Research Article
BibTex RIS Cite

Tektonik Levha Hareketiyle Oluşan Topoğrafyanın Fiziksel Modeli

Year 2024, Volume: 67 Issue: 4, 85 - 91, 28.07.2024
https://doi.org/10.25288/tjb.1459797

Abstract

Kıtaların dinamik olarak yavaşça alçalması ve yükselmesi, Dünya’nın mantosundaki yoğunluk anomalilerinin (alçalan yitmiş levha ya da manto yükselmesi) hareketine dayandırılır. Ancak, birçok sedimanter havzada milyon yıl başına 100 metreyi aşan hızlı ve kısa ömürlü yükseklik değişikliklerinin gözlemleri, sadece bu mekanizmanın dinamik dikey kıta hareketlerini tetiklediği görüşünü sorgulatmıştır. Bodur vd. (2023) tektonik yatay levha hareketinin ve bununla ilintili taban kayma gerilmesinin, gözlemlenen hızlı ve kısa ömürlü kıta yükselme ve alçalmalarını açıklayabileceğini göstermiştir. Bu makalede, taban kayma gerilmesinden kaynaklanan kıtasal yükseklik değişikliklerini nicelendirmek için tork-denge hesaplamalarını kullanarak temel fiziksel bir yaklaşım öneriyorum. Elde ettiğim sonuçlar, mevcut akış modeli çözümünü doğrulamakta ve Dünya'nın topoğrafyasındaki levha hareketinin etkisini tahmin etmek için daha kolay kullanılabilir bir formül sunmaktadır. Bu tür işlevsellik, stratigrafik kayıtların yorumlanması dahil olmak üzere birçok uygulamada faydalı olabilir.

References

  • Barba, S., Carafa, M. M. & Boschi, E. (2008). Experimental evidence for mantle drag in the Mediterranean. Geophysical Research Letters, 35(6). https://doi.org/10.1029/2008GL033281
  • Bodur, Ö. F. & Rey, P. F. (2019). The impact of rheological uncertainty on dynamic topography predictions. Solid Earth, 10, 2167–2178. https://doi.org/10.5194/se-10-2167-2019
  • Bodur, Ö. F., Houseman, G. A. & Rey, P. F. (2023). Brief immersion of southern Australia by change in relative plate speed. Terra Nova, 35(2), 134-140. https://doi.org/10.1111/ter.12637
  • Embry, A. & Beauchamp, B. (2019). Sverdrup basin. In The sedimentary basins of the United States and Canada (pp. 559-592). Elsevier.
  • Flament, N., Gurnis, M. & Müller, R. D. (2013). A review of observations and models of dynamic topography. Lithosphere, 5(2), 189-210. https://doi.org/10.1130/L245.1
  • Gurnis, M., Muller, R. D. & Moresi, L. (1998). Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science, 279(5356), 1499-1504.
  • Gurnis, M., Kominz, M. & Gallagher, S. J. (2020). Reversible subsidence on the North West Shelf of Australia. Earth and Planetary Science Letters, 534, Article 116070. https://doi.org/10.1016/j.epsl.2020.116070
  • Haq, B. U., Hardenbol, J. A. N. & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156-1167.
  • Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary change, 113, 44-58. https://doi.org/10.1016/j.gloplacha.2013.12.007
  • Hoggard, M. J., White, N. & Al-Attar, D. (2016). Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geoscience, 9(6), 456-463.
  • Melosh, J. (1977). Shear stress on the base of a lithospheric plate. In C. L. Drake & L. G. Balazs (Eds.), Stress in the Earth (pp. 429-439).
  • Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S. & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20), Article eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
  • Molnar, P., England, P. C., & Jones, C. H. (2015). Mantle dynamics, isostasy, and the support of high terrain. Journal of Geophysical Research: Solid Earth, 120(3), 1932-1957. https://doi.org/10.1002/2014JB011724
  • Morgan, W. J. (1965). Gravity anomalies and convection currents: 1. A sphere and cylinder sinking beneath the surface of a viscous fluid. Journal of Geophysical Research, 70(24), 6175-6187.
  • Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., & Grand, S. P. (2008). Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271(1-4), 101-108. https://doi.org/10.1016/j.epsl.2008.03.056
  • Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson, M. E., ... & Delcaillau, B. (2011). Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?. Earth-Science Reviews, 108(1-2), 1-15. https://doi.org/10.1016/j.earscirev.2011.05.002
  • Petersen, K. D., Nielsen, S. B., Clausen, O. R., Stephenson, R. & Gerya, T. (2010). Small-scale mantle convection produces stratigraphic sequences in sedimentary basins. Science, 329(5993), 827-830. https://doi.org/10.1126/science.1190115
  • Pysklywec, R. N. & Mitrovica, J. X. (1998). Mantle flow mechanisms for the large-scale subsidence of continental interiors. Geology, 26(8), 687-690.
  • Pysklywec, R. N., & Mitrovica, J. X. (1997). Mantle avalanches and the dynamic topography of continents. Earth and Planetary Science Letters, 148(3-4), 447-455.
  • Steinberger, B. (2007). Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Physics of the Earth and Planetary Interiors, 164(1-2), 2-20.
  • Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S., Sangree, J. B., ... & Hatlelid, W. G. (1977). Seismic stratigraphy and global changes in sea level. In C. E. Payton (Ed.), Seismic stratigraphy: Applications to hydrocarbon exploration (pp. 49-212). AAPG Memoir 26.
  • Van Benthem, S. & Govers, R. (2010). The Caribbean plate: Pulled, pushed, or dragged?. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/10.1029/2009JB006674
  • Zhu, Y., An, F. & Tan, J. (2011). Geochemistry of hydrothermal gold deposits: A review. Geoscience Frontiers, 2(3), 367-374. http://dx.doi.org/10.1016/j.gsf.2011.05.006

A Simple Model for Plate Motion and Topography

Year 2024, Volume: 67 Issue: 4, 85 - 91, 28.07.2024
https://doi.org/10.25288/tjb.1459797

Abstract

The traditional explanation of slow dynamic subsidence and uplift of tectonic plates solely depends on the vertical motion of mantle density anomalies. This has been challenged by observations of rapid and short-lived elevation changes exceeding 100 meters per-million-year in numerous sedimentary basins. Bodur et al., (2023) have shown that relative tectonic plate motion and associated basal shear stress can explain those rapid and short-lived elevation changes. In this paper, I suggest a basic approach to quantify elevation changes resulting from basal shear stress by employing torque-balance calculations. The results confirm the existing flow model solution and offer a more robust formula for estimating the impact of plate motion on changes in Earth's topography. Such functionality may prove invaluable in various applications including interpretation of stratigraphic records.

Ethical Statement

The research presented in this study received funding from the Australian Research Council (grant no. IH130200012) during my doctoral studies at The University of Sydney, but the completion of this article was entirely self-funded. I would like to express my gratitude for insightful discussions with Patrice Rey, Greg Houseman, and the invaluable feedback provided by my PhD thesis reviewers, Robert Moucha and Giampiero Iaffaldan on the early version of the calculations.

References

  • Barba, S., Carafa, M. M. & Boschi, E. (2008). Experimental evidence for mantle drag in the Mediterranean. Geophysical Research Letters, 35(6). https://doi.org/10.1029/2008GL033281
  • Bodur, Ö. F. & Rey, P. F. (2019). The impact of rheological uncertainty on dynamic topography predictions. Solid Earth, 10, 2167–2178. https://doi.org/10.5194/se-10-2167-2019
  • Bodur, Ö. F., Houseman, G. A. & Rey, P. F. (2023). Brief immersion of southern Australia by change in relative plate speed. Terra Nova, 35(2), 134-140. https://doi.org/10.1111/ter.12637
  • Embry, A. & Beauchamp, B. (2019). Sverdrup basin. In The sedimentary basins of the United States and Canada (pp. 559-592). Elsevier.
  • Flament, N., Gurnis, M. & Müller, R. D. (2013). A review of observations and models of dynamic topography. Lithosphere, 5(2), 189-210. https://doi.org/10.1130/L245.1
  • Gurnis, M., Muller, R. D. & Moresi, L. (1998). Cretaceous vertical motion of Australia and the Australian Antarctic discordance. Science, 279(5356), 1499-1504.
  • Gurnis, M., Kominz, M. & Gallagher, S. J. (2020). Reversible subsidence on the North West Shelf of Australia. Earth and Planetary Science Letters, 534, Article 116070. https://doi.org/10.1016/j.epsl.2020.116070
  • Haq, B. U., Hardenbol, J. A. N. & Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science, 235(4793), 1156-1167.
  • Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary change, 113, 44-58. https://doi.org/10.1016/j.gloplacha.2013.12.007
  • Hoggard, M. J., White, N. & Al-Attar, D. (2016). Global dynamic topography observations reveal limited influence of large-scale mantle flow. Nature Geoscience, 9(6), 456-463.
  • Melosh, J. (1977). Shear stress on the base of a lithospheric plate. In C. L. Drake & L. G. Balazs (Eds.), Stress in the Earth (pp. 429-439).
  • Miller, K. G., Browning, J. V., Schmelz, W. J., Kopp, R. E., Mountain, G. S. & Wright, J. D. (2020). Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances, 6(20), Article eaaz1346. https://doi.org/10.1126/sciadv.aaz1346
  • Molnar, P., England, P. C., & Jones, C. H. (2015). Mantle dynamics, isostasy, and the support of high terrain. Journal of Geophysical Research: Solid Earth, 120(3), 1932-1957. https://doi.org/10.1002/2014JB011724
  • Morgan, W. J. (1965). Gravity anomalies and convection currents: 1. A sphere and cylinder sinking beneath the surface of a viscous fluid. Journal of Geophysical Research, 70(24), 6175-6187.
  • Moucha, R., Forte, A. M., Mitrovica, J. X., Rowley, D. B., Quéré, S., Simmons, N. A., & Grand, S. P. (2008). Dynamic topography and long-term sea-level variations: There is no such thing as a stable continental platform. Earth and Planetary Science Letters, 271(1-4), 101-108. https://doi.org/10.1016/j.epsl.2008.03.056
  • Pedoja, K., Husson, L., Regard, V., Cobbold, P. R., Ostanciaux, E., Johnson, M. E., ... & Delcaillau, B. (2011). Relative sea-level fall since the last interglacial stage: Are coasts uplifting worldwide?. Earth-Science Reviews, 108(1-2), 1-15. https://doi.org/10.1016/j.earscirev.2011.05.002
  • Petersen, K. D., Nielsen, S. B., Clausen, O. R., Stephenson, R. & Gerya, T. (2010). Small-scale mantle convection produces stratigraphic sequences in sedimentary basins. Science, 329(5993), 827-830. https://doi.org/10.1126/science.1190115
  • Pysklywec, R. N. & Mitrovica, J. X. (1998). Mantle flow mechanisms for the large-scale subsidence of continental interiors. Geology, 26(8), 687-690.
  • Pysklywec, R. N., & Mitrovica, J. X. (1997). Mantle avalanches and the dynamic topography of continents. Earth and Planetary Science Letters, 148(3-4), 447-455.
  • Steinberger, B. (2007). Effects of latent heat release at phase boundaries on flow in the Earth’s mantle, phase boundary topography and dynamic topography at the Earth’s surface. Physics of the Earth and Planetary Interiors, 164(1-2), 2-20.
  • Vail, P. R., Mitchum, R. M., Todd, R. G., Widmier, J. M., Thompson, S., Sangree, J. B., ... & Hatlelid, W. G. (1977). Seismic stratigraphy and global changes in sea level. In C. E. Payton (Ed.), Seismic stratigraphy: Applications to hydrocarbon exploration (pp. 49-212). AAPG Memoir 26.
  • Van Benthem, S. & Govers, R. (2010). The Caribbean plate: Pulled, pushed, or dragged?. Journal of Geophysical Research: Solid Earth, 115(B10). https://doi.org/10.1029/2009JB006674
  • Zhu, Y., An, F. & Tan, J. (2011). Geochemistry of hydrothermal gold deposits: A review. Geoscience Frontiers, 2(3), 367-374. http://dx.doi.org/10.1016/j.gsf.2011.05.006
There are 23 citations in total.

Details

Primary Language English
Subjects Geodynamics
Journal Section Research Article
Authors

Ömer Faruk Bodur 0000-0001-6836-0107

Early Pub Date July 20, 2024
Publication Date July 28, 2024
Submission Date March 27, 2024
Acceptance Date July 11, 2024
Published in Issue Year 2024 Volume: 67 Issue: 4

Cite

APA Bodur, Ö. F. (2024). A Simple Model for Plate Motion and Topography. Türkiye Jeoloji Bülteni, 67(4), 85-91. https://doi.org/10.25288/tjb.1459797
AMA Bodur ÖF. A Simple Model for Plate Motion and Topography. Geol. Bull. Turkey. July 2024;67(4):85-91. doi:10.25288/tjb.1459797
Chicago Bodur, Ömer Faruk. “A Simple Model for Plate Motion and Topography”. Türkiye Jeoloji Bülteni 67, no. 4 (July 2024): 85-91. https://doi.org/10.25288/tjb.1459797.
EndNote Bodur ÖF (July 1, 2024) A Simple Model for Plate Motion and Topography. Türkiye Jeoloji Bülteni 67 4 85–91.
IEEE Ö. F. Bodur, “A Simple Model for Plate Motion and Topography”, Geol. Bull. Turkey, vol. 67, no. 4, pp. 85–91, 2024, doi: 10.25288/tjb.1459797.
ISNAD Bodur, Ömer Faruk. “A Simple Model for Plate Motion and Topography”. Türkiye Jeoloji Bülteni 67/4 (July 2024), 85-91. https://doi.org/10.25288/tjb.1459797.
JAMA Bodur ÖF. A Simple Model for Plate Motion and Topography. Geol. Bull. Turkey. 2024;67:85–91.
MLA Bodur, Ömer Faruk. “A Simple Model for Plate Motion and Topography”. Türkiye Jeoloji Bülteni, vol. 67, no. 4, 2024, pp. 85-91, doi:10.25288/tjb.1459797.
Vancouver Bodur ÖF. A Simple Model for Plate Motion and Topography. Geol. Bull. Turkey. 2024;67(4):85-91.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php