Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Sosyal medya etkileşiminin turizm pazarlamasındaki rolünün değerlendirilmesi

Year 2021, Volume 3, Issue 1, 21 - 44, 30.06.2021

Abstract

Günümüzde, bireylerin ve toplulukların içerik paylaştığı, tartıştığı ve işbirliği yaptığı sosyal medya platformları, işletmeler tarafından pazarlama kanalı olarak da kullanılmaktadır. Bu çalışmada Facebook, Instagram ve Twitter’da hesabı bulunan ve tatil pazarlaması yapan 17 seyahat acentesi üzerinden sosyal medya etkileşimlerinin pazarlama performansına etkisi araştırılmıştır. Araştırmada 55.000 den fazla marka hesabını inceleyen SocialBrands’ın metrik verilerinden ve değerlendirme ölçütlerinden yararlanılmıştır. Çalışmada seyahat acentelerinin değerlendirilmesinde kullanılan kriterler; ENTROPİ, CRITIC, STANDART SAPMA ve ORTALAMA AĞIRLIK olmak üzere 4 farklı objektif ağırlıklandırma yöntemi ile ağırlıklandırılmıştır. Çok Kriterli Karar Verme (ÇKKV) yöntemlerinden ise TOPSIS, SAW, MAUT ve ARAS yaklaşımları uygulanarak, seyahat acentelerinin pazarlama performansı sıralamaları belirlenmiştir. Yukarıda yöntemlerle elde edilen farklı sıralamalar bir veri birleştirme yöntemi olan Borda Sayım yöntemi ile birleştirilerek bütünleşik tek bir sıralama elde edilmiştir. Yapılan araştırma sonucunda, sosyal medya pazarlama performansı sıralamasındaki ilk iki alternatifin, sosyal medya etkileşimi yüksek olan Türk Hava Yolları ve Pegasus Airlines işletmeleri olduğu tespit edilmiştir.

References

  • Abrahams, A.S., Jliao, J., Wang, G. A., and Fan, W.(2012). Vehicle defect discovery from social media, Decision Support Systems,54,87-97.
  • Adıgüzel, B., Özaslan , B.Ö., Yıldırım, B.F. (2018). Fortune 500 Türkiye’de Yer Alan Lojistik İşletmelerinin Sosyal Medya Kullanımının Analizi ve Değerlendirilmesi, İşletme Araştırmaları Dergisi, 10 (4), 1321-1341.
  • Aguezzoul A., Pires S. (2016). 3PL Performance Evaluation and Selection: A MCDM Method, Supply Chain Forum: An International Journal Vol 17, 2016 - Issue 2, pages 87-94.
  • Aznar Bellver, J., Cervelló, R.R. and García, G.F. (2011). Spanish savings banks and their future transformation into private capital banks. determining their value by a multicriteria valuation methodology. European Journal of Economics, Finance and Administrative Sciences, 35, 155-164.
  • Castronovo, Cristina and Lei Huang (2012), “Social Media in an Alternative Marketing Communication Model,” Journal of Marketing Development and Competitiveness, 6, 1, 117–34.
  • Chou, W. C., Cheng, Y. P. (2012). A Hybrid Fuzzy MCDM Approach for Evaluating Website Quality of Professional Accounting Firms. Expert Systems with Applications, 39(3), 2783-2793.
  • Deng, H.; Yeh, C.-H.; Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights, Computers and Operations Research 27(10): 963–973.
  • Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: the CRITIC method, Computers and Operations Research 22(7): 763–770.
  • Erp, M. V. and Schomaker, L. (2000). Variants of the borda count method for combining ranked classifier hypotheses. In The Seventh International Workshop On Frontiers In Handwriting Recognition. September, 2000, Amsterdam, 443-452.
  • Hwang, C. L. and Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer Verlag New York 4(2) pp.210 – 230.
  • Hwang, C. L., Lai, Y. J. and Liu, T. Y. (1996). A new approach for multiple objective decision making. Computers and Operational Research 20 pp. 889 - 899.
  • Hooley, Graham J., Gordon E. Greenley, John W. Cadogan, and John Fahy (2005), “The Performance Impact of Marketing Resources,” Journal of Business Research, 58, 1, 18–27.
  • Jahan, A., Mustapha, F., Sapuan, S. M., Ismail, M. Y., & Bahramınasab, M. (2012). A framework for weighting of criteria in ranking stage of material selection process. The International Journal of Advanced Manufacturing Technology, 58(1), 411-420.
  • Kara, T.(2016). Sosyal Medyanın Kaldıraç Etkisi: Türk Sivil Havacılık Endüstrisi Sosyal Medyanın Gücünü Nasıl Kullanıyor?, The Turkish Online Journal of Design, Art and Communication – TOJDAC, January 2016, vol (6):62-73.
  • Karamı, A. and Johansson, R. (2014). “Utilization of Multi Attribute Decision Making Techniques to Integrate Automatic and Manual Ranking of Options”, Journal of Information Science and Engineering, 30: 519-534.
  • Khairul, S. M. and Siahaan, A.P. U.(2016). Decision Support System in Selecting The Appropriate Laptop Using Simple Additive Weighting, December IJRTER 2 12 pp 215-222
  • Kılıç, O. and Çerçioğlu, H. (2016). TCDD İltisak Hatları Projelerinin Değerlendirilmesinde Uzlaşık Çok Ölçütlü Karar Verme Yöntemleri Uygulaması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(1), 211-220.
  • Lansdowne Z.F. ve Woodward B.S. (1996) “Applying the Borda Ranking Method”, Air Force Journal of Logistics, 20(2): 27-29.
  • Li, X., Wang, K., Liu, L., Xin, J., Yang, H., & Gao, C. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines, Procedia Engineering, (26), 2085-2091.
  • Muruganantham, A., Gandhi, M. (2016). Discovering and Ranking Influential Users in Social Media Networks Using Multi-Criteria Decision Making (MCDM) Methods, Indian Journal of Science and Technology, Vol 9(32).
  • Nielsen. (2012). State of the media: The social media report 2012. Retrieved April 8, 2014, from http://www.nielsen.com/content/dam/corporate/us/en/reports-downloads/2012.
  • Rathore, A. , Kar, A., Ilavarasan, P.,V., (2017). Social Media Analytics: Literature Review and Directions for Future Research, The Institute for Operations Research and the Management Sciences, Volume 14, Issue 4, 227-300.
  • Saifullah, S. (2019). Fuzzy-AHP approach using Normalized Decision Matrix on Tourism Trend Ranking based-on Social Media, Jurnal Informatika 13(2):16-23.
  • Saravanakumar, M., SuganthaLakshmi.T., Social Media Marketing. Life Sci J 2012;9(4):4444-4451]. (ISSN: 1097- 8135).
  • Shariati, S., Yazdani-Chamzini, A., Salsani, A., Tamosaitiene, J. ve Propasing, (2014). A New Model For Waste Dump Site Selection: Case Study Of Ayerma Phosphate Mine. Inzinerine Ekonomika Engineering Ecnomics, 25(4), S. (410-419).
  • Stević I , Stević S., Breda, Z. (2019) Application of MCDM Methods to Tourism Evaluation of Cultural Sites, Cultural Urban Heritage: Development, Learning and Landscape Strategies (pp.357-381), Chapter: 24.
  • Turskis, Z., & Zavadskas, E. K. (2010). A novel method for multiple criteria analysis: Grey Additive Ratio Assessment (ARAS-G) method. Informatica, 21(4), 597-610.
  • Tuten, T.L, (2021). Social Media Marketing, 4th Edition, Kindle Edition, pp.17-19.
  • Wang, J. J., Jing, Y. Y., Zhang, C. F., Zhao, J. H. (2009). Review on multi-criteria decision aid in sustainable energy decision-making, Renewable and Sustainable Energy Reviews 13(9): 2263–2278.
  • Wang, T. C., Lee, H. D. (2009), “Developing A Fuzzy TOPSIS Approach Based on Subjective Weights and Objective Weights”, Expert Systems with Applications, 36, 8980–8985.
  • Wang, Y. M. and Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, Volume, 51(1–2), 1–12.
  • Wu, J., Sun, J., Liang, L. ve Zha, Y. (2011). Determination of weights for ultimate cross efficiency using shannon Entropy. Expert Systems with Applications, 38(5), 5162-5165.
  • Wu, W.W. (2011) “Beyond Travel & Tourism competitiveness ranking using DEA, GST, ANN and Borda count”, Expert Systems with Applications, 38: 12974-12982.
  • Yoon, K., (1987). A reconciliation among discrete compromise situations, 6(2) pp. 277 – 286
  • Zhang, H., Gu, C., Gu, L. and Zhang, Y. (2011). “The Evaluation Of Tourism Destination Competitiveness by Topsis & Information Entropy - A Case In The Yangtze River Delta Of China”, Tourism Management, 32: 443-451.
  • Zhu, H. Ou, C.X.J., Van den Heuvel, W.J.A.M. and Liu, H. (2017). Privacy calculus and its utility for personalization services in ecommerce: An analysis of consumer decision-making, Information & Management, 54, 427–437.
  • Zietsman J. Rilett L.R. and Kim S.J., (2006), “Transportation Corridor Decision Making with Multi-Attribute Utility Theory”, International Journal Management and Decision Making, 7 (2-3), 254-266.

Assesing the role of social media interaction in tourism marketing

Year 2021, Volume 3, Issue 1, 21 - 44, 30.06.2021

Abstract

References

  • Abrahams, A.S., Jliao, J., Wang, G. A., and Fan, W.(2012). Vehicle defect discovery from social media, Decision Support Systems,54,87-97.
  • Adıgüzel, B., Özaslan , B.Ö., Yıldırım, B.F. (2018). Fortune 500 Türkiye’de Yer Alan Lojistik İşletmelerinin Sosyal Medya Kullanımının Analizi ve Değerlendirilmesi, İşletme Araştırmaları Dergisi, 10 (4), 1321-1341.
  • Aguezzoul A., Pires S. (2016). 3PL Performance Evaluation and Selection: A MCDM Method, Supply Chain Forum: An International Journal Vol 17, 2016 - Issue 2, pages 87-94.
  • Aznar Bellver, J., Cervelló, R.R. and García, G.F. (2011). Spanish savings banks and their future transformation into private capital banks. determining their value by a multicriteria valuation methodology. European Journal of Economics, Finance and Administrative Sciences, 35, 155-164.
  • Castronovo, Cristina and Lei Huang (2012), “Social Media in an Alternative Marketing Communication Model,” Journal of Marketing Development and Competitiveness, 6, 1, 117–34.
  • Chou, W. C., Cheng, Y. P. (2012). A Hybrid Fuzzy MCDM Approach for Evaluating Website Quality of Professional Accounting Firms. Expert Systems with Applications, 39(3), 2783-2793.
  • Deng, H.; Yeh, C.-H.; Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights, Computers and Operations Research 27(10): 963–973.
  • Diakoulaki, D.; Mavrotas, G.; Papayannakis, L. (1995). Determining objective weights in multiple criteria problems: the CRITIC method, Computers and Operations Research 22(7): 763–770.
  • Erp, M. V. and Schomaker, L. (2000). Variants of the borda count method for combining ranked classifier hypotheses. In The Seventh International Workshop On Frontiers In Handwriting Recognition. September, 2000, Amsterdam, 443-452.
  • Hwang, C. L. and Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Springer Verlag New York 4(2) pp.210 – 230.
  • Hwang, C. L., Lai, Y. J. and Liu, T. Y. (1996). A new approach for multiple objective decision making. Computers and Operational Research 20 pp. 889 - 899.
  • Hooley, Graham J., Gordon E. Greenley, John W. Cadogan, and John Fahy (2005), “The Performance Impact of Marketing Resources,” Journal of Business Research, 58, 1, 18–27.
  • Jahan, A., Mustapha, F., Sapuan, S. M., Ismail, M. Y., & Bahramınasab, M. (2012). A framework for weighting of criteria in ranking stage of material selection process. The International Journal of Advanced Manufacturing Technology, 58(1), 411-420.
  • Kara, T.(2016). Sosyal Medyanın Kaldıraç Etkisi: Türk Sivil Havacılık Endüstrisi Sosyal Medyanın Gücünü Nasıl Kullanıyor?, The Turkish Online Journal of Design, Art and Communication – TOJDAC, January 2016, vol (6):62-73.
  • Karamı, A. and Johansson, R. (2014). “Utilization of Multi Attribute Decision Making Techniques to Integrate Automatic and Manual Ranking of Options”, Journal of Information Science and Engineering, 30: 519-534.
  • Khairul, S. M. and Siahaan, A.P. U.(2016). Decision Support System in Selecting The Appropriate Laptop Using Simple Additive Weighting, December IJRTER 2 12 pp 215-222
  • Kılıç, O. and Çerçioğlu, H. (2016). TCDD İltisak Hatları Projelerinin Değerlendirilmesinde Uzlaşık Çok Ölçütlü Karar Verme Yöntemleri Uygulaması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 31(1), 211-220.
  • Lansdowne Z.F. ve Woodward B.S. (1996) “Applying the Borda Ranking Method”, Air Force Journal of Logistics, 20(2): 27-29.
  • Li, X., Wang, K., Liu, L., Xin, J., Yang, H., & Gao, C. (2011). Application of the entropy weight and TOPSIS method in safety evaluation of coal mines, Procedia Engineering, (26), 2085-2091.
  • Muruganantham, A., Gandhi, M. (2016). Discovering and Ranking Influential Users in Social Media Networks Using Multi-Criteria Decision Making (MCDM) Methods, Indian Journal of Science and Technology, Vol 9(32).
  • Nielsen. (2012). State of the media: The social media report 2012. Retrieved April 8, 2014, from http://www.nielsen.com/content/dam/corporate/us/en/reports-downloads/2012.
  • Rathore, A. , Kar, A., Ilavarasan, P.,V., (2017). Social Media Analytics: Literature Review and Directions for Future Research, The Institute for Operations Research and the Management Sciences, Volume 14, Issue 4, 227-300.
  • Saifullah, S. (2019). Fuzzy-AHP approach using Normalized Decision Matrix on Tourism Trend Ranking based-on Social Media, Jurnal Informatika 13(2):16-23.
  • Saravanakumar, M., SuganthaLakshmi.T., Social Media Marketing. Life Sci J 2012;9(4):4444-4451]. (ISSN: 1097- 8135).
  • Shariati, S., Yazdani-Chamzini, A., Salsani, A., Tamosaitiene, J. ve Propasing, (2014). A New Model For Waste Dump Site Selection: Case Study Of Ayerma Phosphate Mine. Inzinerine Ekonomika Engineering Ecnomics, 25(4), S. (410-419).
  • Stević I , Stević S., Breda, Z. (2019) Application of MCDM Methods to Tourism Evaluation of Cultural Sites, Cultural Urban Heritage: Development, Learning and Landscape Strategies (pp.357-381), Chapter: 24.
  • Turskis, Z., & Zavadskas, E. K. (2010). A novel method for multiple criteria analysis: Grey Additive Ratio Assessment (ARAS-G) method. Informatica, 21(4), 597-610.
  • Tuten, T.L, (2021). Social Media Marketing, 4th Edition, Kindle Edition, pp.17-19.
  • Wang, J. J., Jing, Y. Y., Zhang, C. F., Zhao, J. H. (2009). Review on multi-criteria decision aid in sustainable energy decision-making, Renewable and Sustainable Energy Reviews 13(9): 2263–2278.
  • Wang, T. C., Lee, H. D. (2009), “Developing A Fuzzy TOPSIS Approach Based on Subjective Weights and Objective Weights”, Expert Systems with Applications, 36, 8980–8985.
  • Wang, Y. M. and Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, Volume, 51(1–2), 1–12.
  • Wu, J., Sun, J., Liang, L. ve Zha, Y. (2011). Determination of weights for ultimate cross efficiency using shannon Entropy. Expert Systems with Applications, 38(5), 5162-5165.
  • Wu, W.W. (2011) “Beyond Travel & Tourism competitiveness ranking using DEA, GST, ANN and Borda count”, Expert Systems with Applications, 38: 12974-12982.
  • Yoon, K., (1987). A reconciliation among discrete compromise situations, 6(2) pp. 277 – 286
  • Zhang, H., Gu, C., Gu, L. and Zhang, Y. (2011). “The Evaluation Of Tourism Destination Competitiveness by Topsis & Information Entropy - A Case In The Yangtze River Delta Of China”, Tourism Management, 32: 443-451.
  • Zhu, H. Ou, C.X.J., Van den Heuvel, W.J.A.M. and Liu, H. (2017). Privacy calculus and its utility for personalization services in ecommerce: An analysis of consumer decision-making, Information & Management, 54, 427–437.
  • Zietsman J. Rilett L.R. and Kim S.J., (2006), “Transportation Corridor Decision Making with Multi-Attribute Utility Theory”, International Journal Management and Decision Making, 7 (2-3), 254-266.

Details

Primary Language Turkish
Subjects Hospitality Leisure Sport and Tourism, Management
Journal Section Research Articles
Authors

Sertaç CERRAHOĞLU (Primary Author)
0000-0003-3474-0624
Türkiye

Publication Date June 30, 2021
Published in Issue Year 2021, Volume 3, Issue 1

Cite

APA Cerrahoğlu, S. (2021). Sosyal medya etkileşiminin turizm pazarlamasındaki rolünün değerlendirilmesi . Turizm Ekonomi ve İşletme Araştırmaları Dergisi , 3 (1) , 21-44 . Retrieved from https://dergipark.org.tr/en/pub/turek/issue/63403/912859