Review
BibTex RIS Cite

Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes

Year 2025, Volume: 16 Issue: 3, 653 - 664, 30.09.2025
https://doi.org/10.18663/tjcl.1745156

Abstract

The phenomenon of cellular senescence, which inevitably occurs as a result of chemotherapy, which is the basis of today's cancer treatment, has been a subject of increasing interest in recent years. This article aims to methodologically examine how cellular senescence is induced by chemotherapeutic agents and how this condition is detected in patients who are receiving or have received treatment. How senescent cells induced by chemotherapy during cancer treatment are determined, which biomarkers are used to detect senescence, and the methods used to detect these markers are discussed. In addition, the effects of senescent cells on the tumor microenvironment and the important clinical outcomes that may occur in patients with treatment are examined. In conclusion, in this review, we aimed to examine the clinical importance of cellular senescence induced by chemotherapy in cancer patients, how it may affect the response to chemotherapy, the side effects and long-term clinical outcomes it may cause in patients and possible new treatment methods to prevent potential adverse consequences.

Ethical Statement

Not applicable.

References

  • Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  • Ozdemir, A., et al., Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. Adv Protein Chem Struct Biol, 2023. 133: p. 115-158. https://doi.org/10.1016/bs.apcsb.2022.10.002
  • McHugh, D. and J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol, 2018. 217(1): p. 65-77. https://doi.org/10.1083/jcb.201708092
  • Xiao, S., et al., Cellular senescence: a double-edged sword in cancer therapy. Front Oncol, 2023. 13: p. 1189015. https://doi.org/10.3389/fonc.2023.1189015
  • Sucularli, C., et al., Temporal regulation of gene expression and pathways in chemotherapy-induced senescence in HeLa cervical cancer cell line. Biosystems, 2024. 237: p. 105140. https://doi.org/10.1016/j.biosystems.2024.105140
  • Hiyama, E., et al., Telomerase activity in human breast tumors. J Natl Cancer Inst, 1996. 88(2): p. 116-22. https://doi.org/10.1093/jnci/88.2.116
  • Sager, R., Senescence as a mode of tumor suppression. 1991. https://doi.org/10.1289/ehp.919359
  • Rodriguez-Brenes, I.A., D. Wodarz, and N.L. Komarova, Quantifying replicative senescence as a tumor suppressor pathway and a target for cancer therapy. Scientific Reports, 2015. 5. https://doi.org/ARTN 1766010.1038/srep17660
  • Gewirtz, D.A., S.E. Holt, and L.W. Elmore, Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation. Biochemical Pharmacology, 2008. 76(8): p. 947-957. https://doi.org/10.1016/j.bcp.2008.06.024
  • Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008. 6(12): p. 2853-68. https://doi.org/10.1371/journal.pbio.0060301
  • Campisi, J., Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, Vol 75, 2013. 75: p. 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
  • Piskorz, W.M. and M. Cechowska-Pasko, Senescence of Tumor Cells in Anticancer Therapy-Beneficial and Detrimental Effects. Int J Mol Sci, 2022. 23(19). https://doi.org/10.3390/ijms231911082
  • Simay, Y.D., et al., The connection between the cardiac glycoside-induced senescent cell morphology and Rho/Rho kinase pathway. Cytoskeleton, 2018. 75(11): p. 461-471. https://doi.org/10.1002/cm.21502
  • Pacifico, F., et al., Therapy-Induced Senescence: Novel Approaches for Markers Identification. International Journal of Molecular Sciences, 2024. 25(15). https://doi.org/ARTN 844810.3390/ijms25158448
  • Herranz, N. and J. Gil, Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 2018. 128(4): p. 1238-1246. https://doi.org/10.1172/Jci95148
  • Sharpless, N.E. and C.J. Sherr, Forging a signature of in vivo senescence. Nat Rev Cancer, 2015. 15(7): p. 397-408. https://doi.org/10.1038/nrc3960
  • Debacq-Chainiaux, F., et al., Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 2009. 4(12): p. 1798-806. https://doi.org/10.1038/nprot.2009.191
  • Evangelou, K., et al., Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell, 2017. 16(1): p. 192-197. https://doi.org/10.1111/acel.12545
  • Kurz, D.J., et al., Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci, 2000. 113 ( Pt 20): p. 3613-22. https://doi.org/10.1242/jcs.113.20.3613
  • Wang, B. and M. Demaria, The Quest to Define and Target Cellular Senescence in Cancer. Cancer Res, 2021. 81(24): p. 6087-6089. https://doi.org/10.1158/0008-5472.CAN-21-2032
  • Domen, A., et al., Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res, 2022. 41(1): p. 360. https://doi.org/10.1186/s13046-022-02555-3
  • Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY), 2013. 5(1): p. 37-50. https://doi.org/10.18632/aging.100527
  • Dowson, J.H. and S.J. Harris, Quantitative studies of the autofluorescence derived from neuronal lipofuscin. J Microsc, 1981. 123(Pt 3): p. 249-58. https://doi.org/10.1111/j.1365-2818.1981.tb02469.x
  • Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging-Us, 2013. 5(1): p. 37-50.
  • Mirzayans, R., et al., Role of p16(INK4A) in Replicative Senescence and DNA Damage-Induced Premature Senescence in p53-Deficient Human Cells. Biochem Res Int, 2012. 2012: p. 951574. https://doi.org/10.1155/2012/951574
  • Ruas, M. and G. Peters, The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta, 1998. 1378(2): p. F115-77. https://doi.org/10.1016/s0304-419x(98)00017-1
  • Ovadya, Y. and V. Krizhanovsky, Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014. 15(6): p. 627-642. https://doi.org/10.1007/s10522-014-9529-9
  • Giatromanolaki, A., et al., Immunohistochemical detection of senescence markers in human sarcomas. Pathol Res Pract, 2020. 216(2): p. 152800. https://doi.org/10.1016/j.prp.2019.152800
  • Sorokina, A.G., et al., Correlations between biomarkers of senescent cell accumulation at the systemic, tissue and cellular levels in elderly patients. Experimental Gerontology, 2023. 177. https://doi.org/ARTN 11217610.1016/j.exger.2023.112176
  • Pustavoitau, A., et al., Role of senescence marker p16INK4a measured in peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults. Experimental Gerontology, 2016. 74: p. 29-36. https://doi.org/10.1016/j.exger.2015.12.003
  • Calio, A., et al., Cellular Senescence Markers p16INK4a and p21CIP1/WAF Are Predictors of Hodgkin Lymphoma Outcome. Clin Cancer Res, 2015. 21(22): p. 5164-72. https://doi.org/10.1158/1078-0432.CCR-15-0508
  • Lawrence, I., et al., Correlations between age, functional status, and the senescence-associated proteins HMGB2 and p16. Geroscience, 2018. 40(2): p. 193-199. https://doi.org/10.1007/s11357-018-0015-1
  • Engeland, K., Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death and Differentiation, 2018. 25(1): p. 114-132. https://doi.org/10.1038/cdd.2017.172
  • Kreis, N.N., F. Louwen, and J. Yuan, The Multifaceted p21 (Cip1/Waf1/) in Cell Differentiation, Migration and Cancer Therapy. Cancers, 2019. 11(9). https://doi.org/ARTN 122010.3390/cancers11091220
  • Mijit, M., et al., Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 2020. 10(3). https://doi.org/ARTN 42010.3390/biom10030420
  • Chang, B.D., et al., Effects of p21 on cellular gene expression:: Implications for carcinogenesis, senescence, and age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): p. 4291-4296. https://doi.org/DOI 10.1073/pnas.97.8.4291
  • Engeland, K., Cell cycle regulation: p53-p21-RB signaling. Cell Death and Differentiation, 2022. 29(5): p. 946-960. https://doi.org/10.1038/s41418-022-00988-z
  • Al Bitar, S. and H. Gali-Muhtasib, The Role of the Cyclin Dependent Kinase Inhibitor p21 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers, 2019. 11(10). https://doi.org/ARTN 147510.3390/cancers11101475
  • Joel, R.H.t.P.A.L.O.L.J.J.C.S.P., DNA Damage Is Able to Induce Senescence in Tumor Cells in Vitro and in Vivo. Cancer Research, 2002. 62(6): p. 1876-1883.
  • Zhu, Y., et al., Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci, 2013. 104(8): p. 1052-61. https://doi.org/10.1111/cas.12176
  • Gerdes, J., et al., Production of a Mouse Monoclonal-Antibody Reactive with a Human Nuclear Antigen Associated with Cell-Proliferation. International Journal of Cancer, 1983. 31(1): p. 13-20. https://doi.org/DOI 10.1002/ijc.2910310104
  • Gerdes, J., et al., Cell-Cycle Analysis of a Cell Proliferation-Associated Human Nuclear Antigen Defined by the Monoclonal-Antibody Ki-67. Journal of Immunology, 1984. 133(4): p. 1710-1715.
  • Sun, X.M. and P.D. Kaufman, Ki-67: more than a proliferation marker. Chromosoma, 2018. 127(2): p. 175-186. https://doi.org/10.1007/s00412-018-0659-8
  • Haugstetter, A.M., et al., Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer, 2010. 103(4): p. 505-9. https://doi.org/10.1038/sj.bjc.6605784
  • El-Sadoni, M., et al., A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol, 2023. 91(4): p. 345-360. https://doi.org/10.1007/s00280-023-04523-w
  • Radspieler, M.M., et al., Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncology Letters, 2019. 18(3): p. 2654-2660. https://doi.org/10.3892/ol.2019.10593
  • Freund, A., et al., Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 2012. 23(11): p. 2066-2075. https://doi.org/10.1091/mbc.E11-10-0884
  • Sanoff, H.K., et al., Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst, 2014. 106(4): p. dju057. https://doi.org/10.1093/jnci/dju057
  • Everaerts, S., et al., The aging lung: tissue telomere shortening in health and disease. Respir Res, 2018. 19(1): p. 95. https://doi.org/10.1186/s12931-018-0794-z
  • Wiemann, S.U., et al., Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J, 2002. 16(9): p. 935-42. https://doi.org/10.1096/fj.01-0977com
  • Vera-Ramirez, L., et al., Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS One, 2013. 8(1): p. e53983. https://doi.org/10.1371/journal.pone.0053983
  • Zhang, J.W., et al., Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway. Gut Microbes, 2023. 15(1): p. 2197836. https://doi.org/10.1080/19490976.2023.2197836
  • Aird, K.M. and R. Zhang, Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol, 2013. 965: p. 185-96. https://doi.org/10.1007/978-1-62703-239-1_12
  • Saleh, T., et al., Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Bioscience Reports, 2021. 41(5). https://doi.org/Artn Bsr2021007910.1042/Bsr20210079
  • Carballo-Munoz, A., et al., Aging-related biomarkers in testicular cancer survivors after different oncologic treatments. Cancer Med, 2024. 13(18): p. e70200. https://doi.org/10.1002/cam4.70200
  • Chaib, S., et al., The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat Cancer, 2024. 5(3): p. 448-462. https://doi.org/10.1038/s43018-023-00712-x
  • Al Shboul, S., et al., NOXA expression is downregulated in human breast cancer undergoing incomplete pathological response and senescence after neoadjuvant chemotherapy. Sci Rep, 2023. 13(1): p. 15903. https://doi.org/10.1038/s41598-023-42994-2
  • Domen, A., et al., Prognostic implications of cellular senescence in resected non-small cell lung cancer. Transl Lung Cancer Res, 2022. 11(8): p. 1526-1539. https://doi.org/10.21037/tlcr-22-192
  • Tato-Costa, J., et al., Therapy-Induced Cellular Senescence Induces Epithelial-to-Mesenchymal Transition and Increases Invasiveness in Rectal Cancer. Clin Colorectal Cancer, 2016. 15(2): p. 170-178 e3. https://doi.org/10.1016/j.clcc.2015.09.003
  • Sidi, R., et al., Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer, 2011. 47(2): p. 326-32. https://doi.org/10.1016/j.ejca.2010.09.044
  • Roberson, R.S., et al., Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res, 2005. 65(7): p. 2795-803. https://doi.org/10.1158/0008-5472.CAN-04-1270
  • Saleh, T., et al., The Expression of the Senescence-Associated Biomarker Lamin B1 in Human Breast Cancer. Diagnostics (Basel), 2022. 12(3). https://doi.org/10.3390/diagnostics12030609
  • Shachar, S.S., et al., Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, p16(INK4a). JNCI Cancer Spectr, 2020. 4(6): p. pkaa082. https://doi.org/10.1093/jncics/pkaa082
  • Campisi, J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell, 2005. 120(4): p. 513-522. https://doi.org/DOI 10.1016/j.cell.2005.02.003
  • Demir, Y.D.S., et al., The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? Cellular Signalling, 2021. 84. https://doi.org/ARTN 11000710.1016/j.cellsig.2021.110007
  • Coppé, J.P., et al., The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology-Mechanisms of Disease, 2010. 5: p. 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  • Zingoni, A., et al., The senescence journey in cancer immunoediting. Molecular Cancer, 2024. 23(1). https://doi.org/ARTN 6810.1186/s12943-024-01973-5
  • Xue, W., et al., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007. 445(7128): p. 656-660. https://doi.org/10.1038/nature05529
  • Qin, S.H., B.A. Schulte, and G.Y. Wang, Role of senescence induction in cancer treatment. World Journal of Clinical Oncology, 2018. 9(8): p. 180-187. https://doi.org/10.5306/wjco.v9.i8.180
  • Roninson, I.B., Tumor cell senescence in cancer treatment. Cancer Research, 2003. 63(11): p. 2705-2715.
  • Kuilman, T. and D.S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 2009. 9(2): p. 81-94. https://doi.org/10.1038/nrc2560
  • Rodier, F. and J. Campisi, Four faces of cellular senescence. Journal of Cell Biology, 2011. 192(4): p. 547-556. https://doi.org/10.1083/jcb.201009094
  • Demaria, M., et al., Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov, 2017. 7(2): p. 165-176. https://doi.org/10.1158/2159-8290.CD-16-0241
  • Ohtani, N., The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen, 2022. 42(1): p. 11. https://doi.org/10.1186/s41232-022-00197-8
  • Milanovic, M., et al., Senescence-associated reprogramming promotes cancer stemness. Nature, 2018. 553(7686): p. 96-100. https://doi.org/10.1038/nature25167
  • Vasto, S., et al., Inflammatory networks in ageing, age-related diseases and longevity. Mechanisms of Ageing and Development, 2007. 128(1): p. 83-91. https://doi.org/10.1016/j.mad.2006.11.015
  • Wang, D.Z. and R.N. DuBois, Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis, 2015. 36(10): p. 1085-1093. https://doi.org/10.1093/carcin/bgv123
  • Freund, A., et al., Inflammatory networks during cellular senescence: causes and consequences. Trends in Molecular Medicine, 2010. 16(5): p. 238-246. https://doi.org/10.1016/j.molmed.2010.03.003
  • Ruhland, M.K., et al., Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 2016. 7. https://doi.org/ARTN 1176210.1038/ncomms11762
  • Ershler, W.B. and E.T. Keller, Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annual Review of Medicine, 2000. 51: p. 245-270. https://doi.org/DOI 10.1146/annurev.med.51.1.245
  • Duy, C., et al., Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov, 2021. 11(6): p. 1542-1561. https://doi.org/10.1158/2159-8290.CD-20-1375
  • Kasamatsu, T., et al., Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression. Clin Exp Med, 2023. 23(6): p. 2695-2703. https://doi.org/10.1007/s10238-023-01034-z
  • Kasamatsu, T., Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel), 2023. 15(24). https://doi.org/10.3390/cancers15245835
  • Krtolica, A., et al., Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(21): p. 12072-12077. https://doi.org/DOI 10.1073/pnas.211053698
  • Ren, J.L., et al., Inflammatory signaling and cellular senescence. Cellular Signalling, 2009. 21(3): p. 378-383. https://doi.org/10.1016/j.cellsig.2008.10.011
  • Burton, D.G.A. and A. Stolzing, Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Research Reviews, 2018. 43: p. 17-25. https://doi.org/10.1016/j.arr.2018.02.001
  • Rhinn, M., B. Ritschka, and W.M. Keyes, Cellular senescence in development, regeneration and disease. Development, 2019. 146(20). https://doi.org/ARTN dev15183710.1242/dev.151837
  • Wiley, C.D., et al., Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight, 2019. 4(24). https://doi.org/10.1172/jci.insight.130056
  • Chilosi, M., et al., Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res, 2013. 162(3): p. 156-73. https://doi.org/10.1016/j.trsl.2013.06.004
  • Bhowmik, A., et al., Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax, 2000. 55(2): p. 114-20. https://doi.org/10.1136/thorax.55.2.114
  • Aldonyte, R., et al., Circulating monocytes from healthy individuals and COPD patients. Respir Res, 2003. 4(1): p. 11. https://doi.org/10.1186/1465-9921-4-11
  • Liu, R.M., Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal, 2008. 10(2): p. 303-19. https://doi.org/10.1089/ars.2007.1903
  • Mehdizadeh, M., et al., The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nature Reviews Cardiology, 2022. 19(4): p. 250-264. https://doi.org/10.1038/s41569-021-00624-2
  • Matsumoto, Y., et al., Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair. European Heart Journal, 2009. 30(3): p. 346-355. https://doi.org/10.1093/eurheartj/ehn501
  • Windebank, A.J. and W.G. Grisold, Chemotherapy-induced neuropathy. Journal of the Peripheral Nervous System, 2008. 13(1): p. 27-46. https://doi.org/DOI 10.1111/j.1529-8027.2008.00156.x
  • Alsalem, M., et al., Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer, 2024. 32(1): p. 85. https://doi.org/10.1007/s00520-023-08287-0
  • Myrianthopoulos, V., et al., Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther, 2019. 193: p. 31-49. https://doi.org/10.1016/j.pharmthera.2018.08.006
  • Wang, S., et al., Accelerated Aging in Cancer Survivors: Cellular Senescence, Frailty, and Possible Opportunities for Interventions. Int J Mol Sci, 2024. 25(6). https://doi.org/10.3390/ijms25063319
  • Zhang, L., et al., Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. Febs Journal, 2023. 290(5): p. 1362-1383. https://doi.org/10.1111/febs.16350
  • Balducci, L., C. Falandry, and M. Silvio, Senotherapy, cancer, and aging. J Geriatr Oncol, 2024. 15(4): p. 101671. https://doi.org/10.1016/j.jgo.2023.101671

Kemoterapi ile İndüklenen Hücresel Senesens: Klinik Yöntemler ve Tedavi Sonuçlarının Kapsamlı Bir İncelemesi

Year 2025, Volume: 16 Issue: 3, 653 - 664, 30.09.2025
https://doi.org/10.18663/tjcl.1745156

Abstract

Günümüz kanser tedavisinin temelini oluşturan kemoterapinin kaçınılmaz bir sonucu olarak ortaya çıkan hücresel senesens olgusu, son yıllarda artan bir ilgiyle araştırılmaktadır. Bu makalede, kemoterapötik ajanlar tarafından hücresel senesens'in nasıl indüklendiği ve bu durumun tedavi almakta olan ya da tedavi almış hastalarda nasıl tespit edildiği yöntemsel olarak incelenmiştir. Kanser tedavisi sırasında kemoterapiye bağlı olarak gelişen senesens hücrelerin nasıl belirlendiği, senesens'in tespitinde kullanılan biyobelirteçler ve bu belirteçleri saptamada kullanılan yöntemler tartışılmıştır. Ayrıca, senesens hücrelerin tümör mikroçevresi üzerindeki etkileri ve tedavi gören hastalarda ortaya çıkabilecek önemli klinik sonuçlar değerlendirilmiştir. Sonuç olarak, bu derlemede kemoterapiye bağlı olarak gelişen hücresel senesens'in kanser hastalarındaki klinik önemini, kemoterapiye yanıtı nasıl etkileyebileceğini, hastalarda oluşturabileceği yan etkiler ile uzun vadeli klinik sonuçlarını ve potansiyel olumsuz sonuçları önlemeye yönelik yeni tedavi yöntemlerini incelemeyi amaçladık.

Ethical Statement

Not applicable

References

  • Hayflick, L. and P.S. Moorhead, The serial cultivation of human diploid cell strains. Exp Cell Res, 1961. 25: p. 585-621. https://doi.org/10.1016/0014-4827(61)90192-6
  • Ozdemir, A., et al., Senescent cells and SASP in cancer microenvironment: New approaches in cancer therapy. Adv Protein Chem Struct Biol, 2023. 133: p. 115-158. https://doi.org/10.1016/bs.apcsb.2022.10.002
  • McHugh, D. and J. Gil, Senescence and aging: Causes, consequences, and therapeutic avenues. J Cell Biol, 2018. 217(1): p. 65-77. https://doi.org/10.1083/jcb.201708092
  • Xiao, S., et al., Cellular senescence: a double-edged sword in cancer therapy. Front Oncol, 2023. 13: p. 1189015. https://doi.org/10.3389/fonc.2023.1189015
  • Sucularli, C., et al., Temporal regulation of gene expression and pathways in chemotherapy-induced senescence in HeLa cervical cancer cell line. Biosystems, 2024. 237: p. 105140. https://doi.org/10.1016/j.biosystems.2024.105140
  • Hiyama, E., et al., Telomerase activity in human breast tumors. J Natl Cancer Inst, 1996. 88(2): p. 116-22. https://doi.org/10.1093/jnci/88.2.116
  • Sager, R., Senescence as a mode of tumor suppression. 1991. https://doi.org/10.1289/ehp.919359
  • Rodriguez-Brenes, I.A., D. Wodarz, and N.L. Komarova, Quantifying replicative senescence as a tumor suppressor pathway and a target for cancer therapy. Scientific Reports, 2015. 5. https://doi.org/ARTN 1766010.1038/srep17660
  • Gewirtz, D.A., S.E. Holt, and L.W. Elmore, Accelerated senescence: An emerging role in tumor cell response to chemotherapy and radiation. Biochemical Pharmacology, 2008. 76(8): p. 947-957. https://doi.org/10.1016/j.bcp.2008.06.024
  • Coppe, J.P., et al., Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 2008. 6(12): p. 2853-68. https://doi.org/10.1371/journal.pbio.0060301
  • Campisi, J., Aging, Cellular Senescence, and Cancer. Annual Review of Physiology, Vol 75, 2013. 75: p. 685-705. https://doi.org/10.1146/annurev-physiol-030212-183653
  • Piskorz, W.M. and M. Cechowska-Pasko, Senescence of Tumor Cells in Anticancer Therapy-Beneficial and Detrimental Effects. Int J Mol Sci, 2022. 23(19). https://doi.org/10.3390/ijms231911082
  • Simay, Y.D., et al., The connection between the cardiac glycoside-induced senescent cell morphology and Rho/Rho kinase pathway. Cytoskeleton, 2018. 75(11): p. 461-471. https://doi.org/10.1002/cm.21502
  • Pacifico, F., et al., Therapy-Induced Senescence: Novel Approaches for Markers Identification. International Journal of Molecular Sciences, 2024. 25(15). https://doi.org/ARTN 844810.3390/ijms25158448
  • Herranz, N. and J. Gil, Mechanisms and functions of cellular senescence. Journal of Clinical Investigation, 2018. 128(4): p. 1238-1246. https://doi.org/10.1172/Jci95148
  • Sharpless, N.E. and C.J. Sherr, Forging a signature of in vivo senescence. Nat Rev Cancer, 2015. 15(7): p. 397-408. https://doi.org/10.1038/nrc3960
  • Debacq-Chainiaux, F., et al., Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc, 2009. 4(12): p. 1798-806. https://doi.org/10.1038/nprot.2009.191
  • Evangelou, K., et al., Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell, 2017. 16(1): p. 192-197. https://doi.org/10.1111/acel.12545
  • Kurz, D.J., et al., Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci, 2000. 113 ( Pt 20): p. 3613-22. https://doi.org/10.1242/jcs.113.20.3613
  • Wang, B. and M. Demaria, The Quest to Define and Target Cellular Senescence in Cancer. Cancer Res, 2021. 81(24): p. 6087-6089. https://doi.org/10.1158/0008-5472.CAN-21-2032
  • Domen, A., et al., Cellular senescence in cancer: clinical detection and prognostic implications. J Exp Clin Cancer Res, 2022. 41(1): p. 360. https://doi.org/10.1186/s13046-022-02555-3
  • Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging (Albany NY), 2013. 5(1): p. 37-50. https://doi.org/10.18632/aging.100527
  • Dowson, J.H. and S.J. Harris, Quantitative studies of the autofluorescence derived from neuronal lipofuscin. J Microsc, 1981. 123(Pt 3): p. 249-58. https://doi.org/10.1111/j.1365-2818.1981.tb02469.x
  • Georgakopoulou, E.A., et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues. Aging-Us, 2013. 5(1): p. 37-50.
  • Mirzayans, R., et al., Role of p16(INK4A) in Replicative Senescence and DNA Damage-Induced Premature Senescence in p53-Deficient Human Cells. Biochem Res Int, 2012. 2012: p. 951574. https://doi.org/10.1155/2012/951574
  • Ruas, M. and G. Peters, The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta, 1998. 1378(2): p. F115-77. https://doi.org/10.1016/s0304-419x(98)00017-1
  • Ovadya, Y. and V. Krizhanovsky, Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 2014. 15(6): p. 627-642. https://doi.org/10.1007/s10522-014-9529-9
  • Giatromanolaki, A., et al., Immunohistochemical detection of senescence markers in human sarcomas. Pathol Res Pract, 2020. 216(2): p. 152800. https://doi.org/10.1016/j.prp.2019.152800
  • Sorokina, A.G., et al., Correlations between biomarkers of senescent cell accumulation at the systemic, tissue and cellular levels in elderly patients. Experimental Gerontology, 2023. 177. https://doi.org/ARTN 11217610.1016/j.exger.2023.112176
  • Pustavoitau, A., et al., Role of senescence marker p16INK4a measured in peripheral blood T-lymphocytes in predicting length of hospital stay after coronary artery bypass surgery in older adults. Experimental Gerontology, 2016. 74: p. 29-36. https://doi.org/10.1016/j.exger.2015.12.003
  • Calio, A., et al., Cellular Senescence Markers p16INK4a and p21CIP1/WAF Are Predictors of Hodgkin Lymphoma Outcome. Clin Cancer Res, 2015. 21(22): p. 5164-72. https://doi.org/10.1158/1078-0432.CCR-15-0508
  • Lawrence, I., et al., Correlations between age, functional status, and the senescence-associated proteins HMGB2 and p16. Geroscience, 2018. 40(2): p. 193-199. https://doi.org/10.1007/s11357-018-0015-1
  • Engeland, K., Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. Cell Death and Differentiation, 2018. 25(1): p. 114-132. https://doi.org/10.1038/cdd.2017.172
  • Kreis, N.N., F. Louwen, and J. Yuan, The Multifaceted p21 (Cip1/Waf1/) in Cell Differentiation, Migration and Cancer Therapy. Cancers, 2019. 11(9). https://doi.org/ARTN 122010.3390/cancers11091220
  • Mijit, M., et al., Role of p53 in the Regulation of Cellular Senescence. Biomolecules, 2020. 10(3). https://doi.org/ARTN 42010.3390/biom10030420
  • Chang, B.D., et al., Effects of p21 on cellular gene expression:: Implications for carcinogenesis, senescence, and age-related diseases. Proceedings of the National Academy of Sciences of the United States of America, 2000. 97(8): p. 4291-4296. https://doi.org/DOI 10.1073/pnas.97.8.4291
  • Engeland, K., Cell cycle regulation: p53-p21-RB signaling. Cell Death and Differentiation, 2022. 29(5): p. 946-960. https://doi.org/10.1038/s41418-022-00988-z
  • Al Bitar, S. and H. Gali-Muhtasib, The Role of the Cyclin Dependent Kinase Inhibitor p21 in Targeting Cancer: Molecular Mechanisms and Novel Therapeutics. Cancers, 2019. 11(10). https://doi.org/ARTN 147510.3390/cancers11101475
  • Joel, R.H.t.P.A.L.O.L.J.J.C.S.P., DNA Damage Is Able to Induce Senescence in Tumor Cells in Vitro and in Vivo. Cancer Research, 2002. 62(6): p. 1876-1883.
  • Zhu, Y., et al., Sunitinib induces cellular senescence via p53/Dec1 activation in renal cell carcinoma cells. Cancer Sci, 2013. 104(8): p. 1052-61. https://doi.org/10.1111/cas.12176
  • Gerdes, J., et al., Production of a Mouse Monoclonal-Antibody Reactive with a Human Nuclear Antigen Associated with Cell-Proliferation. International Journal of Cancer, 1983. 31(1): p. 13-20. https://doi.org/DOI 10.1002/ijc.2910310104
  • Gerdes, J., et al., Cell-Cycle Analysis of a Cell Proliferation-Associated Human Nuclear Antigen Defined by the Monoclonal-Antibody Ki-67. Journal of Immunology, 1984. 133(4): p. 1710-1715.
  • Sun, X.M. and P.D. Kaufman, Ki-67: more than a proliferation marker. Chromosoma, 2018. 127(2): p. 175-186. https://doi.org/10.1007/s00412-018-0659-8
  • Haugstetter, A.M., et al., Cellular senescence predicts treatment outcome in metastasised colorectal cancer. Br J Cancer, 2010. 103(4): p. 505-9. https://doi.org/10.1038/sj.bjc.6605784
  • El-Sadoni, M., et al., A three-marker signature identifies senescence in human breast cancer exposed to neoadjuvant chemotherapy. Cancer Chemother Pharmacol, 2023. 91(4): p. 345-360. https://doi.org/10.1007/s00280-023-04523-w
  • Radspieler, M.M., et al., Lamin-B1 is a senescence-associated biomarker in clear-cell renal cell carcinoma. Oncology Letters, 2019. 18(3): p. 2654-2660. https://doi.org/10.3892/ol.2019.10593
  • Freund, A., et al., Lamin B1 loss is a senescence-associated biomarker. Molecular Biology of the Cell, 2012. 23(11): p. 2066-2075. https://doi.org/10.1091/mbc.E11-10-0884
  • Sanoff, H.K., et al., Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst, 2014. 106(4): p. dju057. https://doi.org/10.1093/jnci/dju057
  • Everaerts, S., et al., The aging lung: tissue telomere shortening in health and disease. Respir Res, 2018. 19(1): p. 95. https://doi.org/10.1186/s12931-018-0794-z
  • Wiemann, S.U., et al., Hepatocyte telomere shortening and senescence are general markers of human liver cirrhosis. FASEB J, 2002. 16(9): p. 935-42. https://doi.org/10.1096/fj.01-0977com
  • Vera-Ramirez, L., et al., Transcriptional shift identifies a set of genes driving breast cancer chemoresistance. PLoS One, 2013. 8(1): p. e53983. https://doi.org/10.1371/journal.pone.0053983
  • Zhang, J.W., et al., Fusobacterium nucleatum promotes esophageal squamous cell carcinoma progression and chemoresistance by enhancing the secretion of chemotherapy-induced senescence-associated secretory phenotype via activation of DNA damage response pathway. Gut Microbes, 2023. 15(1): p. 2197836. https://doi.org/10.1080/19490976.2023.2197836
  • Aird, K.M. and R. Zhang, Detection of senescence-associated heterochromatin foci (SAHF). Methods Mol Biol, 2013. 965: p. 185-96. https://doi.org/10.1007/978-1-62703-239-1_12
  • Saleh, T., et al., Expression of therapy-induced senescence markers in breast cancer samples upon incomplete response to neoadjuvant chemotherapy. Bioscience Reports, 2021. 41(5). https://doi.org/Artn Bsr2021007910.1042/Bsr20210079
  • Carballo-Munoz, A., et al., Aging-related biomarkers in testicular cancer survivors after different oncologic treatments. Cancer Med, 2024. 13(18): p. e70200. https://doi.org/10.1002/cam4.70200
  • Chaib, S., et al., The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat Cancer, 2024. 5(3): p. 448-462. https://doi.org/10.1038/s43018-023-00712-x
  • Al Shboul, S., et al., NOXA expression is downregulated in human breast cancer undergoing incomplete pathological response and senescence after neoadjuvant chemotherapy. Sci Rep, 2023. 13(1): p. 15903. https://doi.org/10.1038/s41598-023-42994-2
  • Domen, A., et al., Prognostic implications of cellular senescence in resected non-small cell lung cancer. Transl Lung Cancer Res, 2022. 11(8): p. 1526-1539. https://doi.org/10.21037/tlcr-22-192
  • Tato-Costa, J., et al., Therapy-Induced Cellular Senescence Induces Epithelial-to-Mesenchymal Transition and Increases Invasiveness in Rectal Cancer. Clin Colorectal Cancer, 2016. 15(2): p. 170-178 e3. https://doi.org/10.1016/j.clcc.2015.09.003
  • Sidi, R., et al., Induction of senescence markers after neo-adjuvant chemotherapy of malignant pleural mesothelioma and association with clinical outcome: an exploratory analysis. Eur J Cancer, 2011. 47(2): p. 326-32. https://doi.org/10.1016/j.ejca.2010.09.044
  • Roberson, R.S., et al., Escape from therapy-induced accelerated cellular senescence in p53-null lung cancer cells and in human lung cancers. Cancer Res, 2005. 65(7): p. 2795-803. https://doi.org/10.1158/0008-5472.CAN-04-1270
  • Saleh, T., et al., The Expression of the Senescence-Associated Biomarker Lamin B1 in Human Breast Cancer. Diagnostics (Basel), 2022. 12(3). https://doi.org/10.3390/diagnostics12030609
  • Shachar, S.S., et al., Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, p16(INK4a). JNCI Cancer Spectr, 2020. 4(6): p. pkaa082. https://doi.org/10.1093/jncics/pkaa082
  • Campisi, J., Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell, 2005. 120(4): p. 513-522. https://doi.org/DOI 10.1016/j.cell.2005.02.003
  • Demir, Y.D.S., et al., The implication of ROCK 2 as a potential senotherapeutic target via the suppression of the harmful effects of the SASP: Do senescent cancer cells really engulf the other cells? Cellular Signalling, 2021. 84. https://doi.org/ARTN 11000710.1016/j.cellsig.2021.110007
  • Coppé, J.P., et al., The Senescence-Associated Secretory Phenotype: The Dark Side of Tumor Suppression. Annual Review of Pathology-Mechanisms of Disease, 2010. 5: p. 99-118. https://doi.org/10.1146/annurev-pathol-121808-102144
  • Zingoni, A., et al., The senescence journey in cancer immunoediting. Molecular Cancer, 2024. 23(1). https://doi.org/ARTN 6810.1186/s12943-024-01973-5
  • Xue, W., et al., Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 2007. 445(7128): p. 656-660. https://doi.org/10.1038/nature05529
  • Qin, S.H., B.A. Schulte, and G.Y. Wang, Role of senescence induction in cancer treatment. World Journal of Clinical Oncology, 2018. 9(8): p. 180-187. https://doi.org/10.5306/wjco.v9.i8.180
  • Roninson, I.B., Tumor cell senescence in cancer treatment. Cancer Research, 2003. 63(11): p. 2705-2715.
  • Kuilman, T. and D.S. Peeper, Senescence-messaging secretome: SMS-ing cellular stress. Nature Reviews Cancer, 2009. 9(2): p. 81-94. https://doi.org/10.1038/nrc2560
  • Rodier, F. and J. Campisi, Four faces of cellular senescence. Journal of Cell Biology, 2011. 192(4): p. 547-556. https://doi.org/10.1083/jcb.201009094
  • Demaria, M., et al., Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov, 2017. 7(2): p. 165-176. https://doi.org/10.1158/2159-8290.CD-16-0241
  • Ohtani, N., The roles and mechanisms of senescence-associated secretory phenotype (SASP): can it be controlled by senolysis? Inflamm Regen, 2022. 42(1): p. 11. https://doi.org/10.1186/s41232-022-00197-8
  • Milanovic, M., et al., Senescence-associated reprogramming promotes cancer stemness. Nature, 2018. 553(7686): p. 96-100. https://doi.org/10.1038/nature25167
  • Vasto, S., et al., Inflammatory networks in ageing, age-related diseases and longevity. Mechanisms of Ageing and Development, 2007. 128(1): p. 83-91. https://doi.org/10.1016/j.mad.2006.11.015
  • Wang, D.Z. and R.N. DuBois, Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis, 2015. 36(10): p. 1085-1093. https://doi.org/10.1093/carcin/bgv123
  • Freund, A., et al., Inflammatory networks during cellular senescence: causes and consequences. Trends in Molecular Medicine, 2010. 16(5): p. 238-246. https://doi.org/10.1016/j.molmed.2010.03.003
  • Ruhland, M.K., et al., Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 2016. 7. https://doi.org/ARTN 1176210.1038/ncomms11762
  • Ershler, W.B. and E.T. Keller, Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annual Review of Medicine, 2000. 51: p. 245-270. https://doi.org/DOI 10.1146/annurev.med.51.1.245
  • Duy, C., et al., Chemotherapy Induces Senescence-Like Resilient Cells Capable of Initiating AML Recurrence. Cancer Discov, 2021. 11(6): p. 1542-1561. https://doi.org/10.1158/2159-8290.CD-20-1375
  • Kasamatsu, T., et al., Sub-lethal doses of chemotherapeutic agents induce senescence in T cells and upregulation of PD-1 expression. Clin Exp Med, 2023. 23(6): p. 2695-2703. https://doi.org/10.1007/s10238-023-01034-z
  • Kasamatsu, T., Implications of Senescent T Cells for Cancer Immunotherapy. Cancers (Basel), 2023. 15(24). https://doi.org/10.3390/cancers15245835
  • Krtolica, A., et al., Senescent fibroblasts promote epithelial cell growth and tumorigenesis: A link between cancer and aging. Proceedings of the National Academy of Sciences of the United States of America, 2001. 98(21): p. 12072-12077. https://doi.org/DOI 10.1073/pnas.211053698
  • Ren, J.L., et al., Inflammatory signaling and cellular senescence. Cellular Signalling, 2009. 21(3): p. 378-383. https://doi.org/10.1016/j.cellsig.2008.10.011
  • Burton, D.G.A. and A. Stolzing, Cellular senescence: Immunosurveillance and future immunotherapy. Ageing Research Reviews, 2018. 43: p. 17-25. https://doi.org/10.1016/j.arr.2018.02.001
  • Rhinn, M., B. Ritschka, and W.M. Keyes, Cellular senescence in development, regeneration and disease. Development, 2019. 146(20). https://doi.org/ARTN dev15183710.1242/dev.151837
  • Wiley, C.D., et al., Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight, 2019. 4(24). https://doi.org/10.1172/jci.insight.130056
  • Chilosi, M., et al., Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res, 2013. 162(3): p. 156-73. https://doi.org/10.1016/j.trsl.2013.06.004
  • Bhowmik, A., et al., Relation of sputum inflammatory markers to symptoms and lung function changes in COPD exacerbations. Thorax, 2000. 55(2): p. 114-20. https://doi.org/10.1136/thorax.55.2.114
  • Aldonyte, R., et al., Circulating monocytes from healthy individuals and COPD patients. Respir Res, 2003. 4(1): p. 11. https://doi.org/10.1186/1465-9921-4-11
  • Liu, R.M., Oxidative stress, plasminogen activator inhibitor 1, and lung fibrosis. Antioxid Redox Signal, 2008. 10(2): p. 303-19. https://doi.org/10.1089/ars.2007.1903
  • Mehdizadeh, M., et al., The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nature Reviews Cardiology, 2022. 19(4): p. 250-264. https://doi.org/10.1038/s41569-021-00624-2
  • Matsumoto, Y., et al., Reduced number and function of endothelial progenitor cells in patients with aortic valve stenosis: a novel concept for valvular endothelial cell repair. European Heart Journal, 2009. 30(3): p. 346-355. https://doi.org/10.1093/eurheartj/ehn501
  • Windebank, A.J. and W.G. Grisold, Chemotherapy-induced neuropathy. Journal of the Peripheral Nervous System, 2008. 13(1): p. 27-46. https://doi.org/DOI 10.1111/j.1529-8027.2008.00156.x
  • Alsalem, M., et al., Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer, 2024. 32(1): p. 85. https://doi.org/10.1007/s00520-023-08287-0
  • Myrianthopoulos, V., et al., Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther, 2019. 193: p. 31-49. https://doi.org/10.1016/j.pharmthera.2018.08.006
  • Wang, S., et al., Accelerated Aging in Cancer Survivors: Cellular Senescence, Frailty, and Possible Opportunities for Interventions. Int J Mol Sci, 2024. 25(6). https://doi.org/10.3390/ijms25063319
  • Zhang, L., et al., Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. Febs Journal, 2023. 290(5): p. 1362-1383. https://doi.org/10.1111/febs.16350
  • Balducci, L., C. Falandry, and M. Silvio, Senotherapy, cancer, and aging. J Geriatr Oncol, 2024. 15(4): p. 101671. https://doi.org/10.1016/j.jgo.2023.101671
There are 100 citations in total.

Details

Primary Language English
Subjects Clinical Pharmacology and Therapeutics, Cancer Cell Biology, Cancer Diagnosis, Predictive and Prognostic Markers
Journal Section Revıew Artıcle
Authors

Fatma Özge Yağbasan 0000-0002-5289-9949

Yaprak Dilber Şimay Demir 0000-0002-8248-0268

Mustafa Ark 0000-0003-2707-5531

Publication Date September 30, 2025
Submission Date July 17, 2025
Acceptance Date September 21, 2025
Published in Issue Year 2025 Volume: 16 Issue: 3

Cite

APA Yağbasan, F. Ö., Şimay Demir, Y. D., & Ark, M. (2025). Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes. Turkish Journal of Clinics and Laboratory, 16(3), 653-664. https://doi.org/10.18663/tjcl.1745156
AMA Yağbasan FÖ, Şimay Demir YD, Ark M. Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes. TJCL. September 2025;16(3):653-664. doi:10.18663/tjcl.1745156
Chicago Yağbasan, Fatma Özge, Yaprak Dilber Şimay Demir, and Mustafa Ark. “Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes”. Turkish Journal of Clinics and Laboratory 16, no. 3 (September 2025): 653-64. https://doi.org/10.18663/tjcl.1745156.
EndNote Yağbasan FÖ, Şimay Demir YD, Ark M (September 1, 2025) Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes. Turkish Journal of Clinics and Laboratory 16 3 653–664.
IEEE F. Ö. Yağbasan, Y. D. Şimay Demir, and M. Ark, “Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes”, TJCL, vol. 16, no. 3, pp. 653–664, 2025, doi: 10.18663/tjcl.1745156.
ISNAD Yağbasan, Fatma Özge et al. “Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes”. Turkish Journal of Clinics and Laboratory 16/3 (September2025), 653-664. https://doi.org/10.18663/tjcl.1745156.
JAMA Yağbasan FÖ, Şimay Demir YD, Ark M. Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes. TJCL. 2025;16:653–664.
MLA Yağbasan, Fatma Özge et al. “Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes”. Turkish Journal of Clinics and Laboratory, vol. 16, no. 3, 2025, pp. 653-64, doi:10.18663/tjcl.1745156.
Vancouver Yağbasan FÖ, Şimay Demir YD, Ark M. Chemotherapy-Induced Cellular Senescence: A Comprehensive Review of Clinical Methodologies and Treatment Outcomes. TJCL. 2025;16(3):653-64.