Research Article
BibTex RIS Cite

Curves of Constant Ratio with Quasi frame in E^3

Year 2024, Issue: 1, 103 - 108, 01.10.2024
https://doi.org/10.46810/tdfd.1425358

Abstract

In the present study we handle a regular unit speed curve by means of the position vector given by the vectorial equation γ (s)=m0 t(s)+m1 nq (s)+m2 bq (s) where bq (s), nq (s) and t(s) are quasi frame vectors. Firstly, we analysis these curves and investigate to being constant ratio curve. Then, we give the parameterizations of T-constant and N- constant curve in accordance with quasi frame. Further, we get the conditions for a regular curve to correspond to be a W- curve in E^3.

References

  • Chen BY. Constant ratio Hypersurfaces. Soochow J. Math. 2001; 28: 353-362.
  • Chen BY. Convolution of Riemannian manifolds and its applications. Bull. Aust. Math. Soc. 2002; 66: 177-191.
  • Chen BY. When does the position vector of a space curve always lies in its rectifying plane? Amer. Math. Monthly 2003; 110: 147-152.
  • Chen BY. More on convolution of Riemannian manifolds. Beitrage Algebra und Geom. 2003; 44: 9-24.
  • Chen BY and Dillen F. Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acedemia Sinica 2005; 33: 77-90.
  • Ekici C., Göksel M. B., Dede M., Smarandache curves according to q − frame in Minkowski 3 − space, Conference Proceedings of Science and Technology, 2019; 2(2): 110 118.
  • Elshenhab A. M., Moazz O., Dassios I., Elsharkawy A., Motion along a space curve with a quasi frame in Euclidean 3 − space: Acceleration and Jerk, Symetry 2022; 14: 1610.
  • Ezentaş R and Türkay S. Helical versus of rectifying curves in Lorentzian spaces. Dumlıpınar Univ. Fen Bilim. Esti. Dergisi 2004; 6: 239-244.
  • Gray A. Modern differential geometry of curves and surface. USA: CRS Press Inc., 1993.
  • Gürpınar S, Arslan K, Öztürk G. A Characterization of Constant − ratio Curves in Euclidean 3 − space E3. Acta Universtatis Apulensis, Mathematics and Informatics. 2015; 44: 39-51.
  • Ilarslan K, Nesovic E and Petrovic TM. Some characterization of rectifying curves in the Minkowski 3 − space. Novi Sad J. Math. 2003; 32: 23-32.
  • Ilarslan K and Nesovic E. On rectifying curves as centrodes and extremal curves in the Minkowski 3 − space E3 1. Novi. Sad. J. Math. 2007; 37: 53-64.
  • Ilarslan K and Nesovic E. Some characterization of rectifying curves in the Euclidean space E4. Turk. J. Math. 2008; 32: 21-30.
  • Ilarslan K and Nesovic E. Some characterization of null, pseudo-null and partially null rectifying curves in Minkowski space − time. Taiwanese J. Math. 2008; 12: 1035-1044.
  • Klein F. and Lie S. Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach un endlich vielen vartauschbaren linearen Transformationen in sich ¨ ubergehen. Math. Ann. 1871; 4: 50-84.
Year 2024, Issue: 1, 103 - 108, 01.10.2024
https://doi.org/10.46810/tdfd.1425358

Abstract

References

  • Chen BY. Constant ratio Hypersurfaces. Soochow J. Math. 2001; 28: 353-362.
  • Chen BY. Convolution of Riemannian manifolds and its applications. Bull. Aust. Math. Soc. 2002; 66: 177-191.
  • Chen BY. When does the position vector of a space curve always lies in its rectifying plane? Amer. Math. Monthly 2003; 110: 147-152.
  • Chen BY. More on convolution of Riemannian manifolds. Beitrage Algebra und Geom. 2003; 44: 9-24.
  • Chen BY and Dillen F. Rectifying curves as centrodes and extremal curves. Bull. Inst. Math. Acedemia Sinica 2005; 33: 77-90.
  • Ekici C., Göksel M. B., Dede M., Smarandache curves according to q − frame in Minkowski 3 − space, Conference Proceedings of Science and Technology, 2019; 2(2): 110 118.
  • Elshenhab A. M., Moazz O., Dassios I., Elsharkawy A., Motion along a space curve with a quasi frame in Euclidean 3 − space: Acceleration and Jerk, Symetry 2022; 14: 1610.
  • Ezentaş R and Türkay S. Helical versus of rectifying curves in Lorentzian spaces. Dumlıpınar Univ. Fen Bilim. Esti. Dergisi 2004; 6: 239-244.
  • Gray A. Modern differential geometry of curves and surface. USA: CRS Press Inc., 1993.
  • Gürpınar S, Arslan K, Öztürk G. A Characterization of Constant − ratio Curves in Euclidean 3 − space E3. Acta Universtatis Apulensis, Mathematics and Informatics. 2015; 44: 39-51.
  • Ilarslan K, Nesovic E and Petrovic TM. Some characterization of rectifying curves in the Minkowski 3 − space. Novi Sad J. Math. 2003; 32: 23-32.
  • Ilarslan K and Nesovic E. On rectifying curves as centrodes and extremal curves in the Minkowski 3 − space E3 1. Novi. Sad. J. Math. 2007; 37: 53-64.
  • Ilarslan K and Nesovic E. Some characterization of rectifying curves in the Euclidean space E4. Turk. J. Math. 2008; 32: 21-30.
  • Ilarslan K and Nesovic E. Some characterization of null, pseudo-null and partially null rectifying curves in Minkowski space − time. Taiwanese J. Math. 2008; 12: 1035-1044.
  • Klein F. and Lie S. Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach un endlich vielen vartauschbaren linearen Transformationen in sich ¨ ubergehen. Math. Ann. 1871; 4: 50-84.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Physics (Other)
Journal Section Articles
Authors

Rabia Kalmuk 0009-0009-0890-792X

Sezgin Büyükkütük 0000-0002-1845-0822

Günay Öztürk 0000-0002-1608-0354

Publication Date October 1, 2024
Submission Date January 24, 2024
Acceptance Date May 6, 2024
Published in Issue Year 2024 Issue: 1

Cite

APA Kalmuk, R., Büyükkütük, S., & Öztürk, G. (2024). Curves of Constant Ratio with Quasi frame in E^3. Türk Doğa Ve Fen Dergisi(1), 103-108. https://doi.org/10.46810/tdfd.1425358
AMA Kalmuk R, Büyükkütük S, Öztürk G. Curves of Constant Ratio with Quasi frame in E^3. TJNS. October 2024;(1):103-108. doi:10.46810/tdfd.1425358
Chicago Kalmuk, Rabia, Sezgin Büyükkütük, and Günay Öztürk. “Curves of Constant Ratio With Quasi Frame in E^3”. Türk Doğa Ve Fen Dergisi, no. 1 (October 2024): 103-8. https://doi.org/10.46810/tdfd.1425358.
EndNote Kalmuk R, Büyükkütük S, Öztürk G (October 1, 2024) Curves of Constant Ratio with Quasi frame in E^3. Türk Doğa ve Fen Dergisi 1 103–108.
IEEE R. Kalmuk, S. Büyükkütük, and G. Öztürk, “Curves of Constant Ratio with Quasi frame in E^3”, TJNS, no. 1, pp. 103–108, October 2024, doi: 10.46810/tdfd.1425358.
ISNAD Kalmuk, Rabia et al. “Curves of Constant Ratio With Quasi Frame in E^3”. Türk Doğa ve Fen Dergisi 1 (October 2024), 103-108. https://doi.org/10.46810/tdfd.1425358.
JAMA Kalmuk R, Büyükkütük S, Öztürk G. Curves of Constant Ratio with Quasi frame in E^3. TJNS. 2024;:103–108.
MLA Kalmuk, Rabia et al. “Curves of Constant Ratio With Quasi Frame in E^3”. Türk Doğa Ve Fen Dergisi, no. 1, 2024, pp. 103-8, doi:10.46810/tdfd.1425358.
Vancouver Kalmuk R, Büyükkütük S, Öztürk G. Curves of Constant Ratio with Quasi frame in E^3. TJNS. 2024(1):103-8.

This work is licensed under the Creative Commons Attribution-Non-Commercial-Non-Derivable 4.0 International License.