Research Article
PDF EndNote BibTex RIS Cite

Modeling Plastic Hinging Regions in Reinforced Concrete Bridge Columns

Year 2015, Volume: 26 Issue: 4, 7279 - 7286, 01.10.2015

Abstract

Examining the spread of
plastic deformations at various stages of loading is a complicated problem for
bridge structures under multi axial dynamic loading. A detailed three
dimensional nonlinear finite element model of a bridge column was developed
using the computer program ABAQUS and the model was compared with the measured
displacement results along the column of a bridge system subjected to dynamic
biaxial loadings in an earthquake simulator. The bridge system was subjected to
a series of test trials with increasing earthquake intensities. Computer
simulations were performed for complete trials in order to provide information
about the variation in the spread of plasticity. According to the results, it
was observed that changes in the length of plastic hinging regions on the
bridge column depend on the strain in the longitudinal reinforcement.

References

  • [1] Firat Alemdar, Z., Matamoros, A., Browning, J., Modeling Surface Deformations and Hinging Regions in Reinforced Concrete Bridge Columns, SL Report No. 11-2, University of Kansas Research Center, Lawrence, KS, 2011.
  • [2] Simulia, ABAQUS, Version 6.8-2, http://www.simulia.com, 2009.
  • [3] Nelson, R., Saiidi, M., Zadeh, S., Experimental Evaluation of Performance of Conventional Bridge Systems, Center for Civil Engineering Earthquake Research Report No. CCEER-07-04, University of Nevada, Nevada, 2007.
  • [4] Mander, J. B., Seismic Design of Bridge Piers, PhD. Thesis, University of Canterbury, Christ Church, New Zealand, 1983.
  • [5] Firat Alemdar, Z., Browning, J., Olafsen, J., Photogrammetric Measurements of RC Bridge Column Deformations, Journal of Engineering Structures, 33:8, 2407-2415, 2011.
  • [6] Bhide, S. B., Collins, M. P., Reinforced Concrete Elements in Shear and Tension, Report No. 87-02, Department of Civil Engineering, University of Toronto, 1987.
  • [7] ASTM 706/A 706M-01, Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement, ASTM International, West Conshohocken, Pa., 2002.
  • [8] Ma, S-Y.M., Bertero, V.V., Popov, E.P., Experimental and Analytical Studies of the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams, Report No. EERC-76-2, University of California, Berkeley, 1976.
  • [9] Firat Alemdar, Z., Evaluation of Plastic Hinge Regions in Reinforced Concrete Bridge Systems, PhD. Thesis, University of Kansas, Lawrence, KS, 2010.
  • [10] Dragovich, JJ., Lepage, A., FDE Index for Goodness-of-fit Between Measured and Calculated Response Signals, Earthquake Engineering and Structural Dynamics, 38:1, 751-1758, 2009.
  • [11] Firat Alemdar, Z., Matamoros, A., Browning, J., High-Resolution Modeling of Reinforced Concrete Bridge Columns under Seismic Loading, ACI Structural Journal, V. 110, No. 5, September 2013.

Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi

Year 2015, Volume: 26 Issue: 4, 7279 - 7286, 01.10.2015

Abstract

Çok eksenli dinamik yükler etkisindeki betonarme
köprü yapılarında, yüklemenin farklı aşamalarında elastik olmayan şekil
değiştirmelerin dağılımının incelenmesi önemli ve zor bir problemdir. Betonarme
bir köprü kolonunun doğrusal olmayan 3 boyutlu detaylı bilgisayar modeli ABAQUS
sonlu elemanlar programında geliştirilmiş ve deprem sarsma tablalarında iki
eksenli dinamik yükler altında köprü kolonunda ölçülen deformasyon değerleri
model ile karşılaştırılmıştır. Yapılan deneysel çalışmalarda, betonarme köprü sistemine
şiddeti giderek artan bir seri deprem yüklemesi uygulanmıştır. Sonlu elemanlar
modelinde kolonlardaki plastikleşme bölgesinin yayılmasındaki değişiklikleri
incelemek için tüm deprem şiddetleri için analizler yapılmıştır. Değerlendirme
sonucu, kolonlarda oluşan plastikleşme bölgelerinin uzunluğunun kolondaki
boyuna donatının uzama miktarına bağlı olduğu görülmüştür.

References

  • [1] Firat Alemdar, Z., Matamoros, A., Browning, J., Modeling Surface Deformations and Hinging Regions in Reinforced Concrete Bridge Columns, SL Report No. 11-2, University of Kansas Research Center, Lawrence, KS, 2011.
  • [2] Simulia, ABAQUS, Version 6.8-2, http://www.simulia.com, 2009.
  • [3] Nelson, R., Saiidi, M., Zadeh, S., Experimental Evaluation of Performance of Conventional Bridge Systems, Center for Civil Engineering Earthquake Research Report No. CCEER-07-04, University of Nevada, Nevada, 2007.
  • [4] Mander, J. B., Seismic Design of Bridge Piers, PhD. Thesis, University of Canterbury, Christ Church, New Zealand, 1983.
  • [5] Firat Alemdar, Z., Browning, J., Olafsen, J., Photogrammetric Measurements of RC Bridge Column Deformations, Journal of Engineering Structures, 33:8, 2407-2415, 2011.
  • [6] Bhide, S. B., Collins, M. P., Reinforced Concrete Elements in Shear and Tension, Report No. 87-02, Department of Civil Engineering, University of Toronto, 1987.
  • [7] ASTM 706/A 706M-01, Standard Specification for Low-Alloy Steel Deformed and Plain Bars for Concrete Reinforcement, ASTM International, West Conshohocken, Pa., 2002.
  • [8] Ma, S-Y.M., Bertero, V.V., Popov, E.P., Experimental and Analytical Studies of the Hysteretic Behavior of Reinforced Concrete Rectangular and T-Beams, Report No. EERC-76-2, University of California, Berkeley, 1976.
  • [9] Firat Alemdar, Z., Evaluation of Plastic Hinge Regions in Reinforced Concrete Bridge Systems, PhD. Thesis, University of Kansas, Lawrence, KS, 2010.
  • [10] Dragovich, JJ., Lepage, A., FDE Index for Goodness-of-fit Between Measured and Calculated Response Signals, Earthquake Engineering and Structural Dynamics, 38:1, 751-1758, 2009.
  • [11] Firat Alemdar, Z., Matamoros, A., Browning, J., High-Resolution Modeling of Reinforced Concrete Bridge Columns under Seismic Loading, ACI Structural Journal, V. 110, No. 5, September 2013.

Details

Journal Section Technical Note
Authors

Zeynep FIRAT ALEMDAR This is me

Publication Date October 1, 2015
Submission Date March 20, 2017
Acceptance Date June 19, 15
Published in Issue Year 2015 Volume: 26 Issue: 4

Cite

Bibtex @research article { tekderg298955, journal = {Teknik Dergi}, issn = {1300-3453}, address = {}, publisher = {UCTEA Turkish Chamber of Civil Engineering}, year = {2015}, volume = {26}, number = {4}, pages = {7279 - 7286}, title = {Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi}, key = {cite}, author = {Fırat Alemdar, Zeynep} }
APA Fırat Alemdar, Z. (2015). Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi . Teknik Dergi , 26 (4) , 7279-7286 . Retrieved from https://dergipark.org.tr/en/pub/tekderg/issue/28132/298955
MLA Fırat Alemdar, Z. "Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi" . Teknik Dergi 26 (2015 ): 7279-7286 <https://dergipark.org.tr/en/pub/tekderg/issue/28132/298955>
Chicago Fırat Alemdar, Z. "Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi". Teknik Dergi 26 (2015 ): 7279-7286
RIS TY - JOUR T1 - Modeling Plastic Hinging Regions in Reinforced Concrete Bridge Columns AU - ZeynepFırat Alemdar Y1 - 2015 PY - 2015 N1 - DO - T2 - Teknik Dergi JF - Journal JO - JOR SP - 7279 EP - 7286 VL - 26 IS - 4 SN - 1300-3453- M3 - UR - Y2 - 0015 ER -
EndNote %0 Teknik Dergi Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi %A Zeynep Fırat Alemdar %T Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi %D 2015 %J Teknik Dergi %P 1300-3453- %V 26 %N 4 %R %U
ISNAD Fırat Alemdar, Zeynep . "Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi". Teknik Dergi 26 / 4 (October 2015): 7279-7286 .
AMA Fırat Alemdar Z. Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi. Teknik Dergi. 2015; 26(4): 7279-7286.
Vancouver Fırat Alemdar Z. Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi. Teknik Dergi. 2015; 26(4): 7279-7286.
IEEE Z. Fırat Alemdar , "Betonarme Köprü Kolonlarında Plastik Mafsal Bölgelerinin Modellenmesi", Teknik Dergi, vol. 26, no. 4, pp. 7279-7286, Oct. 2015