Assessing long term trends of air pollutants and associated health risks imposed on residents in Bolu (Turkey) during winter
Year 2019,
, 102 - 122, 31.08.2019
Fatma Öztürk
,
Melek Keleş Özgül
Abstract
Objective: The objective of this study was to
evaluate the long term and seasonal variation of PM10 and SO2 in the the Bolu
city center between 2006 and 2017 in relation to meteorological parameters and
to evaluate the health risks due to metals bound to particulate matter (PM)
during the winter season. Method: The Seasonal Kendall (SK) test was
performed on the air quality data to find the magnitude of associated trends.
In addition, seasonality of these pollutants was evaluated in conjunction with
the meteorological parameters. Furthermore, daily PM samples in two different
size fractions were collected between December 2014 and February 2015 and
analyzed for metals by WDXRF. The generated metal concentrations were used to
estimate carcinogenic and non-carcinogenic health risks imposed on the
residents of the city. Results: The SK test revealed statistically
significant decline in SO2 and PM10 with a rate of 1.953 and 2.932 µg/m3/year,
respectively, at 5% significance level. Both of the parameters depicted very
clear seasonal cycles. Performed exposure risk assessment indicated that dermal
contact with PM bound metals was the main route of exposure for children, while
the adults were more prone to non-carcinogenic risks from exposure through
inhalation. Conclusion: Overall,
children were found to be more susceptible to non-carcinogenic risks as
compared to adults. The cancer risks due to As and Pb were within the
acceptable limits (< 1×10-4).
References
- 1. Kim KH, Lee SB, Woo D, Bae GN. Influence of wind direction and speed on the transport of particle-bound PAHs on a roadway environment. Atmos Pollut Res 2015; 6: 1024-1034.
- 2. Kelly FJ, Fussell JC. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 2012; 60: 504-526.
- 3. Thurston GD, Burnett RT, Turner MC, Shi Y, Krewski D, Lall R, et al. Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environ Health Perspect 2016; 124(6): 785-794.
- 4. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2224-2260.
- 5. World Health Organization (WHO), 2014. 7 Million Premature Deaths Annually Linked to Air Pollution. Available at: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en. Accessed June 15, 2015.
- 6. Evans J, van Donkelaar A, Martin RV, Burnett R, Rainham DG, Birkett NJ, Krewski D. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 2013; 120:33-42.
- 7. Samoli E, Analitis A, Touloumi G, Schwartz J, Anderson HR, Sunyer J, et al. Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project. Environ Health Perspect 2005; 113 (1): 88-95.
- 8. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, et al. Extended follow up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res Rep Health Eff Inst 2009; 140:5-114 (discussion 115-36).
- 9. Kloog I, Nordio F, Zanobetti A, Brent AC, Petros K, Joel DS. Short term effects of particulate exposure on hospital admissions in the mid-Atlantic States: a population estimate. PLOS ONE 2014; 9(2): e88578.
- 10. Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, Zheng X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ Res 2015; 136: 196-204.
- 11. Pascal M, Falq G, Wagner V, Chatignoux E, Corso M, Blachard M, et al. Short-term impacts of particulate matter (PM10, PM10-2.5, PM2.5) on mortality in nine French cities. Atmos Environ 2014; 95: 175-184.
- 12. Diociaiuti M, Balduzzi M, De Berardis B, Cattani G, Stacchini G, Ziemacki G. The two PM2.5 (fine) and PM2.5-10 (coarse) fractions: evidence of different biological activity. Environ Res 2001; 86:254-262.
- 13. Gonzalez-Flecha B. Oxidant mechanisms in response to ambient particles. Mol Aspects Med 2004; 25:169-182.
- 14. Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicell F, Duffin R. Activation of NF-jB by PM10 occurs via an iron mediated mechanism in the absence of IjB degradation. Toxicol Appl Pharmacol 2000; 166: 101-110.
- 15. Burnett RT, Brook J, Dann T, Delocla C, Philips O, Cakmak S, Vincent R, et al. Association between particulate and gas phase components of urban air pollution and daily mortality in eight Canadian cities. Inha Toxicol 2000; 12 (Suppl.4): 15-39.
- 16. Akyüz M., Çabuk H. Meteorological variations of PM2.5/PM10 concentrations and particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 2009; 170: 13-21.
- 17. Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 2009; 179: 1115-1120.
- 18. Ostro B, Feng WY, Broadwin R, Green S, Lipsett M. The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect 2007; 115:13-19.
- 19. Patel MM, Hoepner L, Garfinkel R, Chillrud S, Reyes A, Quinn JW, et al. Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am J Respir Crit Care Med 2009; 180:1107-1113.
- 20. Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 2009; 179: 1115-1120.
- 21. Hirshon JM, Shardell M, Alles S, Powell JL, Squibb K, Ondov J, Blaisdell CJ. Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect 2008; 116: 826-831.
- 22. Öztürk F, Keleş M. Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey. Environ Sci Pollut R 2016; 23(14): 14157-14172.
- 23. Turkish Air Quality Evaluation and Management Regulation (2008). Available at: http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.12188&MevzuatIliski=0&sourceXmlSearch. Accessed May 23, 2018.
- 24. Taşdemir Y. Winter season SO2 measurements in Bursa and Comparison with Rural and Urban Area Values. Turkish J Eng Env Sci 2001; 25: 279-287.
- 25. Kurtuluş Ö. Long Term Variations of the Atmospheric Air Pollutants in Istanbul City. Int J Environ Res Public Health 2012; 9: 781-790.
- 26. Ozden O, Dogeroglu T, Kara S. Assessment of Ambient Air Quality in Eskisehir, Turkey. Proceedings of the Third International Symposium on Air Quality Management at Urban, Regional and Global Scales; 2005 26-30 September; Istanbul, Turkey. 2005. p.200-209.
- 27. Doğruparmak SÇ, Özbay B. Investigating Correlations and Variations of Air Pollutant Concentrations under Conditions of Rapid Industrialization-Kocaeli (1987-2009). Clean-Soil, Air, Water 2011; 39(7); 597-604.
- 28. Zyromski A, Biniak-Pierog M, Burszta-Adamiak E, Zamiar Z. Evaluation of relationship between air pollutant concentration and meteorological elements in winter months. J Water Land Dev 2014; 22: 25-32.
- 29. Jones AM, Harrison RM, Baker J. The wind speed dependence of the concentrations of airborne particulate matter and NOx. Atmos Environ 2010; 44(13): 1682-1690.
- 30. Akyüz M, Çabuk H. Meteorological variations of PM2.5/PM10 concentrations and particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 2009; 170: 13-21.
- 31. Pateraki S, Asimakopoulos DN, Flocas HA, Maggo T, Vasilakos C. The role of meteorology on different sized fractions (PM10, PM2.5, PM2.5-10). Sci Total Environ 2012: 419, 124-135.
- 32. Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 2012; 57: 146-152.
- 33. Kurt-Karakus PB. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ Int 2012; 50: 47-55
- 34. US EPA (2011) Risk Assessment Guidance for Superfund. In: Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment. Available at: vol.I.http://www.epa.gov/oswer/riskassessment/humal_health_exposure.htm. Accessed August 11, 2015.
- 35. USEPA Regional Screening Levels Summary Table. Available at: http://www.epa.gov/region9/superfund/prg/. Accessed August 11, 2015.
Türkiye’nin Batı Karadeniz bölgesinde kış mevsiminde toplanan PM2.5 ve PM2.5-10 örneklerinde belirlenen ağır metallerin sebep olduğu maruziyet riski değerlendirmesi
Year 2019,
, 102 - 122, 31.08.2019
Fatma Öztürk
,
Melek Keleş Özgül
Abstract
Amaç: Bu çalışmanın amacı hava kalitesini
belirleyen iki önemli kirletici olan PM10 ve SO2 seviyelerinin Bolu şehir
merkezinde 2006 ve 2017 yılları arasındaki uzun dönem ve mevsimsel
değişimlerini meteorolojik parametreleri dikkate alarak incelemek ve kış mevsiminde
toplanan PM örneklerinde belirlenen metallerden kaynaklanan sağlık riskinin
belirlenmesidir. Yöntem:
Bolu şehir merkezinde izlenen SO2 ve
PM10 seviyelerinde istatistiksel açıdan anlamlı bir azalma olup olmadığı ve
azalma oranı Seasonal Kendall (SK) testi kullanılarak belirlenmiştir. Bununla
birlikte bu iki kirleticinin mevsimsel değişim göstermedikleri meteorolojik
parametrelerle ilişkileri dikkate alınarak incelenmiştir. Aralık 2014-Şubat
2015 tarihleri arasında iki farklı dane boyutunda toplanan PM örnekleri WDXRF
cihazı kullanarak metal içeriklerinin belirlenmesi açısından analiz edilmiştir.
Üretilen metal konsantrasyonları şehirde yaşayan halkın maruz kaldığı
kanserojen olan ve olmayan sağlık risklerinin hesaplanmasında kullanılmıştır. Bulgular: Veri setine uygulanan SK testi ile %5 anlam seviyesinde SO2 için bu
dönemde azalma oranı 1.953 µg/m3/yıl, PM10 için ise 2.932 µg/m3/yıl olarak
bulunmuştur. Her iki parametre de bu dönemde çok belirgin mevsimsel değişim
göstermiştir. Üretilen veri seti ile yapılan maruziyet riski değerlendirmesi
ile çocuklar için cilt temasının erişkinler için ise solunumun partikül maddeye
bağlı metallerin insan vücuduna geçmesinde ana yol olduğu bulunmuştur. Sonuç: Genel olarak, çocukların kanserojen olmayan risklere yetişkinlere
kıyasla daha hassas oldukları belirlenmiştir. Çalışma kapsamında
değerlendirilen metallerden As ve Pb için hesaplanan kanser riskinin kabul
edilebilir (< 1×10-4) değerin altında olduğu saptanmıştır.
References
- 1. Kim KH, Lee SB, Woo D, Bae GN. Influence of wind direction and speed on the transport of particle-bound PAHs on a roadway environment. Atmos Pollut Res 2015; 6: 1024-1034.
- 2. Kelly FJ, Fussell JC. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos Environ 2012; 60: 504-526.
- 3. Thurston GD, Burnett RT, Turner MC, Shi Y, Krewski D, Lall R, et al. Ischemic Heart Disease Mortality and Long-Term Exposure to Source-Related Components of U.S. Fine Particle Air Pollution. Environ Health Perspect 2016; 124(6): 785-794.
- 4. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2224-2260.
- 5. World Health Organization (WHO), 2014. 7 Million Premature Deaths Annually Linked to Air Pollution. Available at: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en. Accessed June 15, 2015.
- 6. Evans J, van Donkelaar A, Martin RV, Burnett R, Rainham DG, Birkett NJ, Krewski D. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ Res 2013; 120:33-42.
- 7. Samoli E, Analitis A, Touloumi G, Schwartz J, Anderson HR, Sunyer J, et al. Estimating the exposure-response relationships between particulate matter and mortality within the APHEA multicity project. Environ Health Perspect 2005; 113 (1): 88-95.
- 8. Krewski D, Jerrett M, Burnett RT, Ma R, Hughes E, Shi Y, Turner MC, et al. Extended follow up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res Rep Health Eff Inst 2009; 140:5-114 (discussion 115-36).
- 9. Kloog I, Nordio F, Zanobetti A, Brent AC, Petros K, Joel DS. Short term effects of particulate exposure on hospital admissions in the mid-Atlantic States: a population estimate. PLOS ONE 2014; 9(2): e88578.
- 10. Lu F, Xu D, Cheng Y, Dong S, Guo C, Jiang X, Zheng X. Systematic review and meta-analysis of the adverse health effects of ambient PM2.5 and PM10 pollution in the Chinese population. Environ Res 2015; 136: 196-204.
- 11. Pascal M, Falq G, Wagner V, Chatignoux E, Corso M, Blachard M, et al. Short-term impacts of particulate matter (PM10, PM10-2.5, PM2.5) on mortality in nine French cities. Atmos Environ 2014; 95: 175-184.
- 12. Diociaiuti M, Balduzzi M, De Berardis B, Cattani G, Stacchini G, Ziemacki G. The two PM2.5 (fine) and PM2.5-10 (coarse) fractions: evidence of different biological activity. Environ Res 2001; 86:254-262.
- 13. Gonzalez-Flecha B. Oxidant mechanisms in response to ambient particles. Mol Aspects Med 2004; 25:169-182.
- 14. Jimenez LA, Thompson J, Brown DA, Rahman I, Antonicell F, Duffin R. Activation of NF-jB by PM10 occurs via an iron mediated mechanism in the absence of IjB degradation. Toxicol Appl Pharmacol 2000; 166: 101-110.
- 15. Burnett RT, Brook J, Dann T, Delocla C, Philips O, Cakmak S, Vincent R, et al. Association between particulate and gas phase components of urban air pollution and daily mortality in eight Canadian cities. Inha Toxicol 2000; 12 (Suppl.4): 15-39.
- 16. Akyüz M., Çabuk H. Meteorological variations of PM2.5/PM10 concentrations and particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 2009; 170: 13-21.
- 17. Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 2009; 179: 1115-1120.
- 18. Ostro B, Feng WY, Broadwin R, Green S, Lipsett M. The effects of components of fine particulate air pollution on mortality in California: results from CALFINE. Environ Health Perspect 2007; 115:13-19.
- 19. Patel MM, Hoepner L, Garfinkel R, Chillrud S, Reyes A, Quinn JW, et al. Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am J Respir Crit Care Med 2009; 180:1107-1113.
- 20. Bell ML, Ebisu K, Peng RD, Samet JM, Dominici F. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 2009; 179: 1115-1120.
- 21. Hirshon JM, Shardell M, Alles S, Powell JL, Squibb K, Ondov J, Blaisdell CJ. Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect 2008; 116: 826-831.
- 22. Öztürk F, Keleş M. Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey. Environ Sci Pollut R 2016; 23(14): 14157-14172.
- 23. Turkish Air Quality Evaluation and Management Regulation (2008). Available at: http://www.mevzuat.gov.tr/Metin.Aspx?MevzuatKod=7.5.12188&MevzuatIliski=0&sourceXmlSearch. Accessed May 23, 2018.
- 24. Taşdemir Y. Winter season SO2 measurements in Bursa and Comparison with Rural and Urban Area Values. Turkish J Eng Env Sci 2001; 25: 279-287.
- 25. Kurtuluş Ö. Long Term Variations of the Atmospheric Air Pollutants in Istanbul City. Int J Environ Res Public Health 2012; 9: 781-790.
- 26. Ozden O, Dogeroglu T, Kara S. Assessment of Ambient Air Quality in Eskisehir, Turkey. Proceedings of the Third International Symposium on Air Quality Management at Urban, Regional and Global Scales; 2005 26-30 September; Istanbul, Turkey. 2005. p.200-209.
- 27. Doğruparmak SÇ, Özbay B. Investigating Correlations and Variations of Air Pollutant Concentrations under Conditions of Rapid Industrialization-Kocaeli (1987-2009). Clean-Soil, Air, Water 2011; 39(7); 597-604.
- 28. Zyromski A, Biniak-Pierog M, Burszta-Adamiak E, Zamiar Z. Evaluation of relationship between air pollutant concentration and meteorological elements in winter months. J Water Land Dev 2014; 22: 25-32.
- 29. Jones AM, Harrison RM, Baker J. The wind speed dependence of the concentrations of airborne particulate matter and NOx. Atmos Environ 2010; 44(13): 1682-1690.
- 30. Akyüz M, Çabuk H. Meteorological variations of PM2.5/PM10 concentrations and particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. J Hazard Mater 2009; 170: 13-21.
- 31. Pateraki S, Asimakopoulos DN, Flocas HA, Maggo T, Vasilakos C. The role of meteorology on different sized fractions (PM10, PM2.5, PM2.5-10). Sci Total Environ 2012: 419, 124-135.
- 32. Hu X, Zhang Y, Ding Z, Wang T, Lian H, Sun Y, et al. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos Environ 2012; 57: 146-152.
- 33. Kurt-Karakus PB. Determination of heavy metals in indoor dust from Istanbul, Turkey: Estimation of the health risk. Environ Int 2012; 50: 47-55
- 34. US EPA (2011) Risk Assessment Guidance for Superfund. In: Part A: Human Health Evaluation Manual; Part E, Supplemental Guidance for Dermal Risk Assessment; Part F, Supplemental Guidance for Inhalation Risk Assessment. Available at: vol.I.http://www.epa.gov/oswer/riskassessment/humal_health_exposure.htm. Accessed August 11, 2015.
- 35. USEPA Regional Screening Levels Summary Table. Available at: http://www.epa.gov/region9/superfund/prg/. Accessed August 11, 2015.