Research Article
BibTex RIS Cite

Exploring the potential of nanotechnology for sustainable wood preservation

Year 2023, , 122 - 133, 28.06.2023
https://doi.org/10.18182/tjf.1251521

Abstract

Wood preservation plays a vital role in maintaining wood products' structural and aesthetic properties. Traditional methods, including chemical treatments, preservatives, and coatings, have been utilized for wood protection, but sustainable alternatives are sought due to their negative environmental and health impacts. The utilization of nanomaterials presents a promising avenue for wood protection. In this study, nanoparticles were applied to lignocellulosic materials using the impregnation method to enhance solid wood’s water and fire resistance without needing additional energy. This research aimed to identify a cost-effective and energy-efficient approach for large-scale wood production while introducing innovative and competitive materials in the wood industry. Surface modification and characterization analyses, including SEM-EDX and Optical Profilometer studies, TGA-DTA analysis for thermal strength assessment, % water uptake test for water resistance evaluation, and PCE-CSM 10 spectrophotometer measurements to determine color change parameters, were conducted. Functionalized wood surfaces treated with zinc oxide (ZnO), chitosan (Ch), and tin dioxide (SnO2) nanoparticles exhibited water uptake values of 64%, 71%, and 73%, respectively. Following the salinization process using TEOS, the water uptake values decreased to 58%, 59%, and 60% for the respective surfaces. Based on the TGA and DTA results, the W-ZnO-TEOS sample demonstrated superior mass protection, with a significant weight loss of 62.1% (5.717 mg) at 340-375°C and 14.4% (1.328 mg) at 381-439°C. This was followed by the W-SnO2-TEOS sample, which exhibited a weight loss of 46.3% (7.050 mg) at 301-353°C and 15.4% (2.345 mg) at 431-469°C. The W-Ch-TEOS sample displayed a weight loss of 66.4% (8.242 mg) at 342-365°C and 18.8% (2.335 mg) at 448-476°C. Overall, the W-SnO2-TEOS sample demonstrated the highest water resistance, while the W-ZnO-TEOS sample exhibited the most effective fire protection capabilities.

Thanks

The corresponding author would like to express gratitude to Mr. Muhammed Maraşlı, a Fibrobeton board member, and all Fibrobeton R&D center employees for their support in conducting the color measurement analysis. Additionally, appreciation is extended to Prof. Dr. Serkan Subaşı for providing access to the Duzce University Composite laboratory facilities.

References

  • Alfredsen, G., Eikenes, M., Solheim, H., Militz, H., 2004. Screening of chitosan against wood-deteriorating fungi. Scand. J. Forest Res., 19(5): 4-13.
  • ASTM-D2244-21, 2021. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. Annual Book of ASTM Standarts, USA.
  • Aversa, M., Van Der Voort, A.J., De Heij, W., Tournois, B., Curcio, S., 2011. An Experimental Analysis of Acoustic Drying of Carrots: Evaluation of Heat Transfer Coefficients in Different Drying Conditions. Drying Technology, 29(2): 239-244.
  • Bantle, M.; Eikevik, T.M., 2011. Parametric Study of High-Intensity Ultrasound in The Atmospheric Freeze Drying of Peas. Drying Technology, 29(10): 1230-1239.
  • Bulian, F., Graystone J. A., 2009. Industrial Wood Coatings. Theory and Practice, First Edition, Elsevier, Amsterdam, pp. 135.
  • Carcel, J. A., Garcia-Perez, J.V., Riera, E., Mulet, A., 2011. Improvement of Convective Drying of Carrot by Applying Power Ultrasound Influence of Mass Load Density. Drying Technology, 29(2): 174-182.
  • Chirkova, J., Andersone, I., Irbe, I., Spince, B., Andersons, B., 2011. Lignins as agents for bio-protection of wood. Holzforschung 65(4): 497-502.
  • Clausen, P.A. Helle, M., Kärki, P., 2004. Environmental aspects of wood protection and preservation. Environmental Pollution, 128 (1):57-64.
  • Croitoru, C., Patachia, S., Lunguleasa, A., 2015. A mild method of wood impregnation with biopolymers and resins using 1-ethyl-3-methylimidazolium chloride as carrier. Chem. Eng. Res. Des., 93, 257-268.
  • De la Fuente-Blanco, S., De Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., Gallego-Juarez, J.A., 2006. Food Drying Process by Power Ultrasound. Ultrasonics, 4(4): 523-527.
  • Duan, X., Zhang, M., Li, X., Mujumdar, A.S., 2008. Ultrasonically Enhanced Osmotic Pretreatment of Sea Cucumber Prior to Microwave Freeze Drying. Drying Technology, 26(4): 420-426.
  • Eikenes, M., Alfredsen, G., Christensen, B., Militz, H., Solheim, H., 2005. Comparison of chitosan with different molecular weights as possible wood preservatives. J. Wood Sci., 51(4): 387-394.
  • El-Gamal, R., Nikolaivits, E., Zervakis, G.I., Abdel-Maksoud, G., Topakas, E., Christakopoulos, P., 2016. The use of chitosan in protecting wood artifacts from damage by mold fungi. Electron. J. Biotechnol., 24, 70-78.
  • Fan, L. Hu, Z. Wang., J. Chen., 2014. Enhancement of woo properties by multifunctional coatings, Progress in Organic Coatings, 77(8):1734-1742.
  • Fan, Y. Hu, L., Chen, J., 2013. Multifunctional coatings for wood protection, Progress in Organic Coatings, 76(7):1027-1036.
  • Floros, J.D., Liang, H.H., 1994. Acoustically Assisted Diffusion Through Membranes and Biomaterials. Food Technol-Chicago 48(12): 79-84.
  • Garcia, H., Ferreira, R., Petkovic, M., Ferguson, J.L., Leitao, M.C., Gunaratne, H.Q.N., Seddon, K.R., Rebelo, L P.N., Pereira, C.S., 2010. Dissolution of cork biopolymers in biocompatible ionic liquids, Green Chem. 12(3): 367-369.
  • Garcia-Perez, J.V., Carcel, J.A.; Riera, E.; Mulet, A., 2009. Influence of The Applied Acoustic Energy on The Drying of Carrots and Lemon Peel. Drying Technology 27(2):281-287.
  • Garcia-Perez, J.V., Ozuna, C., Ortuno, C., Carcel, J.A., Mulet, A., 2011. Modeling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technology 29(13): 1499-1509.
  • Griffini, G., Passoni, V., Suriano, R., Levi, M., Turri, S., 2015. Polyurethane coatings based on chemically unmodified fractioned lignin, ACS Sustain. Chem. Eng. 3(6): 1145-1154.
  • He, Z.B., Yang, F., Yi, S.L., Gao, J.M., 2012. Effect of Ultrasound Pretreatment on Vacuum Drying of Chinese Catalpa Wood. Drying Technology 30(15): 1750-1755.
  • Herrera, R., Gordobil, O., Llano-Ponte, R., Labidi, J., 2016. Esterified lignin as hydrophobic agent for use on wood products, in: Proceedings of the COST Action FP1407, 2nd Conference, Innovative Production Technologies and Increased Wood Products Recycling and Reuse, 29-30 September 2016, Brno, Czech Republic, p. 79.
  • Jangam, S.V., 2011. An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Drying Technology 29(12): 1343-1357.
  • Kim, K.S. Kim, Y.H., Kim, Y.S., 2018. A review of the environmental impacts of wood preservatives. Environmental Research Letters,13, (8):085007.
  • Krishnan, R.T., Adhikari, B.S., 2014. Environmental impact of wood preservatives: a review, Environmental Monitoring and Assessment, vol. 186, (1): 499-515.
  • Laflamme, P., Benhamou, N., Bussires, G., Dessureault, M., 2000. Differential effect of chitosan on root rot fungal pathogens in forest nurseries, Can. J. Bot.77(10): 1460-1468.
  • Larnøy, E., Eikenes, M., Militz, H., 2005. Uptake of chitosan based impregnation solutions with varying viscosities in four different European wood species, Holz Roh-Werkst. 63(6): 456-462.
  • Mothibe, K.J., Zhang, M., Nsor-atindana, J., Wang, Y.C., 2011. Use of Ultrasound Pretreatment In Drying of Fruits: Drying Rates, Quality Attributes, and Shelf Life Extension. Drying Technology 29(14):1611-1621.
  • Nowrouzi, Z., Mohebby, B., Younesi, H., 2016. Treatment of fir wood with chito- san and PEG, J. Forestry Res. 27(4): 959-966.
  • Ojanen J., Kärki, P., 2010. Chemical wood protection: anoverview of the history, current state and challenges. Wood Material Science & Engineering, 5 (3):137-150.
  • Patachia, S., Croitoru, C., Friedrich, C., 2012. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids, Appl. Surf. Sci. 258(18): 6723- 6729.
  • Ramazanoğlu, D., Mohammed, Z.A., Khalo, I., Maher K., 2022 Aubergine-based Biosorbents for Heavy Metal Extraction. Bayburt Üniversitesi Fen Bilimleri Dergisi,5 (2): 198-205.
  • Ramazanoğlu, D., Mohammed, Z.A., Maher, K., 2023. Investigation Usability of Biosorbents Obtained from Orange peels in Heavy Metal Adsorption. Şırnak Üniversitesi Fen Bilimleri Dergisi, 3 (2): 1-12.
  • Ramazanoğlu, D., Özdemir, F., 2020a. Ahşap Yüzeyde Akıllı Nano Biyomimetik Hidrotermal Lokasyonlama, Bartın Orman Fakültesi Dergisi, 22 (2): 447-456.
  • Ramazanoğlu, D., Özdemir, F., 2020b. Ön İşlem Olarak Uygulanan Ultrasonik Banyonun Ceviz Kaplamaların Özellikleri Üzerine Etkileri . Bartın Orman Fakültesi Dergisi,22 (2): 479-484.
  • Ramazanoğlu, D., Özdemir, F., 2020c. Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması . Turkish Journal of Forestry, 21 (3), 324-331
  • Ramazanoğlu, D., Özdemir, F., 2020d. Smart nano biomimetic hydrothermal location on wooden surface. Bartin Orman Fakültesi Dergisi 22 (2): 447-456
  • Ramazanoğlu, D., Özdemir, F., 2021. ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty, 21 (1): 12-20.
  • Ramazanoğlu, D., Özdemir, F., 2022. Biomimetic surface accumulation on Fagus orientalis. Appl Nanosci 12,2421–2428.
  • Reddy, M.V. Sunkara, S.B. Raju, K.S. Prasad, V.S.R.K., 2012. Synthesis and Characterization of Chitosan/Titania Nanocomposites, Journal of Nanomaterials, vol. 2012, Article ID 849362, 7 pages.
  • Schaller, C., Rogez, D., 2007. New approaches in wood coating stabilization, J. Coat. Technol. Res. 4(4): 401-409.
  • Stasiewicz, M., Fojutowski, A., Kropacz, A., Pernak, J., 2008. 1-Alkoxymethyl-X- dimethylaminopyridinium-base ionic liquids in wood preservation, Holzforschung 62(3): 309-317.
  • Tanaka, T., Avramidis, S., Shida, S., 2010. A Preliminary Study on Ultrasonic Treatment Effect on Transverse Wood Permeability. Maderas. Ciencia y Tecnología 12(1): 3-9.
  • Tarleton, E., 1992. The Role of Field-Assisted Techniques in Solid/Liquid Separation. Filtr Separat 29(3): 246-238.
  • Tarleton, E., Wakeman, R., 1998. Ultrasound Food Process. Thomson Science, London, United Kingdom. 193-218
  • Wan, P.J., Muanda, M.W., Covey, J.E., 1992. Ultrasonic vs Nonultrasonic Hydrogenation in A Batch Reactor, Journal of the American Oil Chemists Society 69(9): 876-879.
  • Xu, H., Zhang, M., Duan, X., Mujumdar, A.S., Sun, J., 2009. Effect of Power Ultrasound Pretreatment on Edamame Prior to Freeze Drying. Drying Technology 27(2): 186-193.
  • Zhou, L., & Fu, Y., 2020. Flame-Retardant Wood Composites Based on Immobilizing with Chitosan/Sodium Phytate/Nano-TiO2-ZnO Coatings via Layer-by-Layer Self-Assembly. Coatings, 10(3): 296. MDPI AG.
  • Zhou, W., Sun, F., Pan, K., Tian, G., Jiang, B., Ren, Z., Tian, C. & Fu, H., 2011. Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Advanced Functional Materials, 21(10): 1922-1930.

Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması

Year 2023, , 122 - 133, 28.06.2023
https://doi.org/10.18182/tjf.1251521

Abstract

Ahşabın korunması, ahşap ürünlerin yapısal ve estetik özelliklerinin muhafaza edilmesinde büyük öneme sahiptir. Geleneksel yöntemler arasında kimyasal işlemler, koruyucular ve kaplamalar yer alsa da, çevresel ve sağlık açısından olumsuz etkileri nedeniyle sürdürülebilir alternatiflere ihtiyaç duyulmaktadır. Nanomalzemelerin kullanımı, ahşap koruması için yeni potansiyeller sunmaktadır. Bu çalışmada, lignoselülozik malzemelere emprenye yöntemiyle nanopartiküller uygulanarak masif ahşabın su ve yangın direnci artırılmıştır ve bu işlem için ek enerji gerekmeksizin gerçekleştirilmiştir. Bu çalışmanın amacı, büyük ölçekli üretim için daha maliyet-etkin ve enerji tasarruflu bir yaklaşım belirlemek ve ahşap endüstrisinde yeni ve rekabetçi malzemeler sunmaktır. Yüzey modifikasyonu ve karakterizasyon çalışmaları, SEM-EDX ve Optik Profilometre analizleri, termal mukavemet için TGA-DTA analizi, su direnci için % su alım testi ve renk değişim parametrelerini belirlemek için PCE-CSM 10 spektrofotometre kullanılarak gerçekleştirilmiştir. Çinko oksit (ZnO), Kitosan (Ch) ve kalay dioksit (SnO2) nanopartikülleri ile işlevselleştirilmiş ahşap yüzeyler, sırasıyla %64.0 %71.0 ve %73.0 su alma değerleri sergilemiştir. TEOS ile silanizasyon işlemi sonrasında ise su alma değerleri ilgili yüzeyler için %58.0 %59.0 ve %60.0 olarak belirlenmiştir. TGA ve DTA sonuçlarına göre, W-ZnO-TEOS numunesi en yüksek kütle korumasını göstermiş ve 340-375°C'de %62.1 (5.717 mg), 381-439°C'de ise %14.4 (1.328 mg) ağırlık kaybı yaşanmıştır. Bunu takiben, W-SnO2-TEOS numunesi 301-353°C'de %46.3 (7,050 mg) ve 431-469°C'de %15.4 (2.345 mg) ağırlık kaybı sergilemiştir. W-Ch-TEOS numunesi ise 342-365°C'de %66.4 (8.242 mg) ve 448-476°C'de %18.8 (2.335 mg) ağırlık kaybı göstermiştir. Genel olarak, W-SnO2-TEOS numunesi en yüksek su direncini sergilerken, W-ZnO-TEOS numunesi yangın koruması açısından en etkili olduğu belirlenmiştir.

References

  • Alfredsen, G., Eikenes, M., Solheim, H., Militz, H., 2004. Screening of chitosan against wood-deteriorating fungi. Scand. J. Forest Res., 19(5): 4-13.
  • ASTM-D2244-21, 2021. Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates. Annual Book of ASTM Standarts, USA.
  • Aversa, M., Van Der Voort, A.J., De Heij, W., Tournois, B., Curcio, S., 2011. An Experimental Analysis of Acoustic Drying of Carrots: Evaluation of Heat Transfer Coefficients in Different Drying Conditions. Drying Technology, 29(2): 239-244.
  • Bantle, M.; Eikevik, T.M., 2011. Parametric Study of High-Intensity Ultrasound in The Atmospheric Freeze Drying of Peas. Drying Technology, 29(10): 1230-1239.
  • Bulian, F., Graystone J. A., 2009. Industrial Wood Coatings. Theory and Practice, First Edition, Elsevier, Amsterdam, pp. 135.
  • Carcel, J. A., Garcia-Perez, J.V., Riera, E., Mulet, A., 2011. Improvement of Convective Drying of Carrot by Applying Power Ultrasound Influence of Mass Load Density. Drying Technology, 29(2): 174-182.
  • Chirkova, J., Andersone, I., Irbe, I., Spince, B., Andersons, B., 2011. Lignins as agents for bio-protection of wood. Holzforschung 65(4): 497-502.
  • Clausen, P.A. Helle, M., Kärki, P., 2004. Environmental aspects of wood protection and preservation. Environmental Pollution, 128 (1):57-64.
  • Croitoru, C., Patachia, S., Lunguleasa, A., 2015. A mild method of wood impregnation with biopolymers and resins using 1-ethyl-3-methylimidazolium chloride as carrier. Chem. Eng. Res. Des., 93, 257-268.
  • De la Fuente-Blanco, S., De Sarabia, E. R. F., Acosta-Aparicio, V. M., Blanco-Blanco, A., Gallego-Juarez, J.A., 2006. Food Drying Process by Power Ultrasound. Ultrasonics, 4(4): 523-527.
  • Duan, X., Zhang, M., Li, X., Mujumdar, A.S., 2008. Ultrasonically Enhanced Osmotic Pretreatment of Sea Cucumber Prior to Microwave Freeze Drying. Drying Technology, 26(4): 420-426.
  • Eikenes, M., Alfredsen, G., Christensen, B., Militz, H., Solheim, H., 2005. Comparison of chitosan with different molecular weights as possible wood preservatives. J. Wood Sci., 51(4): 387-394.
  • El-Gamal, R., Nikolaivits, E., Zervakis, G.I., Abdel-Maksoud, G., Topakas, E., Christakopoulos, P., 2016. The use of chitosan in protecting wood artifacts from damage by mold fungi. Electron. J. Biotechnol., 24, 70-78.
  • Fan, L. Hu, Z. Wang., J. Chen., 2014. Enhancement of woo properties by multifunctional coatings, Progress in Organic Coatings, 77(8):1734-1742.
  • Fan, Y. Hu, L., Chen, J., 2013. Multifunctional coatings for wood protection, Progress in Organic Coatings, 76(7):1027-1036.
  • Floros, J.D., Liang, H.H., 1994. Acoustically Assisted Diffusion Through Membranes and Biomaterials. Food Technol-Chicago 48(12): 79-84.
  • Garcia, H., Ferreira, R., Petkovic, M., Ferguson, J.L., Leitao, M.C., Gunaratne, H.Q.N., Seddon, K.R., Rebelo, L P.N., Pereira, C.S., 2010. Dissolution of cork biopolymers in biocompatible ionic liquids, Green Chem. 12(3): 367-369.
  • Garcia-Perez, J.V., Carcel, J.A.; Riera, E.; Mulet, A., 2009. Influence of The Applied Acoustic Energy on The Drying of Carrots and Lemon Peel. Drying Technology 27(2):281-287.
  • Garcia-Perez, J.V., Ozuna, C., Ortuno, C., Carcel, J.A., Mulet, A., 2011. Modeling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technology 29(13): 1499-1509.
  • Griffini, G., Passoni, V., Suriano, R., Levi, M., Turri, S., 2015. Polyurethane coatings based on chemically unmodified fractioned lignin, ACS Sustain. Chem. Eng. 3(6): 1145-1154.
  • He, Z.B., Yang, F., Yi, S.L., Gao, J.M., 2012. Effect of Ultrasound Pretreatment on Vacuum Drying of Chinese Catalpa Wood. Drying Technology 30(15): 1750-1755.
  • Herrera, R., Gordobil, O., Llano-Ponte, R., Labidi, J., 2016. Esterified lignin as hydrophobic agent for use on wood products, in: Proceedings of the COST Action FP1407, 2nd Conference, Innovative Production Technologies and Increased Wood Products Recycling and Reuse, 29-30 September 2016, Brno, Czech Republic, p. 79.
  • Jangam, S.V., 2011. An Overview of Recent Developments and Some R&D Challenges Related to Drying of Foods. Drying Technology 29(12): 1343-1357.
  • Kim, K.S. Kim, Y.H., Kim, Y.S., 2018. A review of the environmental impacts of wood preservatives. Environmental Research Letters,13, (8):085007.
  • Krishnan, R.T., Adhikari, B.S., 2014. Environmental impact of wood preservatives: a review, Environmental Monitoring and Assessment, vol. 186, (1): 499-515.
  • Laflamme, P., Benhamou, N., Bussires, G., Dessureault, M., 2000. Differential effect of chitosan on root rot fungal pathogens in forest nurseries, Can. J. Bot.77(10): 1460-1468.
  • Larnøy, E., Eikenes, M., Militz, H., 2005. Uptake of chitosan based impregnation solutions with varying viscosities in four different European wood species, Holz Roh-Werkst. 63(6): 456-462.
  • Mothibe, K.J., Zhang, M., Nsor-atindana, J., Wang, Y.C., 2011. Use of Ultrasound Pretreatment In Drying of Fruits: Drying Rates, Quality Attributes, and Shelf Life Extension. Drying Technology 29(14):1611-1621.
  • Nowrouzi, Z., Mohebby, B., Younesi, H., 2016. Treatment of fir wood with chito- san and PEG, J. Forestry Res. 27(4): 959-966.
  • Ojanen J., Kärki, P., 2010. Chemical wood protection: anoverview of the history, current state and challenges. Wood Material Science & Engineering, 5 (3):137-150.
  • Patachia, S., Croitoru, C., Friedrich, C., 2012. Effect of UV exposure on the surface chemistry of wood veneers treated with ionic liquids, Appl. Surf. Sci. 258(18): 6723- 6729.
  • Ramazanoğlu, D., Mohammed, Z.A., Khalo, I., Maher K., 2022 Aubergine-based Biosorbents for Heavy Metal Extraction. Bayburt Üniversitesi Fen Bilimleri Dergisi,5 (2): 198-205.
  • Ramazanoğlu, D., Mohammed, Z.A., Maher, K., 2023. Investigation Usability of Biosorbents Obtained from Orange peels in Heavy Metal Adsorption. Şırnak Üniversitesi Fen Bilimleri Dergisi, 3 (2): 1-12.
  • Ramazanoğlu, D., Özdemir, F., 2020a. Ahşap Yüzeyde Akıllı Nano Biyomimetik Hidrotermal Lokasyonlama, Bartın Orman Fakültesi Dergisi, 22 (2): 447-456.
  • Ramazanoğlu, D., Özdemir, F., 2020b. Ön İşlem Olarak Uygulanan Ultrasonik Banyonun Ceviz Kaplamaların Özellikleri Üzerine Etkileri . Bartın Orman Fakültesi Dergisi,22 (2): 479-484.
  • Ramazanoğlu, D., Özdemir, F., 2020c. Hidrotermal yaklaşımın lignoselülozik yüzeydeki akıllı nano biyomimetik yansıması . Turkish Journal of Forestry, 21 (3), 324-331
  • Ramazanoğlu, D., Özdemir, F., 2020d. Smart nano biomimetic hydrothermal location on wooden surface. Bartin Orman Fakültesi Dergisi 22 (2): 447-456
  • Ramazanoğlu, D., Özdemir, F., 2021. ZnO-based Nano Biomimetic Smart Artificial Form Located on Lignocellulosic Surface with Hydrothermal Approach. Kastamonu University Journal of Forestry Faculty, 21 (1): 12-20.
  • Ramazanoğlu, D., Özdemir, F., 2022. Biomimetic surface accumulation on Fagus orientalis. Appl Nanosci 12,2421–2428.
  • Reddy, M.V. Sunkara, S.B. Raju, K.S. Prasad, V.S.R.K., 2012. Synthesis and Characterization of Chitosan/Titania Nanocomposites, Journal of Nanomaterials, vol. 2012, Article ID 849362, 7 pages.
  • Schaller, C., Rogez, D., 2007. New approaches in wood coating stabilization, J. Coat. Technol. Res. 4(4): 401-409.
  • Stasiewicz, M., Fojutowski, A., Kropacz, A., Pernak, J., 2008. 1-Alkoxymethyl-X- dimethylaminopyridinium-base ionic liquids in wood preservation, Holzforschung 62(3): 309-317.
  • Tanaka, T., Avramidis, S., Shida, S., 2010. A Preliminary Study on Ultrasonic Treatment Effect on Transverse Wood Permeability. Maderas. Ciencia y Tecnología 12(1): 3-9.
  • Tarleton, E., 1992. The Role of Field-Assisted Techniques in Solid/Liquid Separation. Filtr Separat 29(3): 246-238.
  • Tarleton, E., Wakeman, R., 1998. Ultrasound Food Process. Thomson Science, London, United Kingdom. 193-218
  • Wan, P.J., Muanda, M.W., Covey, J.E., 1992. Ultrasonic vs Nonultrasonic Hydrogenation in A Batch Reactor, Journal of the American Oil Chemists Society 69(9): 876-879.
  • Xu, H., Zhang, M., Duan, X., Mujumdar, A.S., Sun, J., 2009. Effect of Power Ultrasound Pretreatment on Edamame Prior to Freeze Drying. Drying Technology 27(2): 186-193.
  • Zhou, L., & Fu, Y., 2020. Flame-Retardant Wood Composites Based on Immobilizing with Chitosan/Sodium Phytate/Nano-TiO2-ZnO Coatings via Layer-by-Layer Self-Assembly. Coatings, 10(3): 296. MDPI AG.
  • Zhou, W., Sun, F., Pan, K., Tian, G., Jiang, B., Ren, Z., Tian, C. & Fu, H., 2011. Well-Ordered Large-Pore Mesoporous Anatase TiO2 with Remarkably High Thermal Stability and Improved Crystallinity: Preparation, Characterization, and Photocatalytic Performance. Advanced Functional Materials, 21(10): 1922-1930.
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering, Tree Improvement
Journal Section Orijinal Araştırma Makalesi
Authors

Doğu Ramazanoğlu 0000-0002-6356-5792

Ferhat Özdemir 0000-0002-2282-1884

Publication Date June 28, 2023
Acceptance Date June 12, 2023
Published in Issue Year 2023

Cite

APA Ramazanoğlu, D., & Özdemir, F. (2023). Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry, 24(2), 122-133. https://doi.org/10.18182/tjf.1251521
AMA Ramazanoğlu D, Özdemir F. Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry. June 2023;24(2):122-133. doi:10.18182/tjf.1251521
Chicago Ramazanoğlu, Doğu, and Ferhat Özdemir. “Sürdürülebilir ahşap Koruma için Nanoteknoloji Potansiyelinin araştırılması”. Turkish Journal of Forestry 24, no. 2 (June 2023): 122-33. https://doi.org/10.18182/tjf.1251521.
EndNote Ramazanoğlu D, Özdemir F (June 1, 2023) Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry 24 2 122–133.
IEEE D. Ramazanoğlu and F. Özdemir, “Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması”, Turkish Journal of Forestry, vol. 24, no. 2, pp. 122–133, 2023, doi: 10.18182/tjf.1251521.
ISNAD Ramazanoğlu, Doğu - Özdemir, Ferhat. “Sürdürülebilir ahşap Koruma için Nanoteknoloji Potansiyelinin araştırılması”. Turkish Journal of Forestry 24/2 (June 2023), 122-133. https://doi.org/10.18182/tjf.1251521.
JAMA Ramazanoğlu D, Özdemir F. Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry. 2023;24:122–133.
MLA Ramazanoğlu, Doğu and Ferhat Özdemir. “Sürdürülebilir ahşap Koruma için Nanoteknoloji Potansiyelinin araştırılması”. Turkish Journal of Forestry, vol. 24, no. 2, 2023, pp. 122-33, doi:10.18182/tjf.1251521.
Vancouver Ramazanoğlu D, Özdemir F. Sürdürülebilir ahşap koruma için nanoteknoloji potansiyelinin araştırılması. Turkish Journal of Forestry. 2023;24(2):122-33.