Research Article
BibTex RIS Cite
Year 2022, Volume: 4 Issue: 1, 25 - 28, 30.06.2022
https://doi.org/10.53663/turjfas.1126574

Abstract

References

  • Alonso-Salces, R.M., Cugnata, N.M., Guaspari, E., Pellegrini, M.C., Aubone, I., De Piano, F.G., Antunez, K., & Fuselli, S.R. (2017). Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: a review. Apidologie, 48, 387-400. https://doi.org/10.1007/s13592-016-0483-1
  • Arredondo D., Castelli, L., Porrini, M.P., Garrido, P.M., Eguaras, M.J., Zunino, P., & Antúnez, K. (2017). Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Beneficial Microbes, 9(2), 279-290. https://doi.org/10.3920/BM2017.0075
  • Chatzisymeon, E., Droumpali, A., Mantzavinos, D., & Venieri, D. (2011). Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method. Photochemical and Photobiological Sciences, 10, 389-395. https://doi.org/10.1039/c0pp00161a
  • De Graaf, D.C., Alippi, A.M., Antúnez, K., Aronstein, K.A., Budge, G.E., De Koker, D., De Smet, L., Dingman, D.W., Evans, J.D., Foster, L.J., Funfhaus, A., Garcia-Gonzalez, E., Gregorc, A., Human, H., Murray, K.D., Nguyen, B.K., Poppinga, L., Spivak, M., VanEngelsdorp, D., Wilkins, S., & Genersch, E. (2013). Standard methods for American foulbrood research. Journal of Apicultural Research, 52(1), 1-27. https://doi.org/10.3896/IBRA.1.52.1.11
  • De Guzman, Z.M., Cervancia, C.R., Dimasuay, K.G., Tolentino, M.M., Abrera, G.B., & Cobar, M.L. (2011). Radiation inacti¬vation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays. Appl Radiation and Isotopes, 69, 1374-1379. https://doi.org/10.1016/j.apradiso.2011.05.032
  • Del Hoyo, M., Basualdo, M., Torres, J., & Bedascarrasbure, E. (1998). Use of DHT-equipment for disinfection of AFB-contaminated beehive materials in Argentina. American Bee Journal, 138, 738-740.
  • Dobbelaere. W., De Graaf D.C., Reybroeck, W., Desmedt, E., Peeters, J.E., & Jacobs. F.J. (2001). Disinfection of wooden structures contaminated with Paenibacillus larvae subsp. larvae spores. Journal of Applied Microbiology, 91, 212-216. https://doi.org/10.1046/j.1365-2672.2001.01376.x
  • Emrah. T., & Kursat, M. (2018). Efficacy of gaseous ozone against Paenibacillus larvae spores on hive materials. Journal of Etlik Veterinary Microbiology, 29 (1), 46-50. https://doi.org/10.35864/evmd.512928.
  • Fera, (2013). Hive cleaning and sterilization. Food and Environment Research Agency, York.
  • Fries I., A. Lindstrom, S. Korpela, 2006. Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera). Veterinary Microbiology, 114, 269-274. https://doi.org/10.1016/j.vetmic.2005.11.068
  • Genersch, E. (2017). Foulbrood diseases of honey bees—from Science to Practice. In Beekeeping–From Science to Practice (pp. 157-174). Springer, Cham. https://doi.org/10.1007/978-3-319-60637-8_10
  • Ivana T.G. & Zlatko, T. (2013). Prevention and control of American foulbrood of honeybee. Split- DDD i ZUPP 2013, 157-162.
  • Gajger, I. T., & Tomljanović, Z. (2013). Prevention and control of American Foulbrood of Honeybee. In Zbornik Radova 25. Znanstveno Stručno Edukativni Seminar DDD i ZUPP 2013: Djelatnost dezinfekcije, dezinsekcije, deratizacije i zaštite uskladištenih, poljoprivrednih proizvoda, Split, Republike Hrvatske, 2. do 5. travnja 2013 (pp. 157-162). Korunić doo Zagreb.
  • James, R. R. (2011). Potential of ozone as a fumigant to control pests in honey bee (Hymenoptera: Apidae) hives. Journal of Economic Entomology, 104(2), 353-359. https://doi.org/10.1603/EC10385
  • Matheson, A., & Reid, M. (2018). Practical Beekeeping in New Zealand: The Definitive Guide. Exisle Publishing.
  • Newman, A., & Bond, P. (2004). Prohibitions on Punishments in Private Contracts. In Econometric Society 2004 North American Winter Meetings (No. 143). Econometric Society.
  • Nyangaresi, P. O., Qin, Y., Chen, G., Zhang, B., Lu, Y., & Shen, L. (2019). Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria. Water Research, 157, 218-227. https://doi.org/10.1016/j.watres.2019.03.080
  • Oida, A. (1997). Using personal computer for agricultural machinery management. Kyoto University. Japan. JICA publishing.
  • Patil, S., Cullen, P.J., & Bourke, P. (2014). Ozone: a novel microbial inactivation process. Boziaris IS. ed. Novel Food Preservation and Microbial Assessment Techniques, CRC Press, London. p. 126-154.
  • Pendyala, B., Patras, A., Gopisetty, V. V. S., Sasges, M., & Balamurugan, S. (2019). Inactivation of Bacillus and Clostridium spores in coconut water by ultraviolet light. Foodborne Pathogens and Disease, 16(10), 704-711. https://doi.org/10.1089/fpd.2019.2623
  • Priehn, M., Denis, B., Aumeier, P., Kirchner, W. H., Awakowicz, P., & Leichert, L. I. (2016). Sterilization of beehive material with a double inductively coupled low pressure plasma. Journal of Physics D: Applied Physics, 49(37), 374002. https://doi:10.1088/0022-3727/49/37/374002
  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling And Analytics, 2(1), 21-33.
  • Sánchez-Salas, J. L., Ubeda, A. A., Gómez, B. F., Navarro, O. D. M., Rojas, M. Á. M., Tellez, S. R., & Bandala, E. R. (2017). Inactivation of bacterial spores and vegetative bacterial cells by interaction with ZnO-Fe2O3 nanoparticles and UV radiation. AIMS Geosciences, 3(4), 498-513. https://doi:10.3934/geosci.2017.3.498
  • Stewart-Wade, S.M. (2011). Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Science 29: 267-297. https://doi.org/10.1007/s00271-011-0285-1
  • Teixeira E.W., Guimaraes-Cestaro, L., Luisa, M., Alves, T., Message, D., & Martins, M.F., et al., (2018). Spores of Paenibacillus larvae, Ascosphaera apis, Nosema ceranae and Nosema apis in bee products supervised by the Brazilian Federal Inspection Service. Entomologia, 62, 188-194. https://doi.org/10.1016/j.rbe.2018.04.001.
  • Torlak, T., & Isik M.K. (2018). Efficacy of gaseous ozone against paenibacillus larvae spores on hive materials. Journal of Etlik Veterinary Microbiology, 29 (1), 46-50. https://doi.org/10.35864/evmd.512928
  • Taylor, W., Camilleri, E., Craft, D. L., Korza, G., Granados, M. R., Peterson, J., & Setlow, P. (2020). DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation. Applied and Environmental Microbiology, 86(8), e03039-19. https://doi.org/10.1128/AEM.03039-19.

Evaluation the UV sterilization of Paenibacillus larvae on beehive building materials

Year 2022, Volume: 4 Issue: 1, 25 - 28, 30.06.2022
https://doi.org/10.53663/turjfas.1126574

Abstract

This study presents the possibility of killing almost all microorganisms such as fungi, bacteria, spore forms, and viruses by sterilization process. European foulbrood (EFB) and American foulbrood (AFB) is a highly infectious bacterial honeybee disease caused by Melissococcus plutonius and Paenibacillus larvae, respectively. Removal of spores from contaminated beehives is a critical factor in controlling EFB and AFB. The purpose of this study was to evaluate the effectiveness of ultraviolet (UV) in killing Paenibacillus larvae spores on PVC, and wood hives. Hives infected with Paenibacillus larvae spores were treated with two UV powers (6 and 8 W) for up to 15 min. Sterilization at 8 W for 15 min resulted in a more than 6.6 log reduction in the number of Paenibacillus larvae spores on the PVC hives. Under the same experimental conditions, the reduction in wood hives was 6.2 log. Reductions achieved in Paenibacillus larvae spores on PVC hives after 5, 10 and 15 min of sterilization were significantly (p˂0.05) higher than those on wood hives. So it is recommended to sterilize hives contaminated with spores with UV lamps

References

  • Alonso-Salces, R.M., Cugnata, N.M., Guaspari, E., Pellegrini, M.C., Aubone, I., De Piano, F.G., Antunez, K., & Fuselli, S.R. (2017). Natural strategies for the control of Paenibacillus larvae, the causative agent of American foulbrood in honey bees: a review. Apidologie, 48, 387-400. https://doi.org/10.1007/s13592-016-0483-1
  • Arredondo D., Castelli, L., Porrini, M.P., Garrido, P.M., Eguaras, M.J., Zunino, P., & Antúnez, K. (2017). Lactobacillus kunkeei strains decreased the infection by honey bee pathogens Paenibacillus larvae and Nosema ceranae. Beneficial Microbes, 9(2), 279-290. https://doi.org/10.3920/BM2017.0075
  • Chatzisymeon, E., Droumpali, A., Mantzavinos, D., & Venieri, D. (2011). Disinfection of water and wastewater by UV-A and UV-C irradiation: application of real-time PCR method. Photochemical and Photobiological Sciences, 10, 389-395. https://doi.org/10.1039/c0pp00161a
  • De Graaf, D.C., Alippi, A.M., Antúnez, K., Aronstein, K.A., Budge, G.E., De Koker, D., De Smet, L., Dingman, D.W., Evans, J.D., Foster, L.J., Funfhaus, A., Garcia-Gonzalez, E., Gregorc, A., Human, H., Murray, K.D., Nguyen, B.K., Poppinga, L., Spivak, M., VanEngelsdorp, D., Wilkins, S., & Genersch, E. (2013). Standard methods for American foulbrood research. Journal of Apicultural Research, 52(1), 1-27. https://doi.org/10.3896/IBRA.1.52.1.11
  • De Guzman, Z.M., Cervancia, C.R., Dimasuay, K.G., Tolentino, M.M., Abrera, G.B., & Cobar, M.L. (2011). Radiation inacti¬vation of Paenibacillus larvae and sterilization of American Foul Brood (AFB) infected hives using Co-60 gamma rays. Appl Radiation and Isotopes, 69, 1374-1379. https://doi.org/10.1016/j.apradiso.2011.05.032
  • Del Hoyo, M., Basualdo, M., Torres, J., & Bedascarrasbure, E. (1998). Use of DHT-equipment for disinfection of AFB-contaminated beehive materials in Argentina. American Bee Journal, 138, 738-740.
  • Dobbelaere. W., De Graaf D.C., Reybroeck, W., Desmedt, E., Peeters, J.E., & Jacobs. F.J. (2001). Disinfection of wooden structures contaminated with Paenibacillus larvae subsp. larvae spores. Journal of Applied Microbiology, 91, 212-216. https://doi.org/10.1046/j.1365-2672.2001.01376.x
  • Emrah. T., & Kursat, M. (2018). Efficacy of gaseous ozone against Paenibacillus larvae spores on hive materials. Journal of Etlik Veterinary Microbiology, 29 (1), 46-50. https://doi.org/10.35864/evmd.512928.
  • Fera, (2013). Hive cleaning and sterilization. Food and Environment Research Agency, York.
  • Fries I., A. Lindstrom, S. Korpela, 2006. Vertical transmission of American foulbrood (Paenibacillus larvae) in honey bees (Apis mellifera). Veterinary Microbiology, 114, 269-274. https://doi.org/10.1016/j.vetmic.2005.11.068
  • Genersch, E. (2017). Foulbrood diseases of honey bees—from Science to Practice. In Beekeeping–From Science to Practice (pp. 157-174). Springer, Cham. https://doi.org/10.1007/978-3-319-60637-8_10
  • Ivana T.G. & Zlatko, T. (2013). Prevention and control of American foulbrood of honeybee. Split- DDD i ZUPP 2013, 157-162.
  • Gajger, I. T., & Tomljanović, Z. (2013). Prevention and control of American Foulbrood of Honeybee. In Zbornik Radova 25. Znanstveno Stručno Edukativni Seminar DDD i ZUPP 2013: Djelatnost dezinfekcije, dezinsekcije, deratizacije i zaštite uskladištenih, poljoprivrednih proizvoda, Split, Republike Hrvatske, 2. do 5. travnja 2013 (pp. 157-162). Korunić doo Zagreb.
  • James, R. R. (2011). Potential of ozone as a fumigant to control pests in honey bee (Hymenoptera: Apidae) hives. Journal of Economic Entomology, 104(2), 353-359. https://doi.org/10.1603/EC10385
  • Matheson, A., & Reid, M. (2018). Practical Beekeeping in New Zealand: The Definitive Guide. Exisle Publishing.
  • Newman, A., & Bond, P. (2004). Prohibitions on Punishments in Private Contracts. In Econometric Society 2004 North American Winter Meetings (No. 143). Econometric Society.
  • Nyangaresi, P. O., Qin, Y., Chen, G., Zhang, B., Lu, Y., & Shen, L. (2019). Comparison of the performance of pulsed and continuous UVC-LED irradiation in the inactivation of bacteria. Water Research, 157, 218-227. https://doi.org/10.1016/j.watres.2019.03.080
  • Oida, A. (1997). Using personal computer for agricultural machinery management. Kyoto University. Japan. JICA publishing.
  • Patil, S., Cullen, P.J., & Bourke, P. (2014). Ozone: a novel microbial inactivation process. Boziaris IS. ed. Novel Food Preservation and Microbial Assessment Techniques, CRC Press, London. p. 126-154.
  • Pendyala, B., Patras, A., Gopisetty, V. V. S., Sasges, M., & Balamurugan, S. (2019). Inactivation of Bacillus and Clostridium spores in coconut water by ultraviolet light. Foodborne Pathogens and Disease, 16(10), 704-711. https://doi.org/10.1089/fpd.2019.2623
  • Priehn, M., Denis, B., Aumeier, P., Kirchner, W. H., Awakowicz, P., & Leichert, L. I. (2016). Sterilization of beehive material with a double inductively coupled low pressure plasma. Journal of Physics D: Applied Physics, 49(37), 374002. https://doi:10.1088/0022-3727/49/37/374002
  • Razali, N. M., & Wah, Y. B. (2011). Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of Statistical Modeling And Analytics, 2(1), 21-33.
  • Sánchez-Salas, J. L., Ubeda, A. A., Gómez, B. F., Navarro, O. D. M., Rojas, M. Á. M., Tellez, S. R., & Bandala, E. R. (2017). Inactivation of bacterial spores and vegetative bacterial cells by interaction with ZnO-Fe2O3 nanoparticles and UV radiation. AIMS Geosciences, 3(4), 498-513. https://doi:10.3934/geosci.2017.3.498
  • Stewart-Wade, S.M. (2011). Plant pathogens in recycled irrigation water in commercial plant nurseries and greenhouses: their detection and management. Irrigation Science 29: 267-297. https://doi.org/10.1007/s00271-011-0285-1
  • Teixeira E.W., Guimaraes-Cestaro, L., Luisa, M., Alves, T., Message, D., & Martins, M.F., et al., (2018). Spores of Paenibacillus larvae, Ascosphaera apis, Nosema ceranae and Nosema apis in bee products supervised by the Brazilian Federal Inspection Service. Entomologia, 62, 188-194. https://doi.org/10.1016/j.rbe.2018.04.001.
  • Torlak, T., & Isik M.K. (2018). Efficacy of gaseous ozone against paenibacillus larvae spores on hive materials. Journal of Etlik Veterinary Microbiology, 29 (1), 46-50. https://doi.org/10.35864/evmd.512928
  • Taylor, W., Camilleri, E., Craft, D. L., Korza, G., Granados, M. R., Peterson, J., & Setlow, P. (2020). DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation. Applied and Environmental Microbiology, 86(8), e03039-19. https://doi.org/10.1128/AEM.03039-19.
There are 27 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Mohamed Ali Ibrahim Al-rajhi 0000-0001-5212-5401

Early Pub Date June 30, 2022
Publication Date June 30, 2022
Submission Date June 6, 2022
Acceptance Date June 23, 2022
Published in Issue Year 2022 Volume: 4 Issue: 1

Cite

APA Ali Ibrahim Al-rajhi, M. (2022). Evaluation the UV sterilization of Paenibacillus larvae on beehive building materials. Turkish Journal of Food and Agriculture Sciences, 4(1), 25-28. https://doi.org/10.53663/turjfas.1126574

 22605      22604        23639     


17579     21244    21245   29292



21866   

Turkish Journal of Food and Agriculture Sciences (TURJFAS) is an open access journal which means that all content is freely available without charge to the user or his/her institution. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is accordance with the BOAI (Budapest Open Access Initiative) definition of open access. 


 17580 

Turkish Journal of Food and Agriculture Sciences is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


Journal Abbreviation: Turk J Food Agric Sci