Research Article
BibTex RIS Cite

An application of recurrence relations to central force fields

Year 2024, Volume: 5 Issue: 2, 13 - 21
https://doi.org/10.55064/tjaa.1494355

Abstract

By generalizing the relationships between auxiliary variables that appear in the works of A.E. Roy, we investigate the dynamics of non-interacting particles under the action of a central force field whose force function is a solution to a certain differential equation. The method used by A.E. Roy, R. Broucke, and later by G. Sitarski, was utilized in such a way that the obtained recursive equations can be used to describe the motion of a particle under such a field. The class of such fields includes both gravitational and non-gravitational force fields. Several numerical and historically essential examples and detailed discussions of various cases are given.

Thanks

Hakem ve editörlere teşekkür ederim.

References

  • Alghamdi M. H., Alshaery A. A., 2020, Journal of Applied Mathematics and Physics, 08, 2703
  • Beutler G., 2005, Methods of Celestial Mechanics. Astronomy and Astrophysics Library, Springer-Verlag, Berlin/Heidelberg, doi:10.1007/b138225
  • Black W., 1973, Celestial Mechanics, 8, 357
  • Broucke R., 1971, Celestial Mechanics, 4, 110
  • Danby J. M. A., 1988, Fundamentals of celestial mechanics. Willmann-Bell, Richmond
  • Hadjifotinou K. G., 2000, Astronomy and Astrophysics, 354, 328
  • Heggie D. C., 2005, The Classical Gravitational N-Body Problem (arXiv:10.48550/arXiv.astro-ph/0503600)
  • Hirsch M., Smale S., 1974, Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics Vol. 60, Elsevier, doi:10.1016/S0079-8169(08)X6044-1
  • McKiernan M., 1956, The American Mathematical Monthly, 63, 331 Moran P. E., Roy A. E., Black W., 1973, Celestial mechanics, 8, 405 Musielak Z., Quarles B., 2017, Three Body Dynamics and Its Applications to Exoplanets. SpringerBriefs in Astronomy, Springer International Publishing, Cham, doi:10.1007/978-3- 319-58226-9
  • Myachin V. F., Sizova O. A., 1972, A Numerical Method of Integration by Means of Taylor-Steffensen Series and its Possible Use in the Study of the Motions of Comets and Minor Planets. Springer Netherlands, Dordrecht, pp 83–85, doi:10.1007/978-94- 010-2873-8_15
  • Roy A., 2020, Orbital Motion, 0 edn. CRC Press, doi:10.1201/9780367806620
  • Roy A. E., Moran P. E., 1973, Celestial mechanics, 7, 236
  • Roy A. E., Moran P. E., Black W., 1972, Celestial mechanics, 6, 468 Saad A., Banaszkiewicz M., Sitarski G., 2008, Applied Mathematics and Computation, 197, 874
  • Sitarski G., 1979, Acta Astronomica, 29, 401
  • Smale S., 1967, Bulletin of the American Mathematical Society, 73, 747
  • Steffensen J., 1956, Mat. Fys. Medd. Dan. Vid. Selsk., 30 Steffensen J., 1957, Mat. Fys. Medd. Dan. Vid. Selsk., 31
  • Valtonen M., Karttunen H., 2006, The Three-Body Problem, 1 edn. Cambridge University Press, doi:10.1017/CBO9780511616006
  • Whittaker E. T., McCrae S. W., 1988, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 1 edn. Cambridge University Press, doi:10.1017/CBO9780511608797

Rekürsive ilişkilerinin merkezî kuvvet alanlarına bir uygulaması

Year 2024, Volume: 5 Issue: 2, 13 - 21
https://doi.org/10.55064/tjaa.1494355

Abstract

A.E. Roy'un çalışmalarında ortaya çıkan yardımcı değişkenler arasındaki ilişkileri genelleştirerek, kuvvet fonksiyonu belirli bir diferansiyel denklemin çözümü olan bir merkezî kuvvet alanı etkisi altındaki etkileşimsiz parçacıkların dinamiğini araştırıyoruz. A.E. Roy, R. Broucke ve daha sonra G. Sitarski tarafından kullanılan yöntem, elde edilen rekürsive denklemlerin böyle bir alan altındaki bir parçacığın hareketini tanımlamak için kullanılabileceği şekilde uygulanmıştır. Bu tür alanların sınıfı hem kütle çekimsel hem de kütle çekimsel olmayan kuvvet alanlarını içerir. Çeşitli durumların sayısal ve tarihsel olarak önemli örnekleri ve detaylı tartışmaları verilmiştir.

References

  • Alghamdi M. H., Alshaery A. A., 2020, Journal of Applied Mathematics and Physics, 08, 2703
  • Beutler G., 2005, Methods of Celestial Mechanics. Astronomy and Astrophysics Library, Springer-Verlag, Berlin/Heidelberg, doi:10.1007/b138225
  • Black W., 1973, Celestial Mechanics, 8, 357
  • Broucke R., 1971, Celestial Mechanics, 4, 110
  • Danby J. M. A., 1988, Fundamentals of celestial mechanics. Willmann-Bell, Richmond
  • Hadjifotinou K. G., 2000, Astronomy and Astrophysics, 354, 328
  • Heggie D. C., 2005, The Classical Gravitational N-Body Problem (arXiv:10.48550/arXiv.astro-ph/0503600)
  • Hirsch M., Smale S., 1974, Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics Vol. 60, Elsevier, doi:10.1016/S0079-8169(08)X6044-1
  • McKiernan M., 1956, The American Mathematical Monthly, 63, 331 Moran P. E., Roy A. E., Black W., 1973, Celestial mechanics, 8, 405 Musielak Z., Quarles B., 2017, Three Body Dynamics and Its Applications to Exoplanets. SpringerBriefs in Astronomy, Springer International Publishing, Cham, doi:10.1007/978-3- 319-58226-9
  • Myachin V. F., Sizova O. A., 1972, A Numerical Method of Integration by Means of Taylor-Steffensen Series and its Possible Use in the Study of the Motions of Comets and Minor Planets. Springer Netherlands, Dordrecht, pp 83–85, doi:10.1007/978-94- 010-2873-8_15
  • Roy A., 2020, Orbital Motion, 0 edn. CRC Press, doi:10.1201/9780367806620
  • Roy A. E., Moran P. E., 1973, Celestial mechanics, 7, 236
  • Roy A. E., Moran P. E., Black W., 1972, Celestial mechanics, 6, 468 Saad A., Banaszkiewicz M., Sitarski G., 2008, Applied Mathematics and Computation, 197, 874
  • Sitarski G., 1979, Acta Astronomica, 29, 401
  • Smale S., 1967, Bulletin of the American Mathematical Society, 73, 747
  • Steffensen J., 1956, Mat. Fys. Medd. Dan. Vid. Selsk., 30 Steffensen J., 1957, Mat. Fys. Medd. Dan. Vid. Selsk., 31
  • Valtonen M., Karttunen H., 2006, The Three-Body Problem, 1 edn. Cambridge University Press, doi:10.1017/CBO9780511616006
  • Whittaker E. T., McCrae S. W., 1988, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 1 edn. Cambridge University Press, doi:10.1017/CBO9780511608797
There are 18 citations in total.

Details

Primary Language English
Subjects Numerical and Computational Mathematics (Other), Applied Mathematics (Other)
Journal Section Articles
Authors

Niyazi Anil Gezer 0000-0002-4054-2504

Early Pub Date November 24, 2024
Publication Date
Submission Date June 2, 2024
Acceptance Date September 24, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

TJAA is a publication of Turkish Astronomical Society (TAD).