Research Article
BibTex RIS Cite

Determination of TYLCV-Resistant Cherry and Cocktail Tomato Cultivars by Molecular Markers

Year 2023, Volume: 5 Issue: 2, 89 - 96, 29.12.2023
https://doi.org/10.55979/tjse.1357477

Abstract

ABSTRACT
In this study, resistant cultivars to Tomato yellow leaf curly virus (TYLCV) of different cherry and cocktail tomato cultivars were determined using molecular DNA markers. For this purpose, resistance to Tomato Yellow Leaf Curly Virus (TYLCV) of a total of 409 different cherry and cocktail tomato cultivars was determined by polymerase chain reaction (PCR) using the primer Ty3P6-25. As a result of the assays, 291 cherry and cocktail tomato cultivars were found to be susceptible (rr), 66 cultivars were heterozygous resistant (Rr), and 45 cultivars were homozygous resistant (RR) to TYLCV. In addition, no molecular markers were detected in 7 cherry and cocktail tomato cultivars. It was found that the molecular DNA marker used is useful in determining resistance responses to TYLCV in cherry tomato and cocktail tomato and can provide reproducible and reliable results in a short time.

References

  • Adedze, M. N., Lu, X., Chofong, G. N., Muhammad, M. H., Amirul, M. A., Li, Y., Zhang, W., He, Y., Reza, M. E., Mohd, R. I., Andrew, E., Sun, G., Li, W., & Si, L. (2018). Development of a new molecular marker for the resistance to Tomato Yellow Leaf Curl Virus. BioMed Research International, 2018, 10. https://doi.org/10.1155/2018/8120281.
  • Choi, S. H., Kim, H. R., Kim, H. J., Lee, I. S., Kozukue, N., & Levin, C. E. (2011). Free amino acid and phenolic contents and antioxidative and cancer cell-inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. Journal of Agricultural and Food Chemistry, 59(24), 12801-12814. https://doi.org/10.1021/jf202791j.
  • Cohen, S., & Lapidot, M. (2007) Appearance and expansion of TYLCV: a historical point of view. In Tomato yellow leafcurl virus disease. (pp. 3-12). Czosnek, H., & Laterrot, H. (1997). A worldwide survey of tomato yellow leaf curl viruses. Archives of Virology, 142(7), 1391-406. https://doi.org/10.1007/s007050050168
  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.
  • Eybishtz, A., Peretz, Y., Sade, D., Akad, F., & Czosnek, H. (2009). Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Molecular Biology, 71(1-2), 157-171. https://doi.org/10.1007/s11103-009-9515-9
  • Eybishtz, A., Peretz, Y., Sade, D., Gorovits, R., & Czosnek, H. (2010). Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta, 231(3), 537-548. https://doi.org/10.1007/s00425-009-1072-6
  • FAO (2022). The State of Food Security and Nutrition in Europe and Central Asia. Food and Agricultural Organization, Budapest.
  • FAO (2021). The State of Food Security and Nutrition in Europe and Central Asia. Food and Agricultural Organization, Budapest.
  • Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 64358. https://doi.org/10.1155/2007/64358
  • Hanson, P., Lu, S. F., Wang, J. F., Chen, W., Kenyon, L., Tan, C. W., Tee, K. L., Wang, Y. Y., Hsu, Y. C., Schafleitner, R., Ledesma, D., & Yang, R. Y. (2016). Conventional and molecular marker assisted selection and pyramiding of genes for multi-disease resistance in tomato. Scientia Horticulture, 201, 346-354. https://doi.org/10.1016/j.scienta.2016.02.020
  • Hanssen, I. M., Lapidot, M., & Thomma, B. P. H. J. (2010). Emerging viral diseases of tomato crops. Molecular Plant-Microbe Interactions, 23(5), 539-548. https://doi.org/10.1094/MPMI-23-5-0539
  • Jensen, K. S., Van Betteray, B., Smeets, J., Yuanfu, J., Scott, J. W., Mejia, L., & Maxwell, D. P. (2007). Co dominant SCAR Marker, P6-25, for Detection of the ty-3, Ty-3, and Ty-3a alleles at 25 cM of chromosome 6 of tomato. College of Agricultural and Life Sciences at University of Wisconsin-Madison, and by grants from Unilever Bestfoods Ltd. and the Florida Tomato Committee to JW. Scott, 25.
  • Junker, A., Muraya, M. M., Weigelt-Fischer, K., Arana-Ceballos, F., Klukas, C., Melchinger, A. E., Meyer, R. C., Riewe, D., & Altmann, T. (2015). Optimizing experimental procedures for quantitative assessment of crop plant performance in high-throughput phenotyping systems. Frontiers in Plant Science, 5, 1-21. https://doi.org/10.3389/fpls.2014.00770
  • Kil, E. J., Kim, S., Lee, Y. J., Byun, H. S., Park, J., Seo, H., Kim, C. S., Shim, J. K., Lee, J. H., Kim, Ji. K., Lee, K. Y., Choi, H. S., & Lee, S. (2016). Virus causing yellow leaf formation in tomato (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Scientific Reports, 6, 19013. https://doi.org/10.1038/srep19013
  • Lapidot, M., Ben-Joseph, R., Cohen, L., Machbash, Z., & Levy, D. (2007). Development of a scale for evaluation of tomato yellow leaf curl virus resistance level in tomato plants. Phytopathology 96, 1404-1408.007. https://doi.org/10.1094/PHYTO-96-1404
  • Luria, N., Smith, E., Reingold, V., Bekelman, I., Lapidot, M., Levin, I., Elad, N., Tam, Y., Sela, N., Abu-Ras, A., Ezra, N., Haberman, A., Yitzhak, L., Lachman, O., & Dombrovsky, A. A. (2017). A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLOS One, 12(1), e0170429. https://doi.org/10.1371/journal.pone.0170429
  • Moriones, E., García-Andrés, S., & Navas-Castillo, J. (2007). Recombination in the TYLCV Complex: a Mechanism to Increase Genetic Diversity. Implications for Plant Resistance Development. In Tomato Yellow Leaf Curl Virus Disease. (pp. 119-138).
  • Moriones, E., Navas-Castillo, J., & Díaz-Pendón, J. A. (2011). Emergence of Begomovirus Diseases. In Recent Advances in Plant Virology. (pp. 301-320).
  • Péréfarres, F., Thierry, M., Becker, N., Lefeuvre, P., Reynaud, B., Delatte, H., & Lett, J. M. (2012). Biological invasions of geminiviruses: Case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses, 4(12), 3665-3688. https://doi.org/10.3390/v4123665
  • Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. Tomato yellow leaf curl virus-a review. Scientia Horticulturae, 67, 151-196.
  • Ranc, N., Muños, S., Santoni, S., & Causse, M. (2009). A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biology, 8(1), 130. https://doi.org/10.1186/1471-2229-8-130
  • Sade, D., Eybishtz, A., Gorovits, R., Sobol, I., & Czosnek, H. (2012). A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. Plant Molecular Biology, 80(3), 273-287. https://doi.org/10.1007/s11103-012-9946-6
  • Salem, N. M., Mansour, A., Ciuffo, M., Falk, B. W., & Turina, M. (2016). A new tobamovirus infecting tomato crops in Jordan. Archives of Virology, 161(2), 503-506. https://doi.org/10.1007/s00705-015-2677-7
  • Tatar, M., & Pirinç, V. (2017). Potential of industrial tomato production potential of Southeast Anatolian region in Turkey. Journal of Iğdır University Institute of Science and Technology, 7(2), 11-20. https://doi.org/10.21597/jist.2017.121
  • Thierry, M., Lefeuvre, P., Hoareau, M., Péréfarres, F., Delatte, H., Reynaud, B., Martin, D. P., & Lett, J. M. (2012). Differential disease phenotype of begomoviruses associated with tobacco leaf curl disease in the Comoros. Archives of Virology, 86, 1553-1542. https://doi.org/10.1007/s00705-011-1199-1
  • TUİK (2022). Tarımsal Ürünler İstatistiği, İstatistiklerle Türkiye. Türkiye İstatistik Kurumu, Ankara.
  • Wani, S. H., Sanghera, G. S., & Singh, N. B. (2010). Biotechnology and plant disease control role of RNA interference. American Journal of Plant Sciences, 1(2), 55-68. https://doi.org/10.4236/ajps.2010.12008
  • Yang, X., Caro, M., Hutton, S. F., Scott,J. W., Guo, Y., Wang, X., Rashid, H., Szinay, D., Jong, H., Visser, R. G. F., Bai, Y., & Du, Y. (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding, 34, 749-760. https://doi.org/10.1007/s11032-014-0072-9
  • Yorgancılar, M., Yakışır, E., & Erkoyuncu, M. T. (2015). Moleküler markörlerin bitki ıslahında kullanımı. Bahri Dağdaş Bitkisel Araştırma Dergisi, 4(2), 1-12.
  • Zhe, Y., Wolters, A. M. A., Navas-Castillo, J., & Bai, Y. (2021). The global dimension of Tomato Yellow Leaf Curl Disease: Current status and breeding perspectives. Microorganisms, 9(4), 740. http://doi.org/10.3390/microorganisms9040740

TYLCV'ye Dayanıklı Kiraz ve Kokteyl Domates Çeşitlerinin Moleküler Markörler ile Belirlenmesi

Year 2023, Volume: 5 Issue: 2, 89 - 96, 29.12.2023
https://doi.org/10.55979/tjse.1357477

Abstract

Bu çalışmada, farklı kiraz ve kokteyl domates çeşitlerinin Domates sarı yaprak kıvırcık virüsüne (TYLCV) karşı dayanıklılıkları moleküler DNA markörleri kullanılarak belirlenmiştir. Bu amaçla, Ty3P6-25 primeri kullanılarak polimeraz zincir reaksiyonu (PCR) ile toplam 409 farklı kiraz ve kokteyl domates çeşidinin Tomato Yellow Leaf Curly Virus'a (TYLCV) dayanıklılığı belirlenmiştir. Testler sonucunda, 291 kiraz ve kokteyl domates çeşidinin TYLCV'ye duyarlı (rr), 66 çeşidin heterozigot dayanıklı (Rr) ve 45 çeşidin homozigot dayanıklı (RR) olduğu tespit edilmiştir. Ayrıca, 7 kiraz ve kokteyl domates çeşidinde herhangi bir moleküler belirteç tespit edilmemiştir. Kullanılan moleküler DNA markörünün kiraz domatesi ve kokteyl domatesinde TYLCV'ye karşı direnç yanıtlarını belirlemede yararlı olduğu ve kısa sürede tekrarlanabilir ve güvenilir sonuçlar sağlayabileceği bulunmuştur.

Thanks

This work was supported by Istanbul Tarım AŞ.

References

  • Adedze, M. N., Lu, X., Chofong, G. N., Muhammad, M. H., Amirul, M. A., Li, Y., Zhang, W., He, Y., Reza, M. E., Mohd, R. I., Andrew, E., Sun, G., Li, W., & Si, L. (2018). Development of a new molecular marker for the resistance to Tomato Yellow Leaf Curl Virus. BioMed Research International, 2018, 10. https://doi.org/10.1155/2018/8120281.
  • Choi, S. H., Kim, H. R., Kim, H. J., Lee, I. S., Kozukue, N., & Levin, C. E. (2011). Free amino acid and phenolic contents and antioxidative and cancer cell-inhibiting activities of extracts of 11 greenhouse-grown tomato varieties and 13 tomato-based foods. Journal of Agricultural and Food Chemistry, 59(24), 12801-12814. https://doi.org/10.1021/jf202791j.
  • Cohen, S., & Lapidot, M. (2007) Appearance and expansion of TYLCV: a historical point of view. In Tomato yellow leafcurl virus disease. (pp. 3-12). Czosnek, H., & Laterrot, H. (1997). A worldwide survey of tomato yellow leaf curl viruses. Archives of Virology, 142(7), 1391-406. https://doi.org/10.1007/s007050050168
  • Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13-15.
  • Eybishtz, A., Peretz, Y., Sade, D., Akad, F., & Czosnek, H. (2009). Silencing of a single gene in tomato plants resistant to Tomato yellow leaf curl virus renders them susceptible to the virus. Plant Molecular Biology, 71(1-2), 157-171. https://doi.org/10.1007/s11103-009-9515-9
  • Eybishtz, A., Peretz, Y., Sade, D., Gorovits, R., & Czosnek, H. (2010). Tomato yellow leaf curl virus infection of a resistant tomato line with a silenced sucrose transporter gene LeHT1 results in inhibition of growth, enhanced virus spread, and necrosis. Planta, 231(3), 537-548. https://doi.org/10.1007/s00425-009-1072-6
  • FAO (2022). The State of Food Security and Nutrition in Europe and Central Asia. Food and Agricultural Organization, Budapest.
  • FAO (2021). The State of Food Security and Nutrition in Europe and Central Asia. Food and Agricultural Organization, Budapest.
  • Foolad, M. R. (2007). Genome mapping and molecular breeding of tomato. International Journal of Plant Genomics, 64358. https://doi.org/10.1155/2007/64358
  • Hanson, P., Lu, S. F., Wang, J. F., Chen, W., Kenyon, L., Tan, C. W., Tee, K. L., Wang, Y. Y., Hsu, Y. C., Schafleitner, R., Ledesma, D., & Yang, R. Y. (2016). Conventional and molecular marker assisted selection and pyramiding of genes for multi-disease resistance in tomato. Scientia Horticulture, 201, 346-354. https://doi.org/10.1016/j.scienta.2016.02.020
  • Hanssen, I. M., Lapidot, M., & Thomma, B. P. H. J. (2010). Emerging viral diseases of tomato crops. Molecular Plant-Microbe Interactions, 23(5), 539-548. https://doi.org/10.1094/MPMI-23-5-0539
  • Jensen, K. S., Van Betteray, B., Smeets, J., Yuanfu, J., Scott, J. W., Mejia, L., & Maxwell, D. P. (2007). Co dominant SCAR Marker, P6-25, for Detection of the ty-3, Ty-3, and Ty-3a alleles at 25 cM of chromosome 6 of tomato. College of Agricultural and Life Sciences at University of Wisconsin-Madison, and by grants from Unilever Bestfoods Ltd. and the Florida Tomato Committee to JW. Scott, 25.
  • Junker, A., Muraya, M. M., Weigelt-Fischer, K., Arana-Ceballos, F., Klukas, C., Melchinger, A. E., Meyer, R. C., Riewe, D., & Altmann, T. (2015). Optimizing experimental procedures for quantitative assessment of crop plant performance in high-throughput phenotyping systems. Frontiers in Plant Science, 5, 1-21. https://doi.org/10.3389/fpls.2014.00770
  • Kil, E. J., Kim, S., Lee, Y. J., Byun, H. S., Park, J., Seo, H., Kim, C. S., Shim, J. K., Lee, J. H., Kim, Ji. K., Lee, K. Y., Choi, H. S., & Lee, S. (2016). Virus causing yellow leaf formation in tomato (TYLCV-IL): a seed-transmissible geminivirus in tomatoes. Scientific Reports, 6, 19013. https://doi.org/10.1038/srep19013
  • Lapidot, M., Ben-Joseph, R., Cohen, L., Machbash, Z., & Levy, D. (2007). Development of a scale for evaluation of tomato yellow leaf curl virus resistance level in tomato plants. Phytopathology 96, 1404-1408.007. https://doi.org/10.1094/PHYTO-96-1404
  • Luria, N., Smith, E., Reingold, V., Bekelman, I., Lapidot, M., Levin, I., Elad, N., Tam, Y., Sela, N., Abu-Ras, A., Ezra, N., Haberman, A., Yitzhak, L., Lachman, O., & Dombrovsky, A. A. (2017). A new Israeli Tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLOS One, 12(1), e0170429. https://doi.org/10.1371/journal.pone.0170429
  • Moriones, E., García-Andrés, S., & Navas-Castillo, J. (2007). Recombination in the TYLCV Complex: a Mechanism to Increase Genetic Diversity. Implications for Plant Resistance Development. In Tomato Yellow Leaf Curl Virus Disease. (pp. 119-138).
  • Moriones, E., Navas-Castillo, J., & Díaz-Pendón, J. A. (2011). Emergence of Begomovirus Diseases. In Recent Advances in Plant Virology. (pp. 301-320).
  • Péréfarres, F., Thierry, M., Becker, N., Lefeuvre, P., Reynaud, B., Delatte, H., & Lett, J. M. (2012). Biological invasions of geminiviruses: Case study of TYLCV and Bemisia tabaci in Reunion Island. Viruses, 4(12), 3665-3688. https://doi.org/10.3390/v4123665
  • Picó, B., Diez, M. J., & Nuez, F. (1996). Viral diseases causing the greatest economic losses to the tomato crop. II. Tomato yellow leaf curl virus-a review. Scientia Horticulturae, 67, 151-196.
  • Ranc, N., Muños, S., Santoni, S., & Causse, M. (2009). A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biology, 8(1), 130. https://doi.org/10.1186/1471-2229-8-130
  • Sade, D., Eybishtz, A., Gorovits, R., Sobol, I., & Czosnek, H. (2012). A developmentally regulated lipocalin-like gene is overexpressed in Tomato yellow leaf curl virus-resistant tomato plants upon virus inoculation, and its silencing abolishes resistance. Plant Molecular Biology, 80(3), 273-287. https://doi.org/10.1007/s11103-012-9946-6
  • Salem, N. M., Mansour, A., Ciuffo, M., Falk, B. W., & Turina, M. (2016). A new tobamovirus infecting tomato crops in Jordan. Archives of Virology, 161(2), 503-506. https://doi.org/10.1007/s00705-015-2677-7
  • Tatar, M., & Pirinç, V. (2017). Potential of industrial tomato production potential of Southeast Anatolian region in Turkey. Journal of Iğdır University Institute of Science and Technology, 7(2), 11-20. https://doi.org/10.21597/jist.2017.121
  • Thierry, M., Lefeuvre, P., Hoareau, M., Péréfarres, F., Delatte, H., Reynaud, B., Martin, D. P., & Lett, J. M. (2012). Differential disease phenotype of begomoviruses associated with tobacco leaf curl disease in the Comoros. Archives of Virology, 86, 1553-1542. https://doi.org/10.1007/s00705-011-1199-1
  • TUİK (2022). Tarımsal Ürünler İstatistiği, İstatistiklerle Türkiye. Türkiye İstatistik Kurumu, Ankara.
  • Wani, S. H., Sanghera, G. S., & Singh, N. B. (2010). Biotechnology and plant disease control role of RNA interference. American Journal of Plant Sciences, 1(2), 55-68. https://doi.org/10.4236/ajps.2010.12008
  • Yang, X., Caro, M., Hutton, S. F., Scott,J. W., Guo, Y., Wang, X., Rashid, H., Szinay, D., Jong, H., Visser, R. G. F., Bai, Y., & Du, Y. (2014). Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Molecular Breeding, 34, 749-760. https://doi.org/10.1007/s11032-014-0072-9
  • Yorgancılar, M., Yakışır, E., & Erkoyuncu, M. T. (2015). Moleküler markörlerin bitki ıslahında kullanımı. Bahri Dağdaş Bitkisel Araştırma Dergisi, 4(2), 1-12.
  • Zhe, Y., Wolters, A. M. A., Navas-Castillo, J., & Bai, Y. (2021). The global dimension of Tomato Yellow Leaf Curl Disease: Current status and breeding perspectives. Microorganisms, 9(4), 740. http://doi.org/10.3390/microorganisms9040740
There are 30 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Articles
Authors

Hüseyin Basım 0000-0002-8059-3680

Osman Kandil 0000-0003-3806-423X

Mine Karaoğlan 0000-0001-9061-1419

Early Pub Date December 29, 2023
Publication Date December 29, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Basım, H., Kandil, O., & Karaoğlan, M. (2023). Determination of TYLCV-Resistant Cherry and Cocktail Tomato Cultivars by Molecular Markers. Turkish Journal of Science and Engineering, 5(2), 89-96. https://doi.org/10.55979/tjse.1357477