Review
BibTex RIS Cite

Taurinin Enerji Homeostazi ve Sağlık Üzerindeki Etkileri: Beslenme Perspektifi

Year 2025, Volume: 9 Issue: 2, 136 - 146, 31.08.2025
https://doi.org/10.25048/tudod.1744454

Abstract

Taurin, standart amino asitlerden yapısal olarak farklılık gösteren, sülfür içeren bir β-amino asittir. İnsan vücudunun çeşitli dokularında
yüksek konsantrasyonlarda bulunur ve antioksidan savunma, enerji regülasyonu ve merkezi sinir sisteminin düzenlenmesi gibi çok
sayıda fizyolojik süreçte rol alır. Küresel olarak artan obeziteye metabolik sendrom, insülin direnci, dislipidemi ve hiperglisemi gibi
ciddi sağlık sorunları eşlik etmektedir. Geleneksel yaklaşımlar yağ dokusunu sadece lipid depolamada rol alan pasif bir yapı olarak
görürken, artık aktif bir endokrin organ olarak kabul edilmektedir. Bu bağlamda, adipositler tarafından salgılanan biyolojik olarak aktif
moleküller ve bunların metabolik süreçlerdeki rolleri obezitenin patogenezinde kritik öneme sahiptir. Bu derleme makalesinin temel
amacı, taurinin adipoz dokudaki fonksiyonel etkilerini ve obeziteye karşı koyma mekanizmalarını sistematik olarak değerlendirmektir.
Taurin, onu tipik amino asitlerden ayıran bir yapıya sahiptir ve vücutta yüksek konsantrasyonlarda bulunur, oksidatif stresi azaltmak,
inflamasyonu bastırmak ve enerji metabolizmasını düzenlemek gibi çeşitli biyolojik işlevlere katkıda bulunur. Hayvan modellerinde
yapılan çalışmalar, taurin takviyesinin yağ dokusundaki enflamasyonu azalttığını, lipolizi artırdığını, termojenik yolları aktive ettiğini ve
merkezi sinir sistemi mekanizmaları yoluyla iştahı baskıladığını ve böylece obezite gelişimini önlediğini göstermiştir. Ayrıca, obezite ve
diyabetle yaşayan bireylerde düşük plazma taurin düzeylerinin saptanması, taurin eksikliğinin metabolik dengeyi bozabileceğine işaret
etmektedir. Her ne kadar hayvan ve epidemiyolojik çalışmalar taurinin metabolik bozuklukları hafifletmek için umut verici olduğunu
gösterse de, mekanizmalarını tam olarak aydınlatmak ve insanlardaki etkinliğini doğrulamak için daha ileri araştırmalara ihtiyaç vardır.

References

  • 1. Murakami S, Yamori Y. Taurine and longevity—preventive effect of taurine on metabolic syndrome. In: Watson RR, Preedy VR, eds. Bioactive Food as Dietary Interventions for the Aging Population. San Diego, CA: Academic Press; 2013:159-171.
  • 2. De Carvalho FG, Munoz VR, Brandao CF, Simabuco FM, Pavan IC, Nakandakari S C, de Freitas EC. Taurine upregulates insulin signaling and mitochondrial metabolism in vitro but not in adipocytes of obese women. Nutrition. 2022; 93, 111430.
  • 3. Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643-651.
  • 4. Shklyaev SS, Melnichenko GA, Volevodz NN, et al. Adiponectin: a pleiotropic hormone with multifaceted roles. Probl Endokrinol (Mosk). 2021;67(6):98-112.
  • 5. Devanoorkar A, Kathariya R, Guttiganur N, Gopalakrishnan D, Bagchi P. Resistin: a potential biomarker for periodontitis influenced diabetes mellitus and diabetes induced periodontitis. Dis Markers. 2014;2014:930206. doi:10.1155/2014/930206
  • 6. Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci.2022; 23(23), 14982.
  • 7. Murakami, S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci.2017; 186, 80–86.
  • 8. Ahmed K, Choi HN, Yim JE. The impact of taurine on obesity- induced diabetes mellitus: mechanisms underlying its effect. Endocrinology and Metabolism. 2023; 38(5), 482-492.
  • 9. Tiedemann F, Gmelin L. Versuche über die Wege, auf welchen Substanzen aus dem Magen und Darm in das Blut gelangen. Heidelberg, Germany: Akademische Buchhandlung; 1827.
  • 10. Ripps H, Shen, W. taurine: a “very essential” amino acid. Mol Vis. 2012; 18, 2673-2686.
  • 11. Rais N, Ved A, Shadab M, Ahmad R, Shahid M. Taurine, a non-proteinous essential amino acid for human body systems: an overview. Arab Gulf J Sci Res. 2023; 41(1), 48-66.
  • 12. Liu CL, Watson AM, Place AR, Jagus, R. Taurine biosynthesis in a fish liver cell line (ZFL) adapted to a serum-free medium. Marine Drugs. 2017; 15(6), 147.
  • 13. Duan H, Song W, Guo J, Yan W. Taurine: A Source and Application for the Relief of Visual Fatigue. Nutrients. 2023;15(8):1843. Published 2023 Apr 12. doi:10.3390/ nu15081843
  • 14. Park E, Park SY, Dobkin C, Schuller-Levis G. Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids. 2014; 346809.
  • 15. Dinçer S, Karakelle NA. Role of taurine in the central nervous system and importance of dosage. Gazi Med J. 2019;30(2):227- 230.
  • 16. Almohaimeed HM, Almars AI, Alsulaimani F, Basri AM, Althobaiti NA, Albalaw AE, Alsharif I, Abdulmonem WA, Hershan AA, Soliman MH. Investigating the potential neuroprotective benefits of taurine and Dihydrotestosterone and Hydroxyprogesterone levels in SH-SY5Y cells. Front Aging Neurosci. 2024; 16, 1379431.
  • 17. Granum B, Bruzell EM, Hetland RB, Husøy T, Rohloff J, Wicklund T, Steffensen IL. Risk assessment of “other substances”— taurine. Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics of the Norwegian Scientific Committee for Food Safety. VKM Report. 2015:22.
  • 18. Ozan G, Türközkan N, Bircan FS, Balabanlı B. Effect of taurine on brain energy status and malondialdehyde levels in endotoxemia model. Bozok Med J. 2018;8(1):11-17.
  • 19. Sarışık DÇ, Andre H, Tortu E, Deliceoğlu G. Effect of high doses of taurine ingestion on time to exhaustion running performance. Akdeniz Spor Bilim Derg. 2023;6(2):436-445.
  • 20. Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep. 2021; 24(2):605.
  • 21. Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants, 2021; 10(12), 1876.
  • 22. Chen C, Xia S, He J, Lu G, Xie Z, Han H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sciences. 2019; 231, 116584.
  • 23. Yüce H, Türkmen NB, Özek DA, Ünüvar S. Investigation of antiproliferative, antimigration, and antioxidant effects of taurine, capsaicin, melatonin, and beta-carotene on L929 healthy cells and MCF-7 breast cancer cells. J Fac Pharm Ankara. 2022;46(1):48-61.
  • 24. Karafakıoğlu YS. Antioksidanlar ve Bir Antioksidan Olarak Taurin. kvj. Mart 2010;3(1):55-61.
  • 25. Merckx C, Paepe BD. The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites. 2022; 12(2), 193.
  • 26. De Luca A, Pierno S, Camerino DC. Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med. 2015;13:243. Published 2015 Jul 25. doi:10.1186/s12967-015- 0610-1
  • 27. Torlak-Koca N, Çelik TÖ. Beneficial effects of taurine treatment on experimental myositis in rats. J Kirikkale Univ Fac Med. 2023;25(3):531-540.
  • 28. Tzang CC, Lin WC, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Insights into the cardiovascular benefits of taurine: a systematic review and meta-analysis. Nut J. 2024; 23(1), 93.
  • 29. Tuzcu Z, Gençoğlu H, Tuzcu M, Orhan C, Ağca CA, Şahin K. Effect of taurine on cardiac tissue antioxidant levels and NF- κB and Nrf2 signaling pathways in diabetic rats. Firat Univ Saglik Bilimleri Vet Derg. 2018;32(2):xx-xx.
  • 30. Demircioğlu Rİ, Usta B, Sert H, Muslu B, Gözdemir M. Taurine is protective against oxidative stress during cold ischemia in the rat kidney. Turk J Med Sci. 2011;41(5):843-849.
  • 31. Shimada K, Jong CJ, Takahashi K, Schaffer SW. Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol. 2015; 803;581-596.
  • 32. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther. 2018; 26(3), 225-241.
  • 33. Ito T, Miyazaki N, Schaffer S, Azuma J. Potential anti-aging role of taurine via proper protein folding: a study from taurine transporter knockout mouse. Adv Exp Med Biol, 2015; (803), 481-487
  • 34. Ahmed K, Choi HN, Park JS, Kim YG, Bae MK, Yim JE.Taurine supplementation alters gene expression profiles in white adipose tissue of obese C57BL/6J mice: Inflammation and lipid synthesis perspectives. Heliyon. 2024; 10(1), e23288.
  • 35. Murakami S. Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res. 2015;59(7):1353-1363. doi:10.1002/ mnfr.201500067
  • 36. Alimohamadi H, Bell MK, Halpain S, Rangamani P. Mechanical Principles Governing the Shapes of Dendritic Spines. Front Physiol. 2021;12:657074. Published 2021 Jun 16. doi:10.3389/ fphys.2021.657074
  • 37. Bae M, Ahmed, K, Yim JE. Beneficial effects of taurine on metabolic parameters in animals and humans. J Obes Metab Syndr. 2022; 31(2), 134-146.
  • 38. Kim KS, Jang MJ, Fang S, Yoon SG, Kim IY, Seong JK, Yang HI, Hahm DH. Anti‐obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high‐fat diet‐induced obese mouse model. Amino Acids. 2019; 51(2), 245–254.
  • 39. Kim SH, Yum HW, Kim SH, Kim W, Kim SJ, Kim C, Surh, YJ. Protective effects of taurine chloramine on experimentally induced colitis: NFκB, STAT3, and Nrf2 as potential targets. Antioxidants. 2021; 10(3), 479.
  • 40. Nardelli TR, Ribeiro RA, Balbo SL, et al. Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids. 2011;41(4):901-908. doi:10.1007/s00726-010-0789-7
  • 41. Murakami S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci. 2017;186:80-86. doi:10.1016/j.lfs.2017.08.008
  • 42. Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6(1):13-21. doi:10.1111/j.1467-789X.2005.00159.x
  • 43. Ueki I, Stipanuk MH. 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/ cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr. 2009;139(2):207-214. doi:10.3945/ jn.108.099085.
  • 44. Sagara M, Murakami S, Mizushima S, et al. Taurine in 24-h Urine Samples Is Inversely Related to Cardiovascular Risks of Middle Aged Subjects in 50 Populations of the World. Adv Exp Med Biol. 2015;803:623-636. doi:10.1007/978-3-319- 15126-7_50
  • 45. Yamori Y, Taguchi T, Mori H, Mori M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci. 2010;17 Suppl 1(Suppl 1):S21. Published 2010 Aug 24. doi:10.1186/1423- 0127-17-S1-S21
  • 46. Tzang CC, Chi LY, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Taurine reduces the risk for metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Nutr Diabetes. 2024;14(1):29.
  • 47. De Carvalho FG, Batitucci G, Abud GF, de Freitas EC. Taurine and Exercise: Synergistic Effects on Adipose Tissue Metabolism and Inflammatory Process in Obesity. Adv Exp Med Biol. 2022; 1370, 279-289.
  • 48. Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol. 2024; 116386.
  • 49. Heidari R, Ommati MM. Taurine and the mitochondrion: Applications in the pharmacotherapy of human diseases, Bentham Science. 2023;
  • 50. Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduc Target Ther. 2022; 7(1), 287.
  • 51. Guo YY, Li BY, Pen, WQ, Guo L, Tang, QQ. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J Biol Chem. 2019; 294(41), 15014-15024.
  • 52. Jong CJ, Sandal P, Schaffer SW. The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules. 2021; 26(16),4913.
  • 53. Camargo RL, Batista TM, Ribeiro RA, Branco RC, Da Silva PM, Izumi C, Araujo TR, Greene LJ, Boschero AC, Carneiro EM. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids. 2015; 47(11), 2419-2435.
  • 54. FangY, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep. 2024; 9(11), 3116-313.
  • 55. Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients. 2020; 12(9), 2598.
  • 56. Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos. 2022; 50(4), 425-455.
  • 57. Kp AD, Martin A. Recent insights into the molecular regulators and mechanisms of taurine to modulate lipid metabolism: a review. Crit Rev Food Sci Nutr. 2023; 63(23), 6005-6017.

The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective

Year 2025, Volume: 9 Issue: 2, 136 - 146, 31.08.2025
https://doi.org/10.25048/tudod.1744454

Abstract

Taurine is a sulfur-containing β-amino acid that structurally differs from standard amino acids. It is found in high concentrations
across various tissues of the human body and plays a role in numerous physiological processes, including antioxidant defense, energy
regulation, and modulation of the central nervous system. Globally increasing obesity is accompanied by serious health problems such
as metabolic syndrome, insulin resistance, dyslipidemia, and hyperglycemia. While traditional approaches have regarded adipose tissue
as a passive structure solely involved in lipid storage, it is now recognized as an active endocrine organ. In this context, the biologically
active molecules secreted by adipocytes and their roles in metabolic processes are critically important in the pathogenesis of obesity.
The primary aim of this review article is to systematically evaluate the functional effects of taurine in adipose tissue and the mechanisms
by which it counteracts obesity. Taurine possesses a structure that distinguishes it from typical amino acids and is present in high
concentrations in the body, contributing to various biological functions such as reducing oxidative stress, suppressing inflammation,
and regulating energy metabolism. Studies in animal models have demonstrated that taurine supplementation reduces inflammation
in adipose tissue, increases lipolysis, activates thermogenic pathways, and suppresses appetite via central nervous system mechanisms, thereby preventing the development of obesity. Moreover, findings of low plasma taurine levels in individuals living with obesity and
diabetes suggest that taurine deficiency may disrupt metabolic balance. Although animal and epidemiological studies indicate that
taurine is promising for alleviating metabolic disorders, further advanced research is necessary to fully elucidate its mechanisms and
confirm its efficacy in humans

References

  • 1. Murakami S, Yamori Y. Taurine and longevity—preventive effect of taurine on metabolic syndrome. In: Watson RR, Preedy VR, eds. Bioactive Food as Dietary Interventions for the Aging Population. San Diego, CA: Academic Press; 2013:159-171.
  • 2. De Carvalho FG, Munoz VR, Brandao CF, Simabuco FM, Pavan IC, Nakandakari S C, de Freitas EC. Taurine upregulates insulin signaling and mitochondrial metabolism in vitro but not in adipocytes of obese women. Nutrition. 2022; 93, 111430.
  • 3. Myers MG Jr, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643-651.
  • 4. Shklyaev SS, Melnichenko GA, Volevodz NN, et al. Adiponectin: a pleiotropic hormone with multifaceted roles. Probl Endokrinol (Mosk). 2021;67(6):98-112.
  • 5. Devanoorkar A, Kathariya R, Guttiganur N, Gopalakrishnan D, Bagchi P. Resistin: a potential biomarker for periodontitis influenced diabetes mellitus and diabetes induced periodontitis. Dis Markers. 2014;2014:930206. doi:10.1155/2014/930206
  • 6. Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The role of adipokines in inflammatory mechanisms of obesity. Int J Mol Sci.2022; 23(23), 14982.
  • 7. Murakami, S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci.2017; 186, 80–86.
  • 8. Ahmed K, Choi HN, Yim JE. The impact of taurine on obesity- induced diabetes mellitus: mechanisms underlying its effect. Endocrinology and Metabolism. 2023; 38(5), 482-492.
  • 9. Tiedemann F, Gmelin L. Versuche über die Wege, auf welchen Substanzen aus dem Magen und Darm in das Blut gelangen. Heidelberg, Germany: Akademische Buchhandlung; 1827.
  • 10. Ripps H, Shen, W. taurine: a “very essential” amino acid. Mol Vis. 2012; 18, 2673-2686.
  • 11. Rais N, Ved A, Shadab M, Ahmad R, Shahid M. Taurine, a non-proteinous essential amino acid for human body systems: an overview. Arab Gulf J Sci Res. 2023; 41(1), 48-66.
  • 12. Liu CL, Watson AM, Place AR, Jagus, R. Taurine biosynthesis in a fish liver cell line (ZFL) adapted to a serum-free medium. Marine Drugs. 2017; 15(6), 147.
  • 13. Duan H, Song W, Guo J, Yan W. Taurine: A Source and Application for the Relief of Visual Fatigue. Nutrients. 2023;15(8):1843. Published 2023 Apr 12. doi:10.3390/ nu15081843
  • 14. Park E, Park SY, Dobkin C, Schuller-Levis G. Development of a novel cysteine sulfinic acid decarboxylase knockout mouse: dietary taurine reduces neonatal mortality. J Amino Acids. 2014; 346809.
  • 15. Dinçer S, Karakelle NA. Role of taurine in the central nervous system and importance of dosage. Gazi Med J. 2019;30(2):227- 230.
  • 16. Almohaimeed HM, Almars AI, Alsulaimani F, Basri AM, Althobaiti NA, Albalaw AE, Alsharif I, Abdulmonem WA, Hershan AA, Soliman MH. Investigating the potential neuroprotective benefits of taurine and Dihydrotestosterone and Hydroxyprogesterone levels in SH-SY5Y cells. Front Aging Neurosci. 2024; 16, 1379431.
  • 17. Granum B, Bruzell EM, Hetland RB, Husøy T, Rohloff J, Wicklund T, Steffensen IL. Risk assessment of “other substances”— taurine. Opinion of the Panel on Food Additives, Flavourings, Processing Aids, Materials in Contact with Food and Cosmetics of the Norwegian Scientific Committee for Food Safety. VKM Report. 2015:22.
  • 18. Ozan G, Türközkan N, Bircan FS, Balabanlı B. Effect of taurine on brain energy status and malondialdehyde levels in endotoxemia model. Bozok Med J. 2018;8(1):11-17.
  • 19. Sarışık DÇ, Andre H, Tortu E, Deliceoğlu G. Effect of high doses of taurine ingestion on time to exhaustion running performance. Akdeniz Spor Bilim Derg. 2023;6(2):436-445.
  • 20. Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Spandidos DA, Christodoulou I, Kyriakopoulos AM, Zoumpourlis V. Protective role of taurine against oxidative stress (Review). Mol Med Rep. 2021; 24(2):605.
  • 21. Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants, 2021; 10(12), 1876.
  • 22. Chen C, Xia S, He J, Lu G, Xie Z, Han H. Roles of taurine in cognitive function of physiology, pathologies and toxication. Life Sciences. 2019; 231, 116584.
  • 23. Yüce H, Türkmen NB, Özek DA, Ünüvar S. Investigation of antiproliferative, antimigration, and antioxidant effects of taurine, capsaicin, melatonin, and beta-carotene on L929 healthy cells and MCF-7 breast cancer cells. J Fac Pharm Ankara. 2022;46(1):48-61.
  • 24. Karafakıoğlu YS. Antioksidanlar ve Bir Antioksidan Olarak Taurin. kvj. Mart 2010;3(1):55-61.
  • 25. Merckx C, Paepe BD. The Role of Taurine in Skeletal Muscle Functioning and Its Potential as a Supportive Treatment for Duchenne Muscular Dystrophy. Metabolites. 2022; 12(2), 193.
  • 26. De Luca A, Pierno S, Camerino DC. Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med. 2015;13:243. Published 2015 Jul 25. doi:10.1186/s12967-015- 0610-1
  • 27. Torlak-Koca N, Çelik TÖ. Beneficial effects of taurine treatment on experimental myositis in rats. J Kirikkale Univ Fac Med. 2023;25(3):531-540.
  • 28. Tzang CC, Lin WC, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Insights into the cardiovascular benefits of taurine: a systematic review and meta-analysis. Nut J. 2024; 23(1), 93.
  • 29. Tuzcu Z, Gençoğlu H, Tuzcu M, Orhan C, Ağca CA, Şahin K. Effect of taurine on cardiac tissue antioxidant levels and NF- κB and Nrf2 signaling pathways in diabetic rats. Firat Univ Saglik Bilimleri Vet Derg. 2018;32(2):xx-xx.
  • 30. Demircioğlu Rİ, Usta B, Sert H, Muslu B, Gözdemir M. Taurine is protective against oxidative stress during cold ischemia in the rat kidney. Turk J Med Sci. 2011;41(5):843-849.
  • 31. Shimada K, Jong CJ, Takahashi K, Schaffer SW. Role of ROS production and turnover in the antioxidant activity of taurine. Adv Exp Med Biol. 2015; 803;581-596.
  • 32. Schaffer S, Kim HW. Effects and mechanisms of taurine as a therapeutic agent. Biomol Ther. 2018; 26(3), 225-241.
  • 33. Ito T, Miyazaki N, Schaffer S, Azuma J. Potential anti-aging role of taurine via proper protein folding: a study from taurine transporter knockout mouse. Adv Exp Med Biol, 2015; (803), 481-487
  • 34. Ahmed K, Choi HN, Park JS, Kim YG, Bae MK, Yim JE.Taurine supplementation alters gene expression profiles in white adipose tissue of obese C57BL/6J mice: Inflammation and lipid synthesis perspectives. Heliyon. 2024; 10(1), e23288.
  • 35. Murakami S. Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res. 2015;59(7):1353-1363. doi:10.1002/ mnfr.201500067
  • 36. Alimohamadi H, Bell MK, Halpain S, Rangamani P. Mechanical Principles Governing the Shapes of Dendritic Spines. Front Physiol. 2021;12:657074. Published 2021 Jun 16. doi:10.3389/ fphys.2021.657074
  • 37. Bae M, Ahmed, K, Yim JE. Beneficial effects of taurine on metabolic parameters in animals and humans. J Obes Metab Syndr. 2022; 31(2), 134-146.
  • 38. Kim KS, Jang MJ, Fang S, Yoon SG, Kim IY, Seong JK, Yang HI, Hahm DH. Anti‐obesity effect of taurine through inhibition of adipogenesis in white fat tissue but not in brown fat tissue in a high‐fat diet‐induced obese mouse model. Amino Acids. 2019; 51(2), 245–254.
  • 39. Kim SH, Yum HW, Kim SH, Kim W, Kim SJ, Kim C, Surh, YJ. Protective effects of taurine chloramine on experimentally induced colitis: NFκB, STAT3, and Nrf2 as potential targets. Antioxidants. 2021; 10(3), 479.
  • 40. Nardelli TR, Ribeiro RA, Balbo SL, et al. Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids. 2011;41(4):901-908. doi:10.1007/s00726-010-0789-7
  • 41. Murakami S. The physiological and pathophysiological roles of taurine in adipose tissue in relation to obesity. Life Sci. 2017;186:80-86. doi:10.1016/j.lfs.2017.08.008
  • 42. Lihn AS, Pedersen SB, Richelsen B. Adiponectin: action, regulation and association to insulin sensitivity. Obes Rev. 2005;6(1):13-21. doi:10.1111/j.1467-789X.2005.00159.x
  • 43. Ueki I, Stipanuk MH. 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/ cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr. 2009;139(2):207-214. doi:10.3945/ jn.108.099085.
  • 44. Sagara M, Murakami S, Mizushima S, et al. Taurine in 24-h Urine Samples Is Inversely Related to Cardiovascular Risks of Middle Aged Subjects in 50 Populations of the World. Adv Exp Med Biol. 2015;803:623-636. doi:10.1007/978-3-319- 15126-7_50
  • 45. Yamori Y, Taguchi T, Mori H, Mori M. Low cardiovascular risks in the middle aged males and females excreting greater 24-hour urinary taurine and magnesium in 41 WHO-CARDIAC study populations in the world. J Biomed Sci. 2010;17 Suppl 1(Suppl 1):S21. Published 2010 Aug 24. doi:10.1186/1423- 0127-17-S1-S21
  • 46. Tzang CC, Chi LY, Lin LH, Lin TY, Chang KV, Wu WT, Özçakar L. Taurine reduces the risk for metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. Nutr Diabetes. 2024;14(1):29.
  • 47. De Carvalho FG, Batitucci G, Abud GF, de Freitas EC. Taurine and Exercise: Synergistic Effects on Adipose Tissue Metabolism and Inflammatory Process in Obesity. Adv Exp Med Biol. 2022; 1370, 279-289.
  • 48. Wang L, Xie Z, Wu M, Chen Y, Wang X, Li X, Liu F. The role of taurine through endoplasmic reticulum in physiology and pathology. Biochem Pharmacol. 2024; 116386.
  • 49. Heidari R, Ommati MM. Taurine and the mitochondrion: Applications in the pharmacotherapy of human diseases, Bentham Science. 2023;
  • 50. Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduc Target Ther. 2022; 7(1), 287.
  • 51. Guo YY, Li BY, Pen, WQ, Guo L, Tang, QQ. Taurine-mediated browning of white adipose tissue is involved in its anti-obesity effect in mice. J Biol Chem. 2019; 294(41), 15014-15024.
  • 52. Jong CJ, Sandal P, Schaffer SW. The Role of Taurine in Mitochondria Health: More Than Just an Antioxidant. Molecules. 2021; 26(16),4913.
  • 53. Camargo RL, Batista TM, Ribeiro RA, Branco RC, Da Silva PM, Izumi C, Araujo TR, Greene LJ, Boschero AC, Carneiro EM. Taurine supplementation preserves hypothalamic leptin action in normal and protein-restricted mice fed on a high-fat diet. Amino Acids. 2015; 47(11), 2419-2435.
  • 54. FangY, Qin M, Zheng Q, Wang K, Han X, Yang Q, Sang X, Cao G. Role of Bile Acid Receptors in the Development and Function of Diabetic Nephropathy. Kidney Int Rep. 2024; 9(11), 3116-313.
  • 55. Holter MM, Chirikjian MK, Govani VN, Cummings BP. TGR5 Signaling in Hepatic Metabolic Health. Nutrients. 2020; 12(9), 2598.
  • 56. Choudhuri S, Klaassen CD. Molecular Regulation of Bile Acid Homeostasis. Drug Metab Dispos. 2022; 50(4), 425-455.
  • 57. Kp AD, Martin A. Recent insights into the molecular regulators and mechanisms of taurine to modulate lipid metabolism: a review. Crit Rev Food Sci Nutr. 2023; 63(23), 6005-6017.
There are 57 citations in total.

Details

Primary Language English
Subjects Nutritional Science, Food Nutritional Balance, Clinical Nutrition, Nutrition and Dietetics (Other)
Journal Section Collection
Authors

İrem Dağoğlu Polat 0000-0003-4110-4466

Özlem Baran 0000-0003-3868-4850

Publication Date August 31, 2025
Submission Date July 17, 2025
Acceptance Date August 8, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Dağoğlu Polat, İ., & Baran, Ö. (2025). The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective. Turkish Journal of Diabetes and Obesity, 9(2), 136-146. https://doi.org/10.25048/tudod.1744454
AMA Dağoğlu Polat İ, Baran Ö. The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective. Turk J Diab Obes. August 2025;9(2):136-146. doi:10.25048/tudod.1744454
Chicago Dağoğlu Polat, İrem, and Özlem Baran. “The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective”. Turkish Journal of Diabetes and Obesity 9, no. 2 (August 2025): 136-46. https://doi.org/10.25048/tudod.1744454.
EndNote Dağoğlu Polat İ, Baran Ö (August 1, 2025) The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective. Turkish Journal of Diabetes and Obesity 9 2 136–146.
IEEE İ. Dağoğlu Polat and Ö. Baran, “The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective”, Turk J Diab Obes, vol. 9, no. 2, pp. 136–146, 2025, doi: 10.25048/tudod.1744454.
ISNAD Dağoğlu Polat, İrem - Baran, Özlem. “The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective”. Turkish Journal of Diabetes and Obesity 9/2 (August2025), 136-146. https://doi.org/10.25048/tudod.1744454.
JAMA Dağoğlu Polat İ, Baran Ö. The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective. Turk J Diab Obes. 2025;9:136–146.
MLA Dağoğlu Polat, İrem and Özlem Baran. “The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective”. Turkish Journal of Diabetes and Obesity, vol. 9, no. 2, 2025, pp. 136-4, doi:10.25048/tudod.1744454.
Vancouver Dağoğlu Polat İ, Baran Ö. The Effects of Taurine on Energy Homeostasis and Health: A Nutritional Perspective. Turk J Diab Obes. 2025;9(2):136-4.

Turkish Journal of Diabetes and Obesity (Turk J Diab Obes) is a scientific publication of Zonguldak Bulent Ecevit University Obesity and Diabetes Research and Application Center.

A Collaboration Protocol was signed between the Turkish Obesity Research Association and Zonguldak Bülent Ecevit University by taking an important step from the Turkish Journal of Diabetes and Obesity. As the Turkish Journal of Diabetes and Obesity, we are proud to open the doors of a new era in scientific publishing. With the collaboration of the Turkish Obesity Research Association and Zonguldak Bülent Ecevit University, our journal will now serve as a joint publication platform.

This is a refereed journal, which is published in printed and electronic forms. It aims at achieving free knowledge to the related national and international organizations and individuals.

This journal is published annually three times (in April, August and December).

The publication language of the journal is Turkish and English.