Research Article
BibTex RIS Cite

Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet

Year 2025, Volume: 11 Issue: 1, 254 - 269, 31.01.2025

Abstract

A novel approach is formulated to scrutinize the stagnation point flow of chemically reacting Casson fluid past a convective stretching sheet. Additionally, the combined impact of a non-uniform heat source/sink and variable thermal conductivity on the fluid flow is examined. With the aid of a suitable similarity transformation, the governing partial differential equations are transmogrified into corresponding ordinary differential equations. bvp4c, an in-built technique of MATLAB, is implemented to acquire the numerical solutions. The appurtenant parameters that exert influence on the concentration distribution, temperature distribution, and velocity profile are depicted graphically. The effects of various physical parameters such as Casson fluid parameter, magnetic field parameter, Prandtl number, Schmidt number, Eckert number, Biot number, variable thermal conductivity parameter, non-uniform heat source/sink parameters and velocity slip parameter are shown in plots for several ranges of values. In a constrained scenario, the accuracy and validity of the numerical technique utilized are justified by analogizing the procured outcomes with the pre-existing results in the literature. The influence of pertinent parameters that regulate the Nusselt number, skin friction coefficient, and Sherwood number is presented in tabular form. An upsurge in the variable thermal conductivity parameter reduces the temperature for internal heat generation, but for internal heat absorption, it diminishes the temperature adjacent to the wall and skyrockets the temperature far away from the wall. This current study is of immediate interest in the field of the aerospace industry due to the indispensability of variable thermal conductivity in lunar soft lander technology.

References

  • [1] Crane LJ. Flow past a stretching plate. Z Angew Math Phys 1970;21:645–647. [CrossRef]
  • [2] Chiam TC. Stagnation-point flow towards a stretching plate. J Phys Soc Jpn 1994;63:2443. [CrossRef]
  • [3] Kumaran V, Ramanaiah G. A note on the flow over a stretching sheet. Acta Mech 1996;116:BF01171433. [CrossRef]
  • [4] Raptis A. Radiation and free convection flow through a porous medium. Int Commun Heat Mass Transf 1998;25:00016-5. [CrossRef]
  • [5] Andersson HI. Slip flow past a stretching surface. Acta Mech 2002;158:BF01463174. [CrossRef]
  • [6] Mahapatra TR, Gupta AS. Heat transfer in stagnation-point flow towards a stretching sheet. Heat Mass Transf 2002;38:s002310100215. [CrossRef]
  • [7] Paullet J, Weidman P. Analysis of stagnation point flow toward a stretching sheet. Int J Non Linear Mech 2007;42:003. [CrossRef]
  • [8] Wang CY. Stagnation flow towards a shrinking sheet. Int J Non Linear Mech 2008;43:021. [CrossRef]
  • [9] Tirth V, Pasha AA, Tayebi T, Dogonchi AS, Irshad K, Chamkha AJ, et al. Magneto double-diffusive free convection inside a C-shaped nanofluid-filled enclosure including heat and solutal source block. Case Stud Therm Eng 2023;45:102942. [CrossRef]
  • [10] Ishak A, Jafar K, Nazar R, Pop I. MHD stagnation point flow towards a stretching sheet. Phys A 2009;388:026. [CrossRef]
  • [11] Misra JC, Sinha A, Mallick B. Stagnation point flow and heat transfer on a thin porous sheet: Applications to flow dynamics of the circulatory system. Phys A 2017;470:051. [CrossRef]
  • [12] Agbaje TM, Mondal S, Makukula ZG, Motsa SS, Sibanda P. A new numerical approach to MHD stagnation point flow and heat transfer towards a stretching sheet. Ain Shams Eng J 2016;9:015. [CrossRef]
  • [13] Ghasemi SE, Hatami M. Solar radiation effects on MHD stagnation point flow and heat transfer of a nanofluid over a stretching sheet. Case Stud Therm Eng 2021;25:100898. [CrossRef]
  • [14] Zangooee MR, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of hybrid nanofluid flow on a vertical plate by considering slip condition. Theor Appl Mech Lett 2022;12:100357. [CrossRef]
  • [15] Leng Y, Li S, Algarni S, Jamshed W, Alqahtani T, Ibrahim RW, et al. Computational study of magnetized and dual stratified effects on Non-Darcy Casson nanofluid flow: An activation energy analysis. Case Stud Therm Eng 2024;53:103804. [CrossRef]
  • [16] Mustafa M, Hayat T, Pop I, Hendi A. Stagnation-point flow and heat transfer of a Casson fluid towards a stretching sheet. Z Naturforsch A 2012;67:0057. [CrossRef]
  • [17] Bhattacharyya K. Boundary layer stagnation-point flow of Casson fluid and heat transfer towards a shrinking/stretching sheet. Front Heat Mass Transf 2013;4:3003. [CrossRef]
  • [18] Mukhopadhyay S, Bhattacharyya K, Hayat T. Exact solutions for the flow of Casson fluid over a stretching surface with transpiration and heat transfer effects. Chin Phys B 2013;22:114701. [CrossRef]
  • [19] Bhattacharyya K, Hayat T, Alsaedi A. Exact solution for boundary layer flow of Casson fluid over a permeable stretching/shrinking sheet. Z Angew Math Mech 2014;94:201200031. [CrossRef]
  • [20] Bhattacharyya K. MHD stagnation-point flow of Casson fluid and heat transfer over a stretching sheet with thermal radiation. J Thermodyn 2013;1:169674. [CrossRef]
  • [21] Kameswaran PK, Shaw S, Sibanda P. Dual solutions of Casson fluid flow over a stretching or shrinking sheet. Sadhana 2014;39:0289-7. [CrossRef]
  • [22] Lund LA, Omar Z, Khan I, Baleanu D, Nisar KS. Dual similarity solutions of MHD stagnation point flow of Casson fluid with effect of thermal radiation and viscous dissipation: stability analysis. Sci Rep 2020;10:72266-2. [CrossRef]
  • [23] Pashikanti J, Susmitha Priyadharshini DR. Influence of variable viscosity on entropy generation analysis due to graphene oxide nanofluid flow. J Nanofluids 2023;12:2026. [CrossRef]
  • [24] Kays WM, Crawford ME. Convective heat and mass transfer. 3rd ed. New York: McGraw Hill; 1993.
  • [25] Srinivasacharya D, Jagadeeshwar P. Effect of variable viscosity, thermal conductivity, and hall currents on the flow over an exponentially stretching sheet with heat generation/absorption. Int J Energy Clean Environ 2018;19:2018021746. [CrossRef]
  • [26] Arunachalam M, Rajappa NR. Thermal boundary layer in liquid metals with variable thermal conductivity. Appl Sci Res 1978;34:BF00418866. [CrossRef]
  • [27] Chiam TC. Heat transfer with variable conductivity in a stagnation-point flow towards a stretching sheet. Int Commun Heat Mass Transf 1996;23:00009-7. [CrossRef]
  • [28] Chiam TC. Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet. Acta Mech 1998;129:BF01379650. [CrossRef]
  • [29] Sharma PR, Singh G. Effects of variable thermal conductivity and heat source/sink on MHD flow near a stagnation point on a linearly stretching sheet. J Appl Fluid Mech 2009;2:11851. [CrossRef]
  • [30] Venkateswarlu B, Satya Narayana PV. Influence of variable thermal conductivity on MHD Casson fluid flow over a stretching sheet with viscous dissipation, Soret and Dufour effects. Front Heat Mass Transf 2016;7:hmt.7.16. [CrossRef]
  • [31] Yu D-Y, Sun Z-Z, Zhang H. Thermal control technology of lunar lander. Technology of Lunar Soft Lander 2021:6580-9_5. [CrossRef]
  • [32] Dhange MY, Sankad GC, Maharudrappa I. Casson fluid flow due to stretching sheet with magnetic effect and variable thermal conductivity. Front Heat Mass Transf 2022;18:hmt.18.36. [CrossRef]
  • [33] Zangooee MR, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of Ag and CuO hybrid NPs suspended in mixture of water 20%+EG 80% between two concentric cylinders. Case Stud Therm Eng 2023;50:103398. [CrossRef]
  • [34] Hussein AK, Hamzah HK, Ali FH, Kolsi L. Mixed convection in a trapezoidal enclosure filled with two layers of nanofluid and porous media with a rotating circular cylinder and a sinusoidal bottom wall. J Therm Anal Calorim 2020;141:08963-6. [CrossRef]
  • [35] Ali B, Khan SA, Hussein AK, Thumma T, Hussain S. Hybrid nanofluids: Significance of gravity modulation, heat source/sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation. Appl Math Comput 2022;419:126878. [CrossRef]
  • [36] Abo-Eldahab EM, El Aziz MA. Blowing/suction effect on hydromagnetic heat transfer by mixed convection from an inclined continuously stretching surface with internal heat generation/absorption. Int J Therm Sci 2004;43:005. [CrossRef]
  • [37] Abel MS, Mahesha N. Heat transfer in MHD viscoelastic fluid flow over a stretching sheet with variable thermal conductivity, non-uniform heat source and radiation. Appl Math Model 2008;32:038. [CrossRef]
  • [38] Monica M, Sucharitha J. Effects of nonlinear thermal radiation, non-uniform heat source/sink on MHD stagnation point flow of a Casson fluid over a nonlinear stretching sheet with slip conditions. J Nanofluids 2017;6:1360. [CrossRef]
  • [39] Li YX, Israr Ur Rehman M, Huang WH, Ijaz Khan M, Ullah Khan S, Chinram R, et al. Dynamics of Casson nanoparticles with non-uniform heat source/sink: A numerical analysis. Ain Shams Eng J 2022;13:010. [CrossRef]
  • [40] Ali MM, Chen TS, Armaly BF. Natural convection-radiation interaction in boundary-layer flow over horizontal surfaces. AIAA J 1984;22:8854. [CrossRef]
  • [41] Aziz A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition. Commun Nonlinear Sci Numer Simul 2009;14:003. [CrossRef]
  • [42] Ishak A. Similarity solutions for flow and heat transfer over a permeable surface with convective boundary condition. Appl Math Comput 2010;217:026. [CrossRef]
  • [43] Makinde OD, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int J Therm Sci 2011;50:019. [CrossRef]
  • [44] Yao S, Fang T, Zhong Y. Heat transfer of a generalized stretching/shrinking wall problem with convective boundary conditions. Commun Nonlinear Sci Numer Simul 2011;16:028. [CrossRef]
  • [45] Mohamed MKA, Salleh MZ, Nazar R, Ishak A. Numerical investigation of stagnation point flow over a stretching sheet with convective boundary conditions. Bound Value Probl 2013:2013-4. [CrossRef]
  • [46] Raza J. Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet. Propuls Power Res 2019;8:004. [CrossRef]
  • [47] Dessie H. MHD stagnation point flow of Casson fluid over a convective stretching sheet considering thermal radiation, slip condition, and viscous dissipation. Heat Transf 2021;50:22213. [CrossRef]
  • [48] Raghunath K, Ramana RM, Reddy VR, Obulesu M. Diffusion thermo and chemical reaction effects on magnetohydrodynamic Jeffrey nanofluid over an inclined vertical plate in the presence of radiation absorption and constant heat source. J Nanofluids 2022;12:1923. [CrossRef]
  • [49] Li S, Raghunath K, Alfaleh A, Ali F, Zaib A, Khan MI, et al. Effects of activation energy and chemical reaction on unsteady MHD dissipative Darcy–Forchheimer squeezed flow of Casson fluid over horizontal channel. Sci Rep 2023;13:29702-w. [CrossRef]
  • [50] Andersson HI, Hansen OR, Holmedal B. Diffusion of a chemically reactive species from a stretching sheet. Int J Heat Mass Transf 1994;37:90137-6. [CrossRef]
  • [51] Vajravelu K, Prasad KV, Prasanna Rao NS. Diffusion of a chemically reactive species of a power-law fluid past a stretching surface. Comput Math Appl 2011;62:055. [CrossRef]
  • [52] Bhattacharyya K, Uddin MS, Layek GC, Pk WA. Diffusion of chemically reactive species in boundary layer flow over a porous plate in porous medium. Chem Eng Commun 2013;200:762509. [CrossRef]
  • [53] Mukhopadhyay S, Vajravelu K. Diffusion of chemically reactive species in Casson fluid flow over an unsteady permeable stretching surface. J Hydrodyn 2013;25:60400-X. [CrossRef]
  • [54] Abbas Z, Javed T, Ali N, Sajid M. Diffusion of chemically reactive species in stagnation-point flow of a third-grade fluid: A hybrid numerical method. J Appl Fluid Mech 2016;9:24004. [CrossRef]
  • [55] Jena S, Dash GC, Mishra SR. Chemical reaction effect on MHD viscoelastic fluid flow over a vertical stretching sheet with heat source/sink. Ain Shams Eng J 2018;9:014. [CrossRef]
  • [56] Khan N, Al-Khaled K, Khan A, Hashmi MS, Khan SU, Khan MI, et al. Aspects of constructive/destructive chemical reactions for viscous fluid flow between deformable wall channel with absorption and generation features. Int Commun Heat Mass Transf 2021;120:104956. [CrossRef]
  • [57] Kanafiah SFHM, Kasim ARM, Zokri S, Arifin NS. A thematic review on mathematical model for convective boundary layer flow. J Adv Res Fluid Mech Therm Sci 2021;86:107125. [CrossRef]
  • [58] Brewster MQ. Thermal radiative transfer and properties. New York: Wiley; 1992.
  • [59] Verma VK, Mondal S. A brief review of numerical methods for heat and mass transfer of Casson fluids. Partial Differ Equ Appl Math 2021;3:100034. [CrossRef]
  • [60] Shampine LF, Gladwell I, Thompson S. Solving ODEs with MATLAB. Cambridge: Cambridge University Press; 2003. [CrossRef]
  • [61] Schlichting H, Gersten K. Boundary-Layer Theory. New York: Springer; 2016. [CrossRef]
There are 61 citations in total.

Details

Primary Language English
Subjects Fluid Mechanics and Thermal Engineering (Other)
Journal Section Articles
Authors

C. Arruna Nandhini This is me 0000-0002-6964-3325

S. Jothimani This is me 0000-0002-5213-8541

Ali J. Chamkha This is me 0000-0002-8335-3121

Publication Date January 31, 2025
Submission Date December 25, 2023
Acceptance Date March 17, 2024
Published in Issue Year 2025 Volume: 11 Issue: 1

Cite

APA Nandhini, C. A., Jothimani, S., & Chamkha, A. J. (2025). Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet. Journal of Thermal Engineering, 11(1), 254-269. https://doi.org/10.14744/thermal.0000917
AMA Nandhini CA, Jothimani S, Chamkha AJ. Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet. Journal of Thermal Engineering. January 2025;11(1):254-269. doi:10.14744/thermal.0000917
Chicago Nandhini, C. Arruna, S. Jothimani, and Ali J. Chamkha. “Synergy of Non-Uniform Heat source/Sink and Variable Thermal Conductivity on Stagnation Point Flow of Casson Fluid over a Convective Stretching Sheet”. Journal of Thermal Engineering 11, no. 1 (January 2025): 254-69. https://doi.org/10.14744/thermal.0000917.
EndNote Nandhini CA, Jothimani S, Chamkha AJ (January 1, 2025) Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet. Journal of Thermal Engineering 11 1 254–269.
IEEE C. A. Nandhini, S. Jothimani, and A. J. Chamkha, “Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet”, Journal of Thermal Engineering, vol. 11, no. 1, pp. 254–269, 2025, doi: 10.14744/thermal.0000917.
ISNAD Nandhini, C. Arruna et al. “Synergy of Non-Uniform Heat source/Sink and Variable Thermal Conductivity on Stagnation Point Flow of Casson Fluid over a Convective Stretching Sheet”. Journal of Thermal Engineering 11/1 (January 2025), 254-269. https://doi.org/10.14744/thermal.0000917.
JAMA Nandhini CA, Jothimani S, Chamkha AJ. Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet. Journal of Thermal Engineering. 2025;11:254–269.
MLA Nandhini, C. Arruna et al. “Synergy of Non-Uniform Heat source/Sink and Variable Thermal Conductivity on Stagnation Point Flow of Casson Fluid over a Convective Stretching Sheet”. Journal of Thermal Engineering, vol. 11, no. 1, 2025, pp. 254-69, doi:10.14744/thermal.0000917.
Vancouver Nandhini CA, Jothimani S, Chamkha AJ. Synergy of non-uniform heat source/sink and variable thermal conductivity on stagnation point flow of Casson fluid over a convective stretching sheet. Journal of Thermal Engineering. 2025;11(1):254-69.

IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering