Assessing The Relationship Between Color Change and Tensile Strength In Thermoplastic Polyolefin Outer Sheaths of Low-voltage Power Cables
Year 2024,
Volume: 25 Issue: 1, 11 - 19
Metin Yurtsever
,
Avşin Öztaş
,
Reşat Mutlu
Abstract
Power cables used outdoors age prematurely due to ultraviolet radiation. Their ampacity should be decreased accordingly to take a good performance. The mechanical strength of the cables may decrease and the color of the outer sheath of cable insulation changes when exposed to outdoor UV radiation. It is of great concern to know how the elongation strength of a cable varies with the exposure time to prevent cable break. To evaluate their UV resistance, UV chamber tests are performed. The determination of the color of the cable insulator is also an important part of the test. In this study, Thermoplastic Polyolefin (TPO) insulation to be used in the outer sheath of low-voltage power cables is aged in a Q-SUN Xenon light test chamber. 240-, 480-, and 720-hour test durations are chosen in the experiments. All elongation at break tests are made with a Zwick/Roell Z010 Tensile Tester and a gray scale is used for assessing the color change. It has been found that the color change of Thermoplastic Polyolefin does not reflect the elongation at break and tensile strength value changes much and the elongation at break value of Thermoplastic polyolefin is not a monotonous function of UV exposure time.
Ethical Statement
The authors declared no conflicts of interest concerning the research, authorship, and/or publication of this article.
Supporting Institution
Ünika Üniversal Kablo Sanayi ve Tic. A.Ş.
Thanks
This study has been supported through the project UPN-2206 funded by the research and development center of Ünika Üniversal Kablo Sanayi ve Tic. A.Ş. The researchers are thankful to Kaan Önder and Fatih Yerişenoglu for their assistance.
References
- Alghamdi, A. S., & Desuqi, R. K. (2020). A study of
expected lifetime of XLPE insulation cables
working at elevated temperatures by applying
accelerated thermal ageing. Heliyon, 6(1).
- Amin, S., & Amin, M. (2011). Thermoplastic
elastomeric (TPE) materials and their use in
outdoor electrical insulation. Rev. Adv. Mater.
Sci, 29(1), 15-30.
- Ammala, A., Hill, A. J., Meakin, P., Pas, S. J., &
Turney, T. W. (2002). Degradation studies of
polyolefins incorporating transparent
nanoparticulate zinc oxide UV
stabilizers. Journal of Nanoparticle
Research, 4(1), 167-174.
- Arora, R., & Tripathi, V. (2004, September). Effect of
ultra violet irradiation on low voltage cable
insulation. In Conference Record of the 2004
IEEE International Symposium on Electrical
Insulation (pp. 358-361). IEEE.
- Bide, M. (2010). Colour measurement and fastness
assessment. In Colour Measurement (pp. 196-
217). Woodhead Publishing.
- Choudhary, M., Shafiq, M., Kiitam, I., Hussain, A.,
Palu, I., & Taklaja, P. (2022). A review of aging
models for electrical insulation in power
cables. Energies, 15(9), 3408.
- Dang, C., Parpal, J. L., & Crine, J. P. (1996). Electrical
aging of extruded dielectric cables: review of
existing theories and data. IEEE transactions on
dielectrics and electrical insulation, 3(2), 237-
247.
- Geussens, T. (2021). Thermoplastics for cables. The
Global Cable Industry: Materials, Markets,
Products, 21-55.
- Grause, G., Chien, M. F., & Inoue, C. (2020). Changes
during the weathering of polyolefins. Polymer
degradation and stability, 181, 109364.
- Guillet, J. E. (1980). Studies of the mechanism of
polyolefin photodegradation. Pure and Applied
Chemistry 19th, 52(2), 285-294.
- Harris, R. M. (1999). Coloring technology for plastics.
William Andrew.
- Hedir, A., & Moudoud, M. (2016). Effect of ultraviolet
radiations on medium and high voltage cables
insulation properties. International Journal of
Engineering and Technology, 8(5), 2308-2317.
- Hedir, A., Bechouche, A., Moudoud, M., Teguar, M.,
Lamrous, O., & Rondot, S. (2020).
- Experimental and predicted XLPE cable insulation properties
under UVRadiation. Turkish Journal of Electrical
Engineering and Computer Sciences, 28(3),
1763-1775.
- İlhan, S., & Özdemir, A. (2004, December) Elektriksel
Yalıtım Sistemlerinde Yaşlanma, Yaşlanma
Modelleri Ve İstatistiksel Veri Analizi, Elektrik-Elektronik Ve Bilgisayar Mühendisliği
Sempozyumu ELECO 2004 (ELECO 2004).
- International Standard. (2011). IEC 60811- 501.
Electric and Optical Fibre Cables – Test Methods
for Non-metallic Materials - Part 501:
Mechanical Tests – Tests for Determining the
Mechanical Properties of Insulating and
Sheathing Compounds, IEC Central Office.
https://webstore.iec.ch/publication/3551.
Retrieved 03.02.2021.
- Ismail, N. H., & Mustapha, M. (2018). A review of
thermoplastic elastomeric nanocomposites for
high voltage insulation applications. Polymer
Engineering & Science, 58(S1), E36-E63.
- Karhan, M. (2021). Dielektrik Malzemelerin Yüzeyleri
için Islanabilirlik ve Buharlaşma Hızının
Analizine Yönelik Ayrık Kosinüs Dönüşümü
Tabanlı Bir Yaklaşım. Gazi Mühendislik Bilimleri
Dergisi, 7(2), 160-168.
- Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021, March).
Stability Test on Power Supply to the XenonLamp of Solar Simulator. In Journal of Physics:
Conference Series (Vol. 1820, No. 1, p. 012142).
IOP Publishing.
- Lu, T., Solis-Ramos, E., Yi, Y., & Kumosa, M. (2018).
UV degradation model for polymers and polymer
matrix composites. Polymer degradation and
stability, 154, 203-210.
- Pandey, K. K., & Vuorinen, T. (2008). Comparative
study of photodegradation of wood by a UV laser
and a xenon light source. Polymer Degradation
and Stability, 93(12), 2138-2146.
- Q-SUN Xenon light test chamber Model Xe-1 /
https://www.q-lab.com/tr-tr/products/q-sunxenon-arc-test-chambers/, Retrieved 03.02.2021.
Shwehdi, M. H., Morsy, M. A., & Abugurain, A. (2003,
October). Thermal aging tests on XLPE and PVC
cable insulation materials of Saudi Arabia.
In 2003 Annual Report Conference on Electrical
Insulation and Dielectric Phenomena (pp. 176-
180). IEEE.
- Standard, A. (2005). ASTM Standard G155 standard
practice for operating xenon arc light Apparatus
for exposure of non-metallic materials. ASTM
International.
https://cdn.standards.iteh.ai/samples/42608/1e37
cd07634b4c579d12b3b1d4ad376a/ASTM-G155-
05.pdf. Retrieved 03.02.2021.
- Standard, IEEE. (2021). IEEE 1580-2021. IEEE
Recommended Practice for Marine Cable for Use
on Shipboard and Fixed or Floating Facilities.
IEEE. https://standards.ieee.org/ieee/1580/7228/,
Retrieved 03.02.2021.
- Standard, UL. (2021). UL 2556 UL Standard for Safety
Wire and Cable Test Methods, Underwriters
Laboratories Inc. (UL), 5th Edition.
https://global.ihs.com/doc_detail.cfm?document_
name=UL%202556&item_s_key=00467382,
Retrieved 03.02.2021.
- Tan, R. K., Önder, K., Yerişenoğlu, F., & Mutlu, R.
(2023). Usage of an Excel Spreadsheet for a
Thermal Endurance Test Report. European
Journal of Engineering and Applied
Sciences, 6(2), 91-97.
- Thue, W. A. (2017). Electrical power cable
engineering (Vol. 1). Crc Press.
Wypych, G. (Ed.). (2020). Handbook of UV
degradation and stabilization. Elsevier.
- Zhu, J., Jin, L., & Li, C. (2023, October). Research and
design of a wireless calibration device for
measuring irradiance in solar aging test chambers.
In Fifth International Conference on Artificial
Intelligence and Computer Science (AICS
2023) (Vol. 12803, pp. 573-577). SPIE.
Alçak Gerilim Güç Kablolarının Dış Kılıfında Kullanılan Termoplastik Poliolefinin Renk Değişimi ile Gerilme Direnci Arasındaki İlişkinin Değerlendirilmesi
Year 2024,
Volume: 25 Issue: 1, 11 - 19
Metin Yurtsever
,
Avşin Öztaş
,
Reşat Mutlu
Abstract
Açık havada kullanılan güç kabloları morötesi radyasyon nedeniyle erken yaşlanır. İyi bir performans alabilmek için kabloların akım taşıma kapasitelerinin buna göre azaltılması gerekir. Dış mekânda mor ötesi ışınlarına maruz kaldığında kabloların mekanik mukavemeti azalabilir ve kablonun dış kablo kılıfının rengi değişir. Kablo kopmasını önlemek için bir kablonun uzama mukavemetinin maruz kalma süresine göre nasıl değiştiğini bilmek büyük önem taşımaktadır. UV dirençlerini değerlendirmek için UV odası testleri yapılır. Kablonun yalıtkanının renginin belirlenmesi de testin bir parçasıdır. Bu çalışmada alçak gerilim güç kablolarının kılıfında kullanılacak Termoplastik Poliolefin (TPO) yalıtkanının Q-SUN Xenon ışık test odasında yaşlandırılması yapılmıştır. Deneylerde 240, 480 ve 720 saatlik test süreleri seçilmiştir. Kopma esnasındaki uzama için tüm testler Zwick/Roell Z010 Çekme Test Cihazı ile yapılmıştır ve renk değişimini değerlendirmek için gri skala kullanılmıştır. Termoplastik Poliolefin’in renk değişiminin kopma uzamasını ve gerilme direncinin değişimini fazla yansıtmadığı ve Kopma uzamasının morötesi maruziyet zamanının monoton bir fonksiyonu olmadığı ve tespit edilmiştir.
References
- Alghamdi, A. S., & Desuqi, R. K. (2020). A study of
expected lifetime of XLPE insulation cables
working at elevated temperatures by applying
accelerated thermal ageing. Heliyon, 6(1).
- Amin, S., & Amin, M. (2011). Thermoplastic
elastomeric (TPE) materials and their use in
outdoor electrical insulation. Rev. Adv. Mater.
Sci, 29(1), 15-30.
- Ammala, A., Hill, A. J., Meakin, P., Pas, S. J., &
Turney, T. W. (2002). Degradation studies of
polyolefins incorporating transparent
nanoparticulate zinc oxide UV
stabilizers. Journal of Nanoparticle
Research, 4(1), 167-174.
- Arora, R., & Tripathi, V. (2004, September). Effect of
ultra violet irradiation on low voltage cable
insulation. In Conference Record of the 2004
IEEE International Symposium on Electrical
Insulation (pp. 358-361). IEEE.
- Bide, M. (2010). Colour measurement and fastness
assessment. In Colour Measurement (pp. 196-
217). Woodhead Publishing.
- Choudhary, M., Shafiq, M., Kiitam, I., Hussain, A.,
Palu, I., & Taklaja, P. (2022). A review of aging
models for electrical insulation in power
cables. Energies, 15(9), 3408.
- Dang, C., Parpal, J. L., & Crine, J. P. (1996). Electrical
aging of extruded dielectric cables: review of
existing theories and data. IEEE transactions on
dielectrics and electrical insulation, 3(2), 237-
247.
- Geussens, T. (2021). Thermoplastics for cables. The
Global Cable Industry: Materials, Markets,
Products, 21-55.
- Grause, G., Chien, M. F., & Inoue, C. (2020). Changes
during the weathering of polyolefins. Polymer
degradation and stability, 181, 109364.
- Guillet, J. E. (1980). Studies of the mechanism of
polyolefin photodegradation. Pure and Applied
Chemistry 19th, 52(2), 285-294.
- Harris, R. M. (1999). Coloring technology for plastics.
William Andrew.
- Hedir, A., & Moudoud, M. (2016). Effect of ultraviolet
radiations on medium and high voltage cables
insulation properties. International Journal of
Engineering and Technology, 8(5), 2308-2317.
- Hedir, A., Bechouche, A., Moudoud, M., Teguar, M.,
Lamrous, O., & Rondot, S. (2020).
- Experimental and predicted XLPE cable insulation properties
under UVRadiation. Turkish Journal of Electrical
Engineering and Computer Sciences, 28(3),
1763-1775.
- İlhan, S., & Özdemir, A. (2004, December) Elektriksel
Yalıtım Sistemlerinde Yaşlanma, Yaşlanma
Modelleri Ve İstatistiksel Veri Analizi, Elektrik-Elektronik Ve Bilgisayar Mühendisliği
Sempozyumu ELECO 2004 (ELECO 2004).
- International Standard. (2011). IEC 60811- 501.
Electric and Optical Fibre Cables – Test Methods
for Non-metallic Materials - Part 501:
Mechanical Tests – Tests for Determining the
Mechanical Properties of Insulating and
Sheathing Compounds, IEC Central Office.
https://webstore.iec.ch/publication/3551.
Retrieved 03.02.2021.
- Ismail, N. H., & Mustapha, M. (2018). A review of
thermoplastic elastomeric nanocomposites for
high voltage insulation applications. Polymer
Engineering & Science, 58(S1), E36-E63.
- Karhan, M. (2021). Dielektrik Malzemelerin Yüzeyleri
için Islanabilirlik ve Buharlaşma Hızının
Analizine Yönelik Ayrık Kosinüs Dönüşümü
Tabanlı Bir Yaklaşım. Gazi Mühendislik Bilimleri
Dergisi, 7(2), 160-168.
- Liu, G., Ning, J., Gu, Z., & Wang, Z. (2021, March).
Stability Test on Power Supply to the XenonLamp of Solar Simulator. In Journal of Physics:
Conference Series (Vol. 1820, No. 1, p. 012142).
IOP Publishing.
- Lu, T., Solis-Ramos, E., Yi, Y., & Kumosa, M. (2018).
UV degradation model for polymers and polymer
matrix composites. Polymer degradation and
stability, 154, 203-210.
- Pandey, K. K., & Vuorinen, T. (2008). Comparative
study of photodegradation of wood by a UV laser
and a xenon light source. Polymer Degradation
and Stability, 93(12), 2138-2146.
- Q-SUN Xenon light test chamber Model Xe-1 /
https://www.q-lab.com/tr-tr/products/q-sunxenon-arc-test-chambers/, Retrieved 03.02.2021.
Shwehdi, M. H., Morsy, M. A., & Abugurain, A. (2003,
October). Thermal aging tests on XLPE and PVC
cable insulation materials of Saudi Arabia.
In 2003 Annual Report Conference on Electrical
Insulation and Dielectric Phenomena (pp. 176-
180). IEEE.
- Standard, A. (2005). ASTM Standard G155 standard
practice for operating xenon arc light Apparatus
for exposure of non-metallic materials. ASTM
International.
https://cdn.standards.iteh.ai/samples/42608/1e37
cd07634b4c579d12b3b1d4ad376a/ASTM-G155-
05.pdf. Retrieved 03.02.2021.
- Standard, IEEE. (2021). IEEE 1580-2021. IEEE
Recommended Practice for Marine Cable for Use
on Shipboard and Fixed or Floating Facilities.
IEEE. https://standards.ieee.org/ieee/1580/7228/,
Retrieved 03.02.2021.
- Standard, UL. (2021). UL 2556 UL Standard for Safety
Wire and Cable Test Methods, Underwriters
Laboratories Inc. (UL), 5th Edition.
https://global.ihs.com/doc_detail.cfm?document_
name=UL%202556&item_s_key=00467382,
Retrieved 03.02.2021.
- Tan, R. K., Önder, K., Yerişenoğlu, F., & Mutlu, R.
(2023). Usage of an Excel Spreadsheet for a
Thermal Endurance Test Report. European
Journal of Engineering and Applied
Sciences, 6(2), 91-97.
- Thue, W. A. (2017). Electrical power cable
engineering (Vol. 1). Crc Press.
Wypych, G. (Ed.). (2020). Handbook of UV
degradation and stabilization. Elsevier.
- Zhu, J., Jin, L., & Li, C. (2023, October). Research and
design of a wireless calibration device for
measuring irradiance in solar aging test chambers.
In Fifth International Conference on Artificial
Intelligence and Computer Science (AICS
2023) (Vol. 12803, pp. 573-577). SPIE.