Research Article
BibTex RIS Cite

DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY

Year 2019, , 63 - 70, 15.04.2019
https://doi.org/10.23902/trkjnat.498426

Abstract

This study was performed in order to bring out a detailed information on growth dynamics and biochemical determination of the diatom species Nitzschia palea (Kützing) W. Smith under batch culture conditions in order to pave the way for further studies. The study material was isolated from a fresh water sample collected from Ankara, Turkey. The diatoms were cultured in Allen medium for 168 hours and the growth dynamics were determined by cell density and dry weight analyses. Specific growth rate, duplication time of the culture and biochemical compositions were also investigated. Molecular characterization of the N. palea strain was performed by applying Fourier Transform Infrared Spectroscopy. The cell density and the dry biomass of the culture at the end of the 168 hours incubation period was determined as 2.0x106±1.0x105cells/mL and 0.212±0.041 g L-1, respectively. The algal specific growth rate was found as 0.010 h-1 at 96-h and the doubling time was calculated as 68 h-1. The protein content was measured as 41.21%, carbohydrate content as 21.74%, lipid content as 16.84% and ash content as 19.88%. These results indicated that N. palea may be used in different fields of industries, especially in biodiesel production.

References

  • 1. Abdel-Hamid, M.I., El-Refaay, D.A., Abdel-Mogib, M. & Azab, Y.A. 2013. Studies on biomass and lipid production of seven diatom species with special emphasis on lipid composition of Nitzschia palea (Bacillariophyceae) as reliable biodiesel feedstock. Algological Studies, 143: 65-87.
  • 2. Ammar, S.H. 2016. Cultivation of microalgae Chlorella vulgaris in airlift photobioreactor for biomass production using commercial NPK nutrients. Al-Khwarizmi Engineering Journal, 12(1): 90-99.
  • 3. AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. Arlington, VA., 771 pp.
  • 4. Belegratis, M.R., Schmidt, V., Nees, D., Stadlober, B. & Hartmann, P. 2014. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. Bioinspiration & Biomimetics, 9: 1-11.
  • 5. Binea, H.K., Kassim, T.I. & Binea, A.K. 2009. Antibacterial activity of diatom Nitzschia palea (Kuetz.) W.SM. extract. Iraqi Journal of Biotechnology, 8(2): 562-566.
  • 6. Bozarth, A., Maier, U.G. & Zauner, S. 2009. Diatoms in biotechnology: modern tools and applications. Applied Microbiology and Biotechnology, 82: 195-201.
  • 7. CCAP, Culture Collection of Algae and Protozoa, Scottish Marine Institute, (https://www.ccap.ac.uk/), (Date accessed: 18 November 2018).
  • 8. Cirik, S. & Gökpınar, Ş. 1993. Plankton Bilgisi ve Kültürü. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, İzmir, 269 s.
  • 9. Chaumont D. 1993. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. Journal of Applied Phycology, 5: 593-604.
  • 10. Dean, A.P., Sigee, D.C., Estrada, B. & Pittman, J.K. 2010. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101: 4499-4507.
  • 11. Dębowski, M., Zieliński, M., Krzemieniewski, M., Dudek, M. & Grala, A. 2012. Microalgae cultivation methods. Polish Journal of Natural Sciences, 27(2): 151-164.
  • 12. Duygu, D., Udoh, A.U., Özer Baykal, T., Akbulut, A., Erkaya Açıkgöz, I., Yıldız, K. & Deniz, G. 2012. Fourier Transform Infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 11(16): 3817-3824.
  • 13. Fimbres-Olivarría, D., López-Elías, J.A., Martínez-Córdova, L.R., Carvajal-Millán, E., Enríquez-Ocaña, F., Valdéz-Holguín, E. & Miranda-Baeza, A. 2015. Growth and biochemical composition of Navicula sp. cultivated at two light intensities and three wavelengths. The Israeli Journal of Aquaculture, 1-7.
  • 14. Gonçalves, A., Pires, J. & Simões, M. 2013. Lipid production of Chlorella vulgaris and Pseudokirchneriella subcapitata. International Journal of Energy and Environmental Engineering, 4: 1-6.
  • 15. Gürgün, V. & Halkman K. 1990. Mikrobiyolojide Sayım Yöntemleri. Gıda Teknolojisi Derneği Yayınları, Ankara, 106 s.
  • 16. Guillard, R.R. & Ryther, J.H. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacaea (Cleve) Gran. Canadian Journal of Microbiology, 8: 229-239.
  • 17. Guillard, R.R.L. & Lorenzen, C.J. 1972. Yellow-green algae with chlorophyllide c. Journal of Phycology, 8: 10-14.
  • 18. Guiry, M.D. & Guiry, G.M. 2018. AlgaeBase. (http://www.algaebase.org), (Date accessed: 26 November 2018).
  • 19. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54: 621-639.
  • 20. Imamoglu, E., Dalay, M. C. & Sukan, F.V. 2009. Influence of different stress media and high light intensities on accumulation of astaxanthin in green alga Haematococcus pluvialis. New Biotechnology, 26: 199-204.
  • 21. Krammer, K. & Lange–Bertalot, H. 1999. Süβwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/2, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart, 584 pp.
  • 22. Kumar, V., Kashyap, M., Gautam, S., Shukla, P., Joshi, K.B. & Vinayak, V. 2018. Fast Fourier Infrared spectroscopy to characterize the biochemical composition in diatoms. Journal of Bioscience, 43(4): 717-729.
  • 23. Lakshmi, K.V., Jeyanthi, S., Santhanam, P., Devi, A.S. & Balamurugan, A. 2014. Study of self-assembled nanostructure and biomolecules of diatom Nitzschia sp. using electron microscopy and raman spectroscopy. Bionano Frontier, 2: 197-202.
  • 24. Li, Q., Du, W. & Liu, D. 2008. Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80: 749-756.
  • 25. Li, H.Y., Lu, Y., Zheng, J.W., Yang, W.D. & Liu, J.S. 2014. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Marine Drugs, 12: 153-166.
  • 26. Lourduraj, J.J. & Abraham, D.R. 2016. Screening of microalgae based on biomass and lipid production at indoor and outdoor cultivation condition. International Journal of Pure & Applied Bioscience, 4(6): 107-113.
  • 27. Losic, D., Mitchell, J.G. & Voelcker, N.H. 2009. Diatomaceous lessons in nanotechnology and advanced materials. Advanced Materials, 21: 2947-2958.
  • 28. Markou, G. & Nerantzis, E. 2013. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances, 8: 1532-1542.
  • 29. Michelle, A., Everroad, R.C. & Wingard, L.M. 2005. Measuring Growth Rates in Algal Culturing Techniques. pp. 269-286 In: Andersen, R.A. (ed). Algal Culturing Techniques. Elsevier Academic Press, London, 589 pp.
  • 30. Minhas, A.K., Hodgson, P., Barrow, C.J. & Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers of Microbiology, 7: 1-19.
  • 31. Murdock, J.N. & Wetzel, D.L. 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews, 44: 335-361.
  • 32. Nichols, H.W. 1973. Growth media-freshwater. Pp. 19-25. In: Stein, J.R. (ed). Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, 472 pp.
  • 33. Perumal, P., Prasath, B.B., Santhanam, P., Ananth, S., Shenbaga Devi, A. & Kumar, D. S. 2012. Isolation and culture of microalgae. Workshop on Advances in Aquaculture Technology, 166-181.
  • 34. Rodolfi, L., Zittelli, C., Bassi, G., Padovani, N., Biondi, G. & Tredici, M.R. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoormass cultivation in a low-costphotobioreactor. Biotechnology and Bioengineering, 102: 100-112.
  • 35. Rodríguez-Núñez, K. & Toledo-Agüero, P. 2017. Fatty acid profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast. Grasas Aceites, 68(3): 1-8.
  • 36. Supriya, G., Asulabha, K.S. & Ramachandra, T.V. 2012. Use of Raman microspectroscopy to detect changes in lipid pools of microalgae, 1-8. LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems, 6-9 November, Kottayam-India.
  • 37. Swann, G.E. & Patwardhan, S. 2011. Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Climate of the Past, 7: 65-74.
  • 38. UTEX, Culture Collection of Algae at the University of Texas at Austin. (http://web.biosci.utexas.edu/utex/Media%20PDF/allen%20medium.pdf), (Date accessed: 23 November 2018).
  • 39. Van den Hoek, C., Mann, D. & Jahns, H.M. 1995. Algae: an introduction to Phycology. Cambridge University, Cambridge, 623 pp.
  • 40. Vardy, S. & Uwins, P. 2002. Fourier transform infrared microspectroscopy as a tool to differentiate Nitzschia closterium and Nitzschia longissima. Applied Spectroscopy, 56: 1545-1548.
  • 41. Vitug, L.V.D. & Baldia, S.F. 2014. Enhancement of some culture conditions for optimizing growth and lipid production in the diatom Nitzschia palea. Acta Manilana, 62: 25-34.
  • 42. Wen, Z.Y., & Chen, F. 2001. A perfusion- cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Applied Microbiology and Biotechnology, 57: 316-322.
  • 43. Wong, Y.K., Ho, Y.H., Ho, K.C., Leung, H.M. & Yung, K.K.L. 2017. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Environmental Science and Pollution Research, 24: 9089-9101.
  • 44. Yu, E.T., Zendejas, F.J., Lane, P.D., Gaucher, S., Simmons, B.A. & Lane, T.W. 2009. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacillariophyceae) during starvation. Journal of Applied Phycology, 21: 669-681.
Year 2019, , 63 - 70, 15.04.2019
https://doi.org/10.23902/trkjnat.498426

Abstract

Bu çalışma, daha ileri
çalışmaların önünü açmak amacıyla yığın kültür koşullarında, Nitzschia palea
(Kützing) W. Smith diatom türünün biyokimyasal tayini ve büyüme dinamikleri
hakkında ayrıntılı bilgi vermek amacıyla yapılmıştır. Çalışma materyali,
Ankara, Türkiye'den toplanan tatlı su örneğinden izole edilmiştir. Diatom
kültürü Allen besi ortamında 168 saat boyunca yetiştirilmiş ve büyüme
dinamikleri hücre yoğunluğu ile kuru ağırlık analizleriyle belirlenmiştir.
Spesifik büyüme hızı, kültürün ikilenme süresi ve biyokimyasal bileşimleri de
incelenmiştir. Nitzschia palea’nın moleküler karakterizasyonu Fourier
Transform Infrared Spektroskopisi kullanılarak gerçekleştirilmiştir. Ekimi
takip eden 168. saatte, Allen besi kültür ortamında kültürlerin hücre yoğunluğu
2,0x106±1,0x105 hücre/mL ve kuru biyokütlesi 0,212±0,041
(g L-1) olarak tespit edilmiştir. Nitzschia palea’nın
spesifik büyüme oranı 96. saatte (0,010 h-1) ve ikilenme süresi 68 h-1
olarak hesaplanmıştır. Nitzschia palea’nın protein miktarı (%41,21),
karbonhidrat miktarı (%21,74), lipit miktarı (%16,84) ve kül miktarı (%19,88)
olarak belirlenmiştir. Bu sonuçlar, N. palea'nın farklı endüstri
alanlarında özellikle biyodizel üretimi için kullanılabileceğini göstermiştir.

References

  • 1. Abdel-Hamid, M.I., El-Refaay, D.A., Abdel-Mogib, M. & Azab, Y.A. 2013. Studies on biomass and lipid production of seven diatom species with special emphasis on lipid composition of Nitzschia palea (Bacillariophyceae) as reliable biodiesel feedstock. Algological Studies, 143: 65-87.
  • 2. Ammar, S.H. 2016. Cultivation of microalgae Chlorella vulgaris in airlift photobioreactor for biomass production using commercial NPK nutrients. Al-Khwarizmi Engineering Journal, 12(1): 90-99.
  • 3. AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis of the Association of Official Analytical Chemists. Arlington, VA., 771 pp.
  • 4. Belegratis, M.R., Schmidt, V., Nees, D., Stadlober, B. & Hartmann, P. 2014. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms. Bioinspiration & Biomimetics, 9: 1-11.
  • 5. Binea, H.K., Kassim, T.I. & Binea, A.K. 2009. Antibacterial activity of diatom Nitzschia palea (Kuetz.) W.SM. extract. Iraqi Journal of Biotechnology, 8(2): 562-566.
  • 6. Bozarth, A., Maier, U.G. & Zauner, S. 2009. Diatoms in biotechnology: modern tools and applications. Applied Microbiology and Biotechnology, 82: 195-201.
  • 7. CCAP, Culture Collection of Algae and Protozoa, Scottish Marine Institute, (https://www.ccap.ac.uk/), (Date accessed: 18 November 2018).
  • 8. Cirik, S. & Gökpınar, Ş. 1993. Plankton Bilgisi ve Kültürü. Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, İzmir, 269 s.
  • 9. Chaumont D. 1993. Biotechnology of algal biomass production: a review of systems for outdoor mass culture. Journal of Applied Phycology, 5: 593-604.
  • 10. Dean, A.P., Sigee, D.C., Estrada, B. & Pittman, J.K. 2010. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. Bioresource Technology, 101: 4499-4507.
  • 11. Dębowski, M., Zieliński, M., Krzemieniewski, M., Dudek, M. & Grala, A. 2012. Microalgae cultivation methods. Polish Journal of Natural Sciences, 27(2): 151-164.
  • 12. Duygu, D., Udoh, A.U., Özer Baykal, T., Akbulut, A., Erkaya Açıkgöz, I., Yıldız, K. & Deniz, G. 2012. Fourier Transform Infrared (FTIR) spectroscopy for identification of Chlorella vulgaris Beijerinck 1890 and Scenedesmus obliquus (Turpin) Kützing 1833. African Journal of Biotechnology, 11(16): 3817-3824.
  • 13. Fimbres-Olivarría, D., López-Elías, J.A., Martínez-Córdova, L.R., Carvajal-Millán, E., Enríquez-Ocaña, F., Valdéz-Holguín, E. & Miranda-Baeza, A. 2015. Growth and biochemical composition of Navicula sp. cultivated at two light intensities and three wavelengths. The Israeli Journal of Aquaculture, 1-7.
  • 14. Gonçalves, A., Pires, J. & Simões, M. 2013. Lipid production of Chlorella vulgaris and Pseudokirchneriella subcapitata. International Journal of Energy and Environmental Engineering, 4: 1-6.
  • 15. Gürgün, V. & Halkman K. 1990. Mikrobiyolojide Sayım Yöntemleri. Gıda Teknolojisi Derneği Yayınları, Ankara, 106 s.
  • 16. Guillard, R.R. & Ryther, J.H. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacaea (Cleve) Gran. Canadian Journal of Microbiology, 8: 229-239.
  • 17. Guillard, R.R.L. & Lorenzen, C.J. 1972. Yellow-green algae with chlorophyllide c. Journal of Phycology, 8: 10-14.
  • 18. Guiry, M.D. & Guiry, G.M. 2018. AlgaeBase. (http://www.algaebase.org), (Date accessed: 26 November 2018).
  • 19. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. & Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant Journal, 54: 621-639.
  • 20. Imamoglu, E., Dalay, M. C. & Sukan, F.V. 2009. Influence of different stress media and high light intensities on accumulation of astaxanthin in green alga Haematococcus pluvialis. New Biotechnology, 26: 199-204.
  • 21. Krammer, K. & Lange–Bertalot, H. 1999. Süβwasserflora von Mitteleuropa, Bacillariophyceae, Band 2/2, 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fischer Verlag, Stuttgart, 584 pp.
  • 22. Kumar, V., Kashyap, M., Gautam, S., Shukla, P., Joshi, K.B. & Vinayak, V. 2018. Fast Fourier Infrared spectroscopy to characterize the biochemical composition in diatoms. Journal of Bioscience, 43(4): 717-729.
  • 23. Lakshmi, K.V., Jeyanthi, S., Santhanam, P., Devi, A.S. & Balamurugan, A. 2014. Study of self-assembled nanostructure and biomolecules of diatom Nitzschia sp. using electron microscopy and raman spectroscopy. Bionano Frontier, 2: 197-202.
  • 24. Li, Q., Du, W. & Liu, D. 2008. Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology, 80: 749-756.
  • 25. Li, H.Y., Lu, Y., Zheng, J.W., Yang, W.D. & Liu, J.S. 2014. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Marine Drugs, 12: 153-166.
  • 26. Lourduraj, J.J. & Abraham, D.R. 2016. Screening of microalgae based on biomass and lipid production at indoor and outdoor cultivation condition. International Journal of Pure & Applied Bioscience, 4(6): 107-113.
  • 27. Losic, D., Mitchell, J.G. & Voelcker, N.H. 2009. Diatomaceous lessons in nanotechnology and advanced materials. Advanced Materials, 21: 2947-2958.
  • 28. Markou, G. & Nerantzis, E. 2013. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnology Advances, 8: 1532-1542.
  • 29. Michelle, A., Everroad, R.C. & Wingard, L.M. 2005. Measuring Growth Rates in Algal Culturing Techniques. pp. 269-286 In: Andersen, R.A. (ed). Algal Culturing Techniques. Elsevier Academic Press, London, 589 pp.
  • 30. Minhas, A.K., Hodgson, P., Barrow, C.J. & Adholeya, A. 2016. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers of Microbiology, 7: 1-19.
  • 31. Murdock, J.N. & Wetzel, D.L. 2009. FT-IR microspectroscopy enhances biological and ecological analysis of algae. Applied Spectroscopy Reviews, 44: 335-361.
  • 32. Nichols, H.W. 1973. Growth media-freshwater. Pp. 19-25. In: Stein, J.R. (ed). Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, New York, 472 pp.
  • 33. Perumal, P., Prasath, B.B., Santhanam, P., Ananth, S., Shenbaga Devi, A. & Kumar, D. S. 2012. Isolation and culture of microalgae. Workshop on Advances in Aquaculture Technology, 166-181.
  • 34. Rodolfi, L., Zittelli, C., Bassi, G., Padovani, N., Biondi, G. & Tredici, M.R. 2009. Microalgae for oil: strain selection, induction of lipid synthesis and outdoormass cultivation in a low-costphotobioreactor. Biotechnology and Bioengineering, 102: 100-112.
  • 35. Rodríguez-Núñez, K. & Toledo-Agüero, P. 2017. Fatty acid profile and nutritional composition of two tropical diatoms from the Costa Rican Pacific Coast. Grasas Aceites, 68(3): 1-8.
  • 36. Supriya, G., Asulabha, K.S. & Ramachandra, T.V. 2012. Use of Raman microspectroscopy to detect changes in lipid pools of microalgae, 1-8. LAKE 2012: National Conference on Conservation and Management of Wetland Ecosystems, 6-9 November, Kottayam-India.
  • 37. Swann, G.E. & Patwardhan, S. 2011. Application of Fourier Transform Infrared Spectroscopy (FTIR) for assessing biogenic silica sample purity in geochemical analyses and palaeoenvironmental research. Climate of the Past, 7: 65-74.
  • 38. UTEX, Culture Collection of Algae at the University of Texas at Austin. (http://web.biosci.utexas.edu/utex/Media%20PDF/allen%20medium.pdf), (Date accessed: 23 November 2018).
  • 39. Van den Hoek, C., Mann, D. & Jahns, H.M. 1995. Algae: an introduction to Phycology. Cambridge University, Cambridge, 623 pp.
  • 40. Vardy, S. & Uwins, P. 2002. Fourier transform infrared microspectroscopy as a tool to differentiate Nitzschia closterium and Nitzschia longissima. Applied Spectroscopy, 56: 1545-1548.
  • 41. Vitug, L.V.D. & Baldia, S.F. 2014. Enhancement of some culture conditions for optimizing growth and lipid production in the diatom Nitzschia palea. Acta Manilana, 62: 25-34.
  • 42. Wen, Z.Y., & Chen, F. 2001. A perfusion- cell bleeding culture strategy for enhancing the productivity of eicosapentaenoic acid by Nitzschia laevis. Applied Microbiology and Biotechnology, 57: 316-322.
  • 43. Wong, Y.K., Ho, Y.H., Ho, K.C., Leung, H.M. & Yung, K.K.L. 2017. Maximization of cell growth and lipid production of freshwater microalga Chlorella vulgaris by enrichment technique for biodiesel production. Environmental Science and Pollution Research, 24: 9089-9101.
  • 44. Yu, E.T., Zendejas, F.J., Lane, P.D., Gaucher, S., Simmons, B.A. & Lane, T.W. 2009. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacillariophyceae) during starvation. Journal of Applied Phycology, 21: 669-681.
There are 44 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Research Article/Araştırma Makalesi
Authors

Dilek Yalçın Duygu 0000-0003-2127-8186

Publication Date April 15, 2019
Submission Date December 17, 2018
Acceptance Date March 22, 2019
Published in Issue Year 2019

Cite

APA Yalçın Duygu, D. (2019). DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY. Trakya University Journal of Natural Sciences, 20(1), 63-70. https://doi.org/10.23902/trkjnat.498426
AMA Yalçın Duygu D. DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY. Trakya Univ J Nat Sci. April 2019;20(1):63-70. doi:10.23902/trkjnat.498426
Chicago Yalçın Duygu, Dilek. “DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia Palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY”. Trakya University Journal of Natural Sciences 20, no. 1 (April 2019): 63-70. https://doi.org/10.23902/trkjnat.498426.
EndNote Yalçın Duygu D (April 1, 2019) DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY. Trakya University Journal of Natural Sciences 20 1 63–70.
IEEE D. Yalçın Duygu, “DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY”, Trakya Univ J Nat Sci, vol. 20, no. 1, pp. 63–70, 2019, doi: 10.23902/trkjnat.498426.
ISNAD Yalçın Duygu, Dilek. “DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia Palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY”. Trakya University Journal of Natural Sciences 20/1 (April 2019), 63-70. https://doi.org/10.23902/trkjnat.498426.
JAMA Yalçın Duygu D. DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY. Trakya Univ J Nat Sci. 2019;20:63–70.
MLA Yalçın Duygu, Dilek. “DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia Palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY”. Trakya University Journal of Natural Sciences, vol. 20, no. 1, 2019, pp. 63-70, doi:10.23902/trkjnat.498426.
Vancouver Yalçın Duygu D. DETERMINATION OF GROWTH KINETICS AND BIOCHEMICAL COMPOSITION OF Nitzschia palea (Kützing) W. Smith ISOLATED FROM FRESHWATER SOURCES IN TURKEY. Trakya Univ J Nat Sci. 2019;20(1):63-70.

You can reach the journal's archive between the years of 2000-2011 via https://dergipark.org.tr/en/pub/trakyafbd/archive (Trakya University Journal of Natural Sciences (=Trakya University Journal of Science)


Creative Commons Lisansı

Trakya University Journal of Natural Sciences is licensed under Creative Commons Attribution 4.0 International License.