Research Article
BibTex RIS Cite
Year 2023, Volume: 12 Issue: 2, 61 - 67, 22.06.2023
https://doi.org/10.46810/tdfd.1204055
An Erratum to this article was published on December 28, 2023. https://dergipark.org.tr/en/pub/tdfd/issue/81944/1411956

Abstract

References

  • Y. Demir, H. E. Duran, L. Durmaz, P. Taslimi, Ş. Beydemir, and İ. Gulçin, “The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders,” Appl. Biochem. Biotechnol., vol. 190, no. 2, pp. 437–447, Feb. 2020, doi: 10.1007/s12010-019-03099-7.
  • F. Erdemir et al., “Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties,” Bioorg. Chem., vol. 91, p. 103134, Oct. 2019, doi: 10.1016/j.bioorg.2019.103134.
  • L. Gilbert et al., “A pilot study of pi-class glutathione S-transferase expression in breast cancer: correlation with estrogen receptor expression and prognosis in node-negative breast cancer.,” J. Clin. Oncol., vol. 11, no. 1, pp. 49–58, Jan. 1993, doi: 10.1200/JCO.1993.11.1.49.
  • IDF diabetes atlas, “No Title,” in IDF diabetes atlas." International Diabetes Federation (9th editio). Retrieved from http://www. idf. org/about-diabetes/facts-figures, 2019.
  • A. Oğuz, “The Prospective Urban Rural Epidemiology (PURE) study: PURE TURKEY,” Turk Kardiyol. Dern. Arsivi-Archives Turkish Soc. Cardiol., 2018, doi: 10.5543/tkda.2018.32967.
  • Anonim, “No Title,” Dünya Diyabet Günü, 2020. https://sggm.saglik.gov.tr/TR-76887/dunya-diyabet-gunu-2020.html
  • W. H. Tang, S. Wu, T. M. Wong, S. K. Chung, and S. S. M. Chung, “Polyol pathway mediates iron-induced oxidative injury in ischemic–reperfused rat heart,” Free Radic. Biol. Med., vol. 45, no. 5, pp. 602–610, Sep. 2008, doi: 10.1016/j.freeradbiomed.2008.05.003.
  • S. S. M. Chung, E. C. M. Ho, K. S. L. Lam, and S. K. Chung, “Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress,” J. Am. Soc. Nephrol., vol. 14, no. suppl 3, pp. S233–S236, Aug. 2003, doi: 10.1097/01.ASN.0000077408.15865.06.
  • R. I. Lindstad, K. Teigen, and L. Skjeldal, “Inhibition of sorbitol dehydrogenase by nucleosides and nucleotides,” Biochem. Biophys. Res. Commun., vol. 435, no. 2, pp. 202–208, May 2013, doi: 10.1016/j.bbrc.2013.04.081.
  • Y. Demir, M. S. Özaslan, H. E. Duran, Ö. İ. Küfrevioğlu, and Ş. Beydemir, “Inhibition effects of quinones on aldose reductase: Antidiabetic properties,” Environ. Toxicol. Pharmacol., vol. 70, p. 103195, Aug. 2019, doi: 10.1016/j.etap.2019.103195.
  • B. Sever, M. D. Altıntop, Y. Demir, G. Akalın Çiftçi, Ş. Beydemir, and A. Özdemir, “Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds,” Bioorg. Chem., vol. 102, p. 104110, Sep. 2020, doi: 10.1016/j.bioorg.2020.104110.
  • T.-S. Kim et al., “Overcoming NADPH product inhibition improves D-sorbitol conversion to L-sorbose,” Sci. Rep., vol. 9, no. 1, p. 815, Dec. 2019, doi: 10.1038/s41598-018-37401-0.
  • T. Petrova et al., “Factorizing selectivity determinants of inhibitor binding toward aldose and aldehyde reductases: structural and thermodynamic properties of the aldose reductase mutant Leu300Pro-fidarestat complex.,” J. Med. Chem., vol. 48, no. 18, pp. 5659–65, Sep. 2005, doi: 10.1021/jm050424+.
  • C. Yabe-Nishimura, “Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications.,” Pharmacol. Rev., vol. 50, no. 1, pp. 21–33, Mar. 1998, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9549756
  • M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, Dec. 2001, doi: 10.1038/414813a.
  • Q. Huang, Q. Liu, and D. Ouyang, “Sorbinil, an Aldose Reductase Inhibitor, in Fighting Against Diabetic Complications,” Med. Chem. (Los. Angeles)., vol. 15, no. 1, pp. 3–7, Jan. 2019, doi: 10.2174/1573406414666180524082445.
  • M. S. Özaslan, R. Sağlamtaş, Y. Demir, Y. Genç, İ. Saraçoğlu, and İ. Gülçin, “Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity,” Chem. Biodivers., vol. 19, no. 8, Aug. 2022, doi: 10.1002/cbdv.202200280.
  • C. Türkeş, Y. Demir, and Ş. Beydemir, “Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity,” Appl. Biochem. Biotechnol., vol. 189, no. 1, pp. 318–329, Sep. 2019, doi: 10.1007/s12010-019-03009-x.
  • Y. Demir, M. Işık, İ. Gülçin, and Ş. Beydemir, “Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney,” J. Biochem. Mol. Toxicol., vol. 31, no. 9, p. e21936, Sep. 2017, doi: 10.1002/jbt.21935.
  • F. S. Tokalı et al., “Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin‐4( <scp> 3 H </scp> )‐one derivatives as potential aldose reductase inhibitors,” Drug Dev. Res., Sep. 2021, doi: 10.1002/ddr.21887.
  • N. Trueblood and R. Ramasamy, “Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts,” Am. J. Physiol. Circ. Physiol., vol. 275, no. 1, pp. H75–H83, Jul. 1998, doi: 10.1152/ajpheart.1998.275.1.H75.
  • H. Liu et al., “Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice,” Diabetologia, vol. 54, no. 5, pp. 1242–1251, May 2011, doi: 10.1007/s00125-011-2045-4.
  • J. Tang, Y. Du, J. M. Petrash, N. Sheibani, and T. S. Kern, “Deletion of Aldose Reductase from Mice Inhibits Diabetes-Induced Retinal Capillary Degeneration and Superoxide Generation,” PLoS One, vol. 8, no. 4, p. e62081, Apr. 2013, doi: 10.1371/journal.pone.0062081.
  • B. Şengül and Ş. Beydemir, “The interactions of cephalosporins on polyol pathway enzymes from sheep kidney,” Arch. Physiol. Biochem., vol. 124, no. 1, pp. 35–44, Jan. 2018, doi: 10.1080/13813455.2017.1358749.
  • M. J. Cerelli, D. L. Curtis, J. P. Dunn, P. H. Nelson, T. M. Peak, and L. D. Waterbury, “Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids,” J. Med. Chem., vol. 29, no. 11, pp. 2347–2351, Nov. 1986, doi: 10.1021/jm00161a033.
  • I. N. Korkmaz, “2‐Amino thiazole derivatives as inhibitors of some metabolic enzymes: An in vitro and in silico study,” Biotechnol. Appl. Biochem., Jul. 2022, doi: 10.1002/bab.2388.
  • I. N. KORKMAZ, “In Vitro Inhibition Effects of 2-Amino Thiazole Derivatives on Lactoperoxidase Enzyme Activity,” Cumhur. Sci. J., vol. 43, no. 1, pp. 33–37, Mar. 2022, doi: 10.17776/csj.1017247.
  • H. Steuber, M. Zentgraf, C. Gerlach, C. A. Sotriffer, A. Heine, and G. Klebe, “Expect the Unexpected or Caveat for Drug Designers: Multiple Structure Determinations Using Aldose Reductase Crystals Treated under Varying Soaking and Co-crystallisation Conditions,” J. Mol. Biol., vol. 363, no. 1, pp. 174–187, Oct. 2006, doi: 10.1016/j.jmb.2006.08.011.
  • G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, “Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments,” J. Comput. Aided. Mol. Des., vol. 27, no. 3, pp. 221–234, Mar. 2013, doi: 10.1007/s10822-013-9644-8.
  • Schrödinger, “No Title,” vol. 3, 2020.
  • R. A. Friesner et al., “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” J. Med. Chem., vol. 47, no. 7, pp. 1739–1749, Mar. 2004, doi: 10.1021/jm0306430.
  • E. Yuriev, M. Agostino, and P. A. Ramsland, “Challenges and advances in computational docking: 2009 in review,” J. Mol. Recognit., vol. 24, no. 2, pp. 149–164, Mar. 2011, doi: 10.1002/jmr.1077.
  • D. Rakowitz, R. Maccari, R. Ottanà, and M. G. Vigorita, “In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones,” Bioorg. Med. Chem., vol. 14, no. 2, pp. 567–574, Jan. 2006, doi: 10.1016/j.bmc.2005.08.056.
  • B. F. Schrijvers, A. S. De Vriese, and A. Flyvbjerg, “From Hyperglycemia to Diabetic Kidney Disease: The Role of Metabolic, Hemodynamic, Intracellular Factors and Growth Factors/Cytokines,” Endocr. Rev., vol. 25, no. 6, pp. 971–1010, Dec. 2004, doi: 10.1210/er.2003-0018.
  • C. Türkeş, M. Arslan, Y. Demir, L. Çoçaj, A. R. Nixha, and Ş. Beydemir, “<scp> N ‐substituted </scp> phthalazine sulfonamide derivatives as non‐classical aldose reductase inhibitors,” J. Mol. Recognit., vol. 35, no. 12, Dec. 2022, doi: 10.1002/jmr.2991.
  • M. Akdağ, A. B. Özçelik, Y. Demir, and Ş. Beydemir, “Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety,” J. Mol. Struct., vol. 1258, p. 132675, Jun. 2022, doi: 10.1016/j.molstruc.2022.132675.
  • Y. Demir et al., “Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies,” Arch. Pharm. (Weinheim)., vol. 353, no. 12, p. 2000118, Dec. 2020, doi: 10.1002/ardp.202000118.
  • Y. Demir and Z. Köksal, “Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes,” Arch. Physiol. Biochem., vol. 128, no. 4, pp. 979–984, Jul. 2022, doi: 10.1080/13813455.2020.1742166.
  • B. Sever et al., “A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity,” Open Chem., vol. 19, no. 1, pp. 347–357, Mar. 2021, doi: 10.1515/chem-2021-0032.
  • Y. Lei et al., “Design of Benzothiazolone‐Based Carboxylic Acid Aldose Reductase Inhibitors,” ChemistrySelect, vol. 6, no. 20, pp. 4874–4880, May 2021, doi: 10.1002/slct.202101443.
  • A. Imran et al., “Development of coumarin-thiosemicarbazone hybrids as aldose reductase inhibitors: Biological assays, molecular docking, simulation studies and ADME evaluation,” Bioorg. Chem., vol. 115, p. 105164, Oct. 2021, doi: 10.1016/j.bioorg.2021.105164.
  • M. Hlaváč et al., “Novel substituted N-benzyl(oxotriazinoindole) inhibitors of aldose reductase exploiting ALR2 unoccupied interactive pocket,” Bioorg. Med. Chem., vol. 29, p. 115885, Jan. 2021, doi: 10.1016/j.bmc.2020.115885.
  • M. Ceylan et al., “Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives,” J. Biochem. Mol. Toxicol., vol. 31, no. 4, p. e21872, Apr. 2017, doi: 10.1002/jbt.21872.
  • Y. Temel and S. BAYINDIR, “The Synthesis of Thiosemicarbazone-Based Aza-Ylides as Inhibitors of Rat Erythrocyte Glucose 6-Phosphate Dehydrogenase Enzyme,” J. Inst. Sci. Technol., pp. 1503–1512, Sep. 2019, doi: 10.21597/jist.518012.
  • P. Alexiou, K. Pegklidou, M. Chatzopoulou, I. Nicolaou, and V. Demopoulos, “Aldose Reductase Enzyme and its Implication to Major Health Problems of the 21st Century,” Curr. Med. Chem., vol. 16, no. 6, pp. 734–752, Feb. 2009, doi: 10.2174/092986709787458362.
  • J. Sangshetti, R. Chouthe, N. Sakle, I. Gonjari, and D. Shinde, “Aldose Reductase: A Multi-disease Target,” Curr. Enzym. Inhib., vol. 10, no. 1, pp. 2–12, Oct. 2013, doi: 10.2174/15734080113096660007.
  • M. G. Salem, Y. M. Abdel Aziz, M. Elewa, M. S. Nafie, H. A. Elshihawy, and M. M. Said, “Synthesis, molecular modeling, selective aldose reductase inhibition and hypoglycemic activity of novel meglitinides,” Bioorg. Chem., vol. 111, p. 104909, Jun. 2021, doi: 10.1016/j.bioorg.2021.104909.

Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors

Year 2023, Volume: 12 Issue: 2, 61 - 67, 22.06.2023
https://doi.org/10.46810/tdfd.1204055
An Erratum to this article was published on December 28, 2023. https://dergipark.org.tr/en/pub/tdfd/issue/81944/1411956

Abstract

Aldoz redüktaz (AR), poliol yolunda glikozdan sorbitol üretimini katalize eder ve insülinden bağımsız dokularda anormal sorbitol agregasyonuna neden olan, retinopati, nöropati ve nefropati gibi bazı problemler yaratan kritik bir enzimdir. AR inhibisyonunun bu yan etkileri azaltmak için uygun bir yaklaşım olduğu gösterilmiştir. Mevcut çalışma, literatüre yeni AR inhibitörlerini tanıtmayı amaçlamıştır. Bu amaçla AR inhibitörleri olarak benzaldehitler incelenmiştir. İlk olarak sığır böbreğinden homojenat hazırlanmış, ardından inhibisyon çalışmaları yapılmıştır. Çalışılan bütün benzaldehit türevlerinin AR'yi inhibe ettiği bulundu. 0.23 ve 1.37 µM IC50 değerlerine sahip olan türev 3 ve 6'nın inhibitör aktivitesi, standart inhibitör sorbinilden daha yüksek olduğu tespit edildi. In vitro inhibisyon çalışmalarından sonra, tahmini bağlanma enerjileri ve türevlerin enzime bağlanma modları moleküler docking ile tahmin edildi. Bileşik 3, -8,61 kcal/mol'lük bir maksimum yerleştirme puanı sergiledi. Sonuç olarak, bu bileşikler, özellikle bileşik 3, diyabetik komplikasyonların tedavisinde veya önlenmesinde yeni ilaç aday moleküllerinin sentezi için yol gösterici moleküller olabilir.

References

  • Y. Demir, H. E. Duran, L. Durmaz, P. Taslimi, Ş. Beydemir, and İ. Gulçin, “The Influence of Some Nonsteroidal Anti-inflammatory Drugs on Metabolic Enzymes of Aldose Reductase, Sorbitol Dehydrogenase, and α-Glycosidase: a Perspective for Metabolic Disorders,” Appl. Biochem. Biotechnol., vol. 190, no. 2, pp. 437–447, Feb. 2020, doi: 10.1007/s12010-019-03099-7.
  • F. Erdemir et al., “Novel 2-aminopyridine liganded Pd(II) N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties,” Bioorg. Chem., vol. 91, p. 103134, Oct. 2019, doi: 10.1016/j.bioorg.2019.103134.
  • L. Gilbert et al., “A pilot study of pi-class glutathione S-transferase expression in breast cancer: correlation with estrogen receptor expression and prognosis in node-negative breast cancer.,” J. Clin. Oncol., vol. 11, no. 1, pp. 49–58, Jan. 1993, doi: 10.1200/JCO.1993.11.1.49.
  • IDF diabetes atlas, “No Title,” in IDF diabetes atlas." International Diabetes Federation (9th editio). Retrieved from http://www. idf. org/about-diabetes/facts-figures, 2019.
  • A. Oğuz, “The Prospective Urban Rural Epidemiology (PURE) study: PURE TURKEY,” Turk Kardiyol. Dern. Arsivi-Archives Turkish Soc. Cardiol., 2018, doi: 10.5543/tkda.2018.32967.
  • Anonim, “No Title,” Dünya Diyabet Günü, 2020. https://sggm.saglik.gov.tr/TR-76887/dunya-diyabet-gunu-2020.html
  • W. H. Tang, S. Wu, T. M. Wong, S. K. Chung, and S. S. M. Chung, “Polyol pathway mediates iron-induced oxidative injury in ischemic–reperfused rat heart,” Free Radic. Biol. Med., vol. 45, no. 5, pp. 602–610, Sep. 2008, doi: 10.1016/j.freeradbiomed.2008.05.003.
  • S. S. M. Chung, E. C. M. Ho, K. S. L. Lam, and S. K. Chung, “Contribution of Polyol Pathway to Diabetes-Induced Oxidative Stress,” J. Am. Soc. Nephrol., vol. 14, no. suppl 3, pp. S233–S236, Aug. 2003, doi: 10.1097/01.ASN.0000077408.15865.06.
  • R. I. Lindstad, K. Teigen, and L. Skjeldal, “Inhibition of sorbitol dehydrogenase by nucleosides and nucleotides,” Biochem. Biophys. Res. Commun., vol. 435, no. 2, pp. 202–208, May 2013, doi: 10.1016/j.bbrc.2013.04.081.
  • Y. Demir, M. S. Özaslan, H. E. Duran, Ö. İ. Küfrevioğlu, and Ş. Beydemir, “Inhibition effects of quinones on aldose reductase: Antidiabetic properties,” Environ. Toxicol. Pharmacol., vol. 70, p. 103195, Aug. 2019, doi: 10.1016/j.etap.2019.103195.
  • B. Sever, M. D. Altıntop, Y. Demir, G. Akalın Çiftçi, Ş. Beydemir, and A. Özdemir, “Design, synthesis, in vitro and in silico investigation of aldose reductase inhibitory effects of new thiazole-based compounds,” Bioorg. Chem., vol. 102, p. 104110, Sep. 2020, doi: 10.1016/j.bioorg.2020.104110.
  • T.-S. Kim et al., “Overcoming NADPH product inhibition improves D-sorbitol conversion to L-sorbose,” Sci. Rep., vol. 9, no. 1, p. 815, Dec. 2019, doi: 10.1038/s41598-018-37401-0.
  • T. Petrova et al., “Factorizing selectivity determinants of inhibitor binding toward aldose and aldehyde reductases: structural and thermodynamic properties of the aldose reductase mutant Leu300Pro-fidarestat complex.,” J. Med. Chem., vol. 48, no. 18, pp. 5659–65, Sep. 2005, doi: 10.1021/jm050424+.
  • C. Yabe-Nishimura, “Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications.,” Pharmacol. Rev., vol. 50, no. 1, pp. 21–33, Mar. 1998, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9549756
  • M. Brownlee, “Biochemistry and molecular cell biology of diabetic complications,” Nature, vol. 414, no. 6865, pp. 813–820, Dec. 2001, doi: 10.1038/414813a.
  • Q. Huang, Q. Liu, and D. Ouyang, “Sorbinil, an Aldose Reductase Inhibitor, in Fighting Against Diabetic Complications,” Med. Chem. (Los. Angeles)., vol. 15, no. 1, pp. 3–7, Jan. 2019, doi: 10.2174/1573406414666180524082445.
  • M. S. Özaslan, R. Sağlamtaş, Y. Demir, Y. Genç, İ. Saraçoğlu, and İ. Gülçin, “Isolation of Some Phenolic Compounds from Plantago subulata L. and Determination of Their Antidiabetic, Anticholinesterase, Antiepileptic and Antioxidant Activity,” Chem. Biodivers., vol. 19, no. 8, Aug. 2022, doi: 10.1002/cbdv.202200280.
  • C. Türkeş, Y. Demir, and Ş. Beydemir, “Anti-diabetic Properties of Calcium Channel Blockers: Inhibition Effects on Aldose Reductase Enzyme Activity,” Appl. Biochem. Biotechnol., vol. 189, no. 1, pp. 318–329, Sep. 2019, doi: 10.1007/s12010-019-03009-x.
  • Y. Demir, M. Işık, İ. Gülçin, and Ş. Beydemir, “Phenolic compounds inhibit the aldose reductase enzyme from the sheep kidney,” J. Biochem. Mol. Toxicol., vol. 31, no. 9, p. e21936, Sep. 2017, doi: 10.1002/jbt.21935.
  • F. S. Tokalı et al., “Synthesis, biological evaluation, and in silico study of novel library sulfonates containing quinazolin‐4( <scp> 3 H </scp> )‐one derivatives as potential aldose reductase inhibitors,” Drug Dev. Res., Sep. 2021, doi: 10.1002/ddr.21887.
  • N. Trueblood and R. Ramasamy, “Aldose reductase inhibition improves altered glucose metabolism of isolated diabetic rat hearts,” Am. J. Physiol. Circ. Physiol., vol. 275, no. 1, pp. H75–H83, Jul. 1998, doi: 10.1152/ajpheart.1998.275.1.H75.
  • H. Liu et al., “Genetic deficiency of aldose reductase counteracts the development of diabetic nephropathy in C57BL/6 mice,” Diabetologia, vol. 54, no. 5, pp. 1242–1251, May 2011, doi: 10.1007/s00125-011-2045-4.
  • J. Tang, Y. Du, J. M. Petrash, N. Sheibani, and T. S. Kern, “Deletion of Aldose Reductase from Mice Inhibits Diabetes-Induced Retinal Capillary Degeneration and Superoxide Generation,” PLoS One, vol. 8, no. 4, p. e62081, Apr. 2013, doi: 10.1371/journal.pone.0062081.
  • B. Şengül and Ş. Beydemir, “The interactions of cephalosporins on polyol pathway enzymes from sheep kidney,” Arch. Physiol. Biochem., vol. 124, no. 1, pp. 35–44, Jan. 2018, doi: 10.1080/13813455.2017.1358749.
  • M. J. Cerelli, D. L. Curtis, J. P. Dunn, P. H. Nelson, T. M. Peak, and L. D. Waterbury, “Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids,” J. Med. Chem., vol. 29, no. 11, pp. 2347–2351, Nov. 1986, doi: 10.1021/jm00161a033.
  • I. N. Korkmaz, “2‐Amino thiazole derivatives as inhibitors of some metabolic enzymes: An in vitro and in silico study,” Biotechnol. Appl. Biochem., Jul. 2022, doi: 10.1002/bab.2388.
  • I. N. KORKMAZ, “In Vitro Inhibition Effects of 2-Amino Thiazole Derivatives on Lactoperoxidase Enzyme Activity,” Cumhur. Sci. J., vol. 43, no. 1, pp. 33–37, Mar. 2022, doi: 10.17776/csj.1017247.
  • H. Steuber, M. Zentgraf, C. Gerlach, C. A. Sotriffer, A. Heine, and G. Klebe, “Expect the Unexpected or Caveat for Drug Designers: Multiple Structure Determinations Using Aldose Reductase Crystals Treated under Varying Soaking and Co-crystallisation Conditions,” J. Mol. Biol., vol. 363, no. 1, pp. 174–187, Oct. 2006, doi: 10.1016/j.jmb.2006.08.011.
  • G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju, and W. Sherman, “Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments,” J. Comput. Aided. Mol. Des., vol. 27, no. 3, pp. 221–234, Mar. 2013, doi: 10.1007/s10822-013-9644-8.
  • Schrödinger, “No Title,” vol. 3, 2020.
  • R. A. Friesner et al., “Glide: A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy,” J. Med. Chem., vol. 47, no. 7, pp. 1739–1749, Mar. 2004, doi: 10.1021/jm0306430.
  • E. Yuriev, M. Agostino, and P. A. Ramsland, “Challenges and advances in computational docking: 2009 in review,” J. Mol. Recognit., vol. 24, no. 2, pp. 149–164, Mar. 2011, doi: 10.1002/jmr.1077.
  • D. Rakowitz, R. Maccari, R. Ottanà, and M. G. Vigorita, “In vitro aldose reductase inhibitory activity of 5-benzyl-2,4-thiazolidinediones,” Bioorg. Med. Chem., vol. 14, no. 2, pp. 567–574, Jan. 2006, doi: 10.1016/j.bmc.2005.08.056.
  • B. F. Schrijvers, A. S. De Vriese, and A. Flyvbjerg, “From Hyperglycemia to Diabetic Kidney Disease: The Role of Metabolic, Hemodynamic, Intracellular Factors and Growth Factors/Cytokines,” Endocr. Rev., vol. 25, no. 6, pp. 971–1010, Dec. 2004, doi: 10.1210/er.2003-0018.
  • C. Türkeş, M. Arslan, Y. Demir, L. Çoçaj, A. R. Nixha, and Ş. Beydemir, “<scp> N ‐substituted </scp> phthalazine sulfonamide derivatives as non‐classical aldose reductase inhibitors,” J. Mol. Recognit., vol. 35, no. 12, Dec. 2022, doi: 10.1002/jmr.2991.
  • M. Akdağ, A. B. Özçelik, Y. Demir, and Ş. Beydemir, “Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety,” J. Mol. Struct., vol. 1258, p. 132675, Jun. 2022, doi: 10.1016/j.molstruc.2022.132675.
  • Y. Demir et al., “Determination of the inhibition profiles of pyrazolyl–thiazole derivatives against aldose reductase and α‐glycosidase and molecular docking studies,” Arch. Pharm. (Weinheim)., vol. 353, no. 12, p. 2000118, Dec. 2020, doi: 10.1002/ardp.202000118.
  • Y. Demir and Z. Köksal, “Some sulfonamides as aldose reductase inhibitors: therapeutic approach in diabetes,” Arch. Physiol. Biochem., vol. 128, no. 4, pp. 979–984, Jul. 2022, doi: 10.1080/13813455.2020.1742166.
  • B. Sever et al., “A new series of 2,4-thiazolidinediones endowed with potent aldose reductase inhibitory activity,” Open Chem., vol. 19, no. 1, pp. 347–357, Mar. 2021, doi: 10.1515/chem-2021-0032.
  • Y. Lei et al., “Design of Benzothiazolone‐Based Carboxylic Acid Aldose Reductase Inhibitors,” ChemistrySelect, vol. 6, no. 20, pp. 4874–4880, May 2021, doi: 10.1002/slct.202101443.
  • A. Imran et al., “Development of coumarin-thiosemicarbazone hybrids as aldose reductase inhibitors: Biological assays, molecular docking, simulation studies and ADME evaluation,” Bioorg. Chem., vol. 115, p. 105164, Oct. 2021, doi: 10.1016/j.bioorg.2021.105164.
  • M. Hlaváč et al., “Novel substituted N-benzyl(oxotriazinoindole) inhibitors of aldose reductase exploiting ALR2 unoccupied interactive pocket,” Bioorg. Med. Chem., vol. 29, p. 115885, Jan. 2021, doi: 10.1016/j.bmc.2020.115885.
  • M. Ceylan et al., “Synthesis, carbonic anhydrase I and II isoenzymes inhibition properties, and antibacterial activities of novel tetralone-based 1,4-benzothiazepine derivatives,” J. Biochem. Mol. Toxicol., vol. 31, no. 4, p. e21872, Apr. 2017, doi: 10.1002/jbt.21872.
  • Y. Temel and S. BAYINDIR, “The Synthesis of Thiosemicarbazone-Based Aza-Ylides as Inhibitors of Rat Erythrocyte Glucose 6-Phosphate Dehydrogenase Enzyme,” J. Inst. Sci. Technol., pp. 1503–1512, Sep. 2019, doi: 10.21597/jist.518012.
  • P. Alexiou, K. Pegklidou, M. Chatzopoulou, I. Nicolaou, and V. Demopoulos, “Aldose Reductase Enzyme and its Implication to Major Health Problems of the 21st Century,” Curr. Med. Chem., vol. 16, no. 6, pp. 734–752, Feb. 2009, doi: 10.2174/092986709787458362.
  • J. Sangshetti, R. Chouthe, N. Sakle, I. Gonjari, and D. Shinde, “Aldose Reductase: A Multi-disease Target,” Curr. Enzym. Inhib., vol. 10, no. 1, pp. 2–12, Oct. 2013, doi: 10.2174/15734080113096660007.
  • M. G. Salem, Y. M. Abdel Aziz, M. Elewa, M. S. Nafie, H. A. Elshihawy, and M. M. Said, “Synthesis, molecular modeling, selective aldose reductase inhibition and hypoglycemic activity of novel meglitinides,” Bioorg. Chem., vol. 111, p. 104909, Jun. 2021, doi: 10.1016/j.bioorg.2021.104909.
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Bülent Şengül 0000-0002-9998-6564

Publication Date June 22, 2023
Published in Issue Year 2023 Volume: 12 Issue: 2

Cite

APA Şengül, B. (2023). Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors. Türk Doğa Ve Fen Dergisi, 12(2), 61-67. https://doi.org/10.46810/tdfd.1204055
AMA Şengül B. Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors. TJNS. June 2023;12(2):61-67. doi:10.46810/tdfd.1204055
Chicago Şengül, Bülent. “Evaluation of Benzaldehyde Derivatives As Being Bovine Kidney Aldose Reductase Inhibitors”. Türk Doğa Ve Fen Dergisi 12, no. 2 (June 2023): 61-67. https://doi.org/10.46810/tdfd.1204055.
EndNote Şengül B (June 1, 2023) Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors. Türk Doğa ve Fen Dergisi 12 2 61–67.
IEEE B. Şengül, “Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors”, TJNS, vol. 12, no. 2, pp. 61–67, 2023, doi: 10.46810/tdfd.1204055.
ISNAD Şengül, Bülent. “Evaluation of Benzaldehyde Derivatives As Being Bovine Kidney Aldose Reductase Inhibitors”. Türk Doğa ve Fen Dergisi 12/2 (June 2023), 61-67. https://doi.org/10.46810/tdfd.1204055.
JAMA Şengül B. Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors. TJNS. 2023;12:61–67.
MLA Şengül, Bülent. “Evaluation of Benzaldehyde Derivatives As Being Bovine Kidney Aldose Reductase Inhibitors”. Türk Doğa Ve Fen Dergisi, vol. 12, no. 2, 2023, pp. 61-67, doi:10.46810/tdfd.1204055.
Vancouver Şengül B. Evaluation of benzaldehyde derivatives as being bovine kidney aldose reductase inhibitors. TJNS. 2023;12(2):61-7.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.