Experimental Investigation of the Thermal Performance of Iron Oxide-Water Nanofluid Subjected To a Magnetic Field in a Horizontal Tube
Year 2025,
Volume: 14 Issue: 1, 89 - 95, 26.03.2025
Hamza Ertürk
,
Tarkan Koca
Abstract
n this study, an experimental analysis was performed to evaluate the thermal behavior of iron oxide-water nanofluid as it traverses a straight copper tube, under the influence of a constant heat capacity and the application of a magnetic field. Four types of fluids were used in the experiment. These are pure water, 0.5% concentration of Fe3O4-water nanofluid, 1% concentration of Fe3 O4-water nanofluid and 1.5% concentration of Fe3O4-water nanofluid. Experiments were conducted at two distinct flow rates as10x10-5 m3s-1 and13x10-5 m3s-1. The inlet temperatures of the fluids and the surface temperature of the copper tube were maintained at the same level throughout all experiments. The Nusselt number was determined at Reynolds numbers of 4200 and 5400 in experiments conducted under turbulent flow conditions. The thermal performances of the fluids were compared by comparing the optained Nusselt numbers. The experiments demonstrated that as the Reynolds number increased, the Nusselt number also increased, with the most notable enhancement of 20.7% observed in the iron oxide-water nanofluid at a 1.5% concentration and a Reynolds number of 5400 under a magnetic field. Additionally, both the heat transfer coefficient and the Nusselt number improved with the use of nanofluids.
Ethical Statement
There is no ethical situation.
Supporting Institution
Inonu University Scientific Research Projects Unit
Project Number
FYL-2024-3584
Thanks
I extend my gratitude to the Scientific Research Projects Unit of Inonu University for supporting this study under project code FYL-2024-3584.
References
- Maxwell, JC. A treatise on electricity and magnetism. Oxford University Press. 1th ed. Cambridge: 1904.
- Tekir M, Taskesen E, Gedik E, Arslan K, Aksu B. Effect of constant magnetic field on Fe_3 O_4-Cu/Water hybrid nanofluid flow in a circular pipe. Heat and Mass Transfer. 2022; 58: 707-717.
- Demirpolat AB, Uyar MM. Investigation of the use of nanoparticles in thermal insulation materials. IJIEA. 2024; 8(2): 89-94.
- Uyar MM, Çıtlak A, Demirpolat AB. Investigation of performance and emission values of new type of fuels obtained by adding MgO nanoparticles to biodiesel fuels produced from waste sunflower and cotton oil. Industrial Crops and Products.2024; 222:1-12.
- Keklikcioğlu O, Özceyhan V. Grafen-demir oksit-su hibrit nanoakışkanlarının ısıl ve hidrolik performanslarının sayısal olarak incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 37(2); 286-288.
- Çiftçi E, Sözen A, Karaman E. TiO_2 içeren nanoakışkan kullanımının ısı borusu performansına etkisinin deneysel olarak incelenmesi. Politeknik Dergisi. 2016; 19(3): 367-376.
- Kılınç F, Buyruk E, Karabulut K. Grafen tabanlı nanoakışkanların araç radyatörü soğutma performansı üzerindeki etkisinin deneysel analizi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 9(2): 1046-1056.
- Kılınç C. Manyetik Nanoakışkanın Termosifon Tipi Isı Borusunun Performansına Etkisi. Politeknik Dergisi. 2021; 24(3): 1309-1316.
- Sadeghinezhad E, Mehrali M, Tahan LS, Mehrali M, Kazi SN, Oon CS, et al. Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Industrial & Engineering Chemistry Research. 2014; 53(31): 12455–12465.
- Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A. Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: experimental approach. International Communications in Heat and Mass Transfer. 2017; 87: 30-39.
- Peyghambarzadeh S, Hashemabadi S, Naraki M, Vermahmoudi Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator, Applied Thermal Engineering. 2013; 52(1): 8‒16.
- Ding Y, Alias H, Wen D, Williams R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transfer. 2006; 49(1): 240-250.
- Abreu B, Lamas B, Fonseca A, Martins N, Oliveira MSA. Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions. Heat and Mass Transfer. 2014; 50(1): 65-74.
- Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal. 1998; 11(2): 151‒ 170.
- Bhimani VL, Rathod PP, Sorathiya AS. Experimental study of heat transfer enhancement using water based nanofluids as a new coolant for car radiators. Internatıonal Journal of Emerging Technology and Advanced Engineering. 2013; 3(6): 295-302.
- Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer. 2004; 47: 5181-5188.
- Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research. 2003; 5: 167.
YATAY BİR BORUDA MANYETİK ALAN UYGULANAN DEMİR OKSİT-SU NANOAKIŞKANININ ISIL PERFORMANSININ DENEYSEL OLARAK İNCELENMESİ
Year 2025,
Volume: 14 Issue: 1, 89 - 95, 26.03.2025
Hamza Ertürk
,
Tarkan Koca
Abstract
Bu çalışmada sabit ısı sığası ve manyetik alan etkisi altındaki düz bir bakır borudan akan demir oksit-su nanoakışkanının ısıl performansı deneysel olarak incelenmiştir. Deneyde dört tip akışkan kullanılmıştır. Bunlar; saf su, %0.5 konsantrasyonunda Fe3 O4-Su nanoakışkanı, %1.0 konsantrasyonunda Fe_3 O_4-Su nanoakışkanı ve %1.5 konsantrasyonunda Fe3 O4-Su nanoakışkanıdır. Deneyler 10x10^(-5) m3 s-1 ve 13x10〗^(-5) m^3 s^(-1) olmak üzere iki farklı debide gerçekleştirilmiştir. Akışkanların giriş sıcaklıkları ve bakır borunun yüzey sıcaklığı tüm deneylerde eşit tutulmuştur. Türbülanslı akış şartlarında gerçekleşen deneylerde iki farklı Reynolds (Re=4200 ve Re=5400) sayısındaki Nusselt sayısı hesaplanmıştır. Elde edilen Nusselt sayıları karşılaştırılarak akışkanların ısıl performansları karşılaştırılmıştır. Yapılan deneyler sonucunda Reynolds sayısının artması ile Nusselt sayısının da artış gösterdiği, nanoakışkanların kullanımı ile toplam ısı transfer katsayısının ve Nusselt sayısının artış gösterdiği gözlemlenmiştir. Nusselt sayısındaki en büyük artış, manyetik alan etkisi altında, Re=5400 değerinde %1.5 konsantrasyonunda demir oksit-su nanoakışkanda gerçekleşmiştir ve saf suya göre %20,7 oranında artış tespit edilmiştir.
Ethical Statement
Etik bir durum yoktur.
Supporting Institution
İnönü Üniversitesi BAP Birimi
Project Number
FYL-2024-3584
Thanks
Bu çalışmayı FYL-2024-3584 proje koduyla destekleyen İnönü Üniversitesi Bilimsel Araştırma Projeleri Birimine teşekkürlerimizi sunarız.
References
- Maxwell, JC. A treatise on electricity and magnetism. Oxford University Press. 1th ed. Cambridge: 1904.
- Tekir M, Taskesen E, Gedik E, Arslan K, Aksu B. Effect of constant magnetic field on Fe_3 O_4-Cu/Water hybrid nanofluid flow in a circular pipe. Heat and Mass Transfer. 2022; 58: 707-717.
- Demirpolat AB, Uyar MM. Investigation of the use of nanoparticles in thermal insulation materials. IJIEA. 2024; 8(2): 89-94.
- Uyar MM, Çıtlak A, Demirpolat AB. Investigation of performance and emission values of new type of fuels obtained by adding MgO nanoparticles to biodiesel fuels produced from waste sunflower and cotton oil. Industrial Crops and Products.2024; 222:1-12.
- Keklikcioğlu O, Özceyhan V. Grafen-demir oksit-su hibrit nanoakışkanlarının ısıl ve hidrolik performanslarının sayısal olarak incelenmesi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 37(2); 286-288.
- Çiftçi E, Sözen A, Karaman E. TiO_2 içeren nanoakışkan kullanımının ısı borusu performansına etkisinin deneysel olarak incelenmesi. Politeknik Dergisi. 2016; 19(3): 367-376.
- Kılınç F, Buyruk E, Karabulut K. Grafen tabanlı nanoakışkanların araç radyatörü soğutma performansı üzerindeki etkisinin deneysel analizi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019; 9(2): 1046-1056.
- Kılınç C. Manyetik Nanoakışkanın Termosifon Tipi Isı Borusunun Performansına Etkisi. Politeknik Dergisi. 2021; 24(3): 1309-1316.
- Sadeghinezhad E, Mehrali M, Tahan LS, Mehrali M, Kazi SN, Oon CS, et al. Experimental investigation of convective heat transfer using graphene nanoplatelet based nanofluids under turbulent flow conditions. Industrial & Engineering Chemistry Research. 2014; 53(31): 12455–12465.
- Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A. Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: experimental approach. International Communications in Heat and Mass Transfer. 2017; 87: 30-39.
- Peyghambarzadeh S, Hashemabadi S, Naraki M, Vermahmoudi Y. Experimental study of overall heat transfer coefficient in the application of dilute nanofluids in the car radiator, Applied Thermal Engineering. 2013; 52(1): 8‒16.
- Ding Y, Alias H, Wen D, Williams R.A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int. J. Heat Mass Transfer. 2006; 49(1): 240-250.
- Abreu B, Lamas B, Fonseca A, Martins N, Oliveira MSA. Experimental characterization of convective heat transfer with MWCNT based nanofluids under laminar flow conditions. Heat and Mass Transfer. 2014; 50(1): 65-74.
- Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Experimental Heat Transfer an International Journal. 1998; 11(2): 151‒ 170.
- Bhimani VL, Rathod PP, Sorathiya AS. Experimental study of heat transfer enhancement using water based nanofluids as a new coolant for car radiators. Internatıonal Journal of Emerging Technology and Advanced Engineering. 2013; 3(6): 295-302.
- Wen D, Ding Y. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions. International Journal of Heat and Mass Transfer. 2004; 47: 5181-5188.
- Yu W, Choi SUS. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. Journal of Nanoparticle Research. 2003; 5: 167.