a unified scaling law for earth-quakes, Phys. Rev. E 68, 035102(R).
  • Davies P.M., Jackson D.D., Kagan Y.Y., 1989. The longer it has been since the last earthquake, the longer the expected time till the next?, Bull. Seism. Soc. Am. 79,1439-1456.
  • Emre Ö., Duman T.Y., Özalp S., Elmacı H., Olgun Ş., Şaroğlu F., 2013. Açıklamalı Türkiye Diri Fay Haritası, Ölçek 1:1.250.000. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30, Ankara. ISBN: 978-605-5310-56-1.
  • Gardner J.K., Knopoff L., 1974. Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian?, Bull. Seism. Soc. Am. 64(5),1363-1367.
  • Hasumi T., Chen C.C., Akimoto T., Aizawa Y., 2010. The Weibull-log Weibull transition of in-teroccurrence time for synthetic and natural earthquakes, Tectonophysics 485(1-4), 9-16.
  • KRDAE-BDTİM, 2020. Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem-Tsunami İzleme ve Değerlendirme Merkezi Deprem Kataloğu, Erişim adresi: http://www.koeri.boun.edu.tr/sismo/zeqdb
  • Musson R.M.W., 2002. A Power-Law Function for Earthquake Interarrival Time and Magnitude, Bull. Seism. Soc. Am. 92(5), 1783-1794.
  • Naylor M., Touati S., Main I.G., Bell, A.F., 2010. Earthquake inter-event time distributions reflect the proportion of dependent and independent events pairs and are therefore not universal, EGU General Assembly, May 2010, Austria.
  • Nishenko S.P., Buland R., 1987. A generic recurrence interval distribution for earthquake fore-casting, Bull. Seism. Soc. Am. 77(4), 1382-1399.
  • Ozturk S., 2011. Characteristics of seismic activity in the Western, Central and Eastern parts of the North Anatolian Fault Zone, Turkey: Temporal and spatial analysis, Acta Geophys. 59, 209-238.
  • Ozturk S., 2014. Türkiye’nin Batı Anadolu Bölgesi için Deprem İstatistiği ve Olası Güçlü Depremlerin Orta Vadede Bölgesel Olarak Tahmini Üzerine Bir Çalışma, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 4(1) , 75-93.
  • Pasari S., Dikshit O., 2015. Earthquake interevent time distribution in Kachchh, Northwestern India, Earth Planets Space 67, article no. 129.
  • Pasari S., 2018. Stochastic modelling of earthquake interoccurrence times in Northwest Himalaya and adjoining regions, Geomatics, Natural Hazards and Risk, 9(1),568-588.
  • Parvez I.A., Ram A., 1997. Probabilistic Assessment of earthquake hazards in the north-east Indian Peninsula and Hindukush regions, Pure Appl. Geophys. 149, 731-746.
  • Polat O., Gok E., Yilmaz D., 2008. Earthquake hazard of Aegean Extension Region, Turkey, Turk, J, Earth Sci, 17, 593-614.
  • Sayil N.L., 2013. Long-term earthquake prediction in the Marmara region based on the regional time- and magnitude-predictable model, Acta Geophys. 61(2), 338-356.
  • Saichev A., Sornette D., 2007. Theory of earthquake recurrence times, J. Geophys. Res. 112, B04.
  • Sornette D., Knopoff L., 1997. The paradox of the expected time until the next earthquake, Bull. Seism. Soc. Am. 87, 789-798.
  • Stallone F., Marzocchi W., 2019. Features of Seismic Sequences Are Similar in Different Crustal Tectonic Regions, Bull. Seism. Soc. Am. 109(5), 1594-1604.
  • Touati S., Naylor M., Main I.G., 2009. Origin and Nonuniversality of the Earthquake Inter-event Time Distribution, Phys. Rev. Lett. 102(16), 168501.
  • Ulusay R., Tuncay, E., Sonmez H., Gokceoglu C., 2004. An attenuation relationship based on Turkish strong motion data and iso-acceleration map of Turkey, Eng. Geol. 74(3-4), 265-291.
  • Utsu T., 1984. Estimation of parameters for recurrence models of earthquakes, Bulletin of Earthquake Research Institute, University of Tokyo 59, 3-66.
  • Yazdani A., Kowsari M., 2011. Statistical prediction of the sequence of large earthquakes in Iran, International Journal of Engineering, Transactions B: Applications 24(4), 325-336.
  • Yılmaz V., Erişoğlu M., Çelik H.E., 2011. Probabilistic prediction of the next earthquake in the NAFZ (North Anatolian fault zone), Turkey. Doğuş Üniversitesi Dergisi, 5 (2), pp. 243-250.
  • Zare M., Amini H., Yazdi P., Sesetyan K., Demircioglu M.B., Kalafat, D. vd., 2014. Recent developments of the Middle East catalog, J. Seismol. 18, 749-772.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering, Geological Sciences and Engineering (Other)
Journal Section Articles
Authors

Hakan Karaca 0000-0003-3291-5822

Publication Date December 20, 2021
Submission Date September 16, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Karaca, H. (2021). Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği. Türk Deprem Araştırma Dergisi, 3(2), 193-207. https://doi.org/10.46464/tdad.996642
AMA Karaca H. Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği. TDAD. December 2021;3(2):193-207. doi:10.46464/tdad.996642
Chicago Karaca, Hakan. “Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği”. Türk Deprem Araştırma Dergisi 3, no. 2 (December 2021): 193-207. https://doi.org/10.46464/tdad.996642.
EndNote Karaca H (December 1, 2021) Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği. Türk Deprem Araştırma Dergisi 3 2 193–207.
IEEE H. Karaca, “Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği”, TDAD, vol. 3, no. 2, pp. 193–207, 2021, doi: 10.46464/tdad.996642.
ISNAD Karaca, Hakan. “Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği”. Türk Deprem Araştırma Dergisi 3/2 (December 2021), 193-207. https://doi.org/10.46464/tdad.996642.
JAMA Karaca H. Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği. TDAD. 2021;3:193–207.
MLA Karaca, Hakan. “Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği”. Türk Deprem Araştırma Dergisi, vol. 3, no. 2, 2021, pp. 193-07, doi:10.46464/tdad.996642.
Vancouver Karaca H. Depremler Arası Sürelerin Dağılım Modelleriyle Değerlendirilmesinde Yeni Bir Yöntem, Türkiye Örneği. TDAD. 2021;3(2):193-207.

OPEN ACCESS AND CC LICENSE

Content of this journal is licensed under a Creative Commons Attribution 4.0 International Non-Commercial License





Flag Counter