Research Article
BibTex RIS Cite

Matematik Öğretmenlerinin Öğrenci Sorgulamasını Destekleyen Eylemlerinin Ders İmecesi Boyunca Gelişimi

Year 2020, , 774 - 813, 15.12.2020
https://doi.org/10.16949/turkbilmat.683535

Abstract

Bu çalışmada, ders imecesi modeli ile üst düzey düşünmeyi tetikleyici öğretim uygulamalarının geliştirilmesinin amaçlandığı geniş kapsamlı bir araştırmanın öğretmen eylemlerinin gelişimi ile ilgili bölümüne odaklanılmıştır. Araştırmanın verileri, iki öğretmenin araştırma ve revizyon derslerinin video kayıtlarına dayanmaktadır. Derslerin video kayıtları birebir yazıya aktarılmış ve öğretmen eylemleri Ellis, Özgür ve Reiten’in (2019) geliştirdiği “Öğrenci Muhakemesini Destekleyen Öğretmen Eylemleri” çerçevesine göre analiz edilmiştir. Transkriptlerin analize hazır hale getirilmesi için her bir ders içerisinde öğrenci-öğretmen diyalogları belirli bölümlere ayrılmıştır. Bölümlere ayırma öğretmen-öğrenci çalışma grupları, öğretmen-sınıf tartışması ve öğretmen-öğrenci diyaloglarının belirli bir bağlam içerisinde gerçekleştiği başlangıç ve bitiş kısımlarının belirlenmesiyle yapılmıştır. Her bir bölümdeki öğretmen eylemleri öğrenci muhakemesini/düşüncesini açığa çıkarma, öğrencinin katkısına/düşüncesine karşılık verme, öğrenci muhakemesini destekleme ve öğrenci muhakemesini genişletme/geliştirme olmak üzere çerçevede dört ana grup altında yer alan 32 farklı öğretmen eylemine göre kodlanmıştır. Yapılan analizler sonucunda iki matematik öğretmeninin de öğrencileri üst düzey düşünmeye teşvik etmek için kullandığı yüksek potansiyelli eylem oranlarının yıl boyunca arttığı belirlenmiştir. Birinci ders döngüsü boyunca öğretmenler tarafından en düşük oranda kullanılan “öğrenci muhakemesini genişletme” eylem kategorisinin süreç içerisinde en çok geliştiği görülmüştür. Ders imecesi ile öğrenci düşünmesine odaklanarak tasarlanan öğretim uygulamalarının, öğrencilerin üst düzey düşünme becerilerini tetikleyici öğretmen eylemlerini arttırdığı görülmüştür. İlerleyen çalışmalarda ders imecesine katılacak öğretmenlere sürecin başında analiz çerçevesinin tanıtılması ve bu farkındalıkla öğretmen eylemlerindeki gelişimin incelenmesi önerilmektedir.

References

  • Abdullah, A. H., Mokhtar, M., Halim, N. D. A., Ali, D. F., Tahir, L. M., & Kohar, U. H. A. (2017). Mathematics teachers’ level of knowledge and practice on the implementation of higher order thinking skills. EURASIA Journal of Mathematics Science and Technology Education, 13(1), 3-17.
  • Baki, A., Erkan, İ. ve Demir, E. (2012, Haziran). Ders planı etkililiğinin lesson study ile geliştirilmesi: Bir aksiyon araştırması. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi’nde sunulan bildiri, Niğde Üniversitesi, Niğde.
  • Bozkurt, E. ve Yetkin-Özdemir, İ. E. (2016). Ders araştırması yürütmüş bir grup ortaokul matematik öğretmeninden yansımalar. International Online Journal of Educational Sciences, 8(3), 272-289.
  • Bradshaw, Z., & Hazell, A. (2017). Developing problem-solving skills in mathematics: A lesson study. International Journal for Lesson and Learning Studies, 6(1), 32-44.
  • Cengiz, N., Kline, K., & Grant, T. J. (2011). Extending students’ mathematical thinking during whole-group discussions. Journal of Mathematics Teacher Education, 14(5), 355-374.
  • Doğanay, A. (2007). Üst düzey düşünme becerilerinin öğretimi. A. Doğanay (Ed.), Öğretim ilke ve yöntemleri içinde (ss. 284-285). Ankara: PegemA.
  • Dudley, P. (2013). Teacher learning in lesson study: What interaction-level discourse analysis revealed about how teachers utilised imagination, tacit knowledge of teaching and fresh evidence of pupils learning, to develop practice knowledge and so enhance their pupils' learning. Teaching and Teacher Education, 34, 107-121.
  • Ellis, A., Özgür, Z., & Reiten, L. (2019). Teacher moves for supporting student reasoning. Mathematics Education Research Journal, 31(2), 107-132.
  • Finnish National Board of Education [FNBE]. (2016). National core curriculum for basic education 2014. Retrieved September 20, 2018 from https://verkkokauppa.oph.fi/EN/page/product/national-core-curriculum-for-basic-education-2014/2453039.
  • Henningsen, M. A., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524–549.
  • Herbel-Eisenmann, B. A., Steele, M. D., & Cirillo, M. (2013). Developing teacher discourse moves: A framework for professional development. Mathematics Teacher Educator, 1(2), 181–196.
  • Hunter, R. (2012). Coming to ‘know’ mathematics through being scaffolded to ‘talk and do’ mathematics. International Journal for Mathematics Teaching and Learning, 13, 1-12.
  • Kanbolat, O. (2015). Matematik öğretmeni adaylarıyla yürütülen ders imecesinde dış uzmanların paylaşım içerikleri ve rolleri (Yayımlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
  • Leikin, R., & Rota, S. (2006). Learning through teaching: A case study on the development of a mathematics teacher’s proficiency in managing an inquiry-based classroom. Mathematics Education Research Journal, 18(3), 44–68.
  • Lewis, A., & Smith, D. (1993). Defining higher order thinking. Theory into Practice, 32(3), 131-137.
  • Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional improvement? The case of lesson study. Educational Researcher, 35(3), 3-14.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd ed.). California: SAGE Publications.
  • Ministry of Education Singapore. (2013). Primary mathematics learning and teaching syllabus. Retreived May 24, 2019 from http://www.dphu.org/uploads/attachements/books/books_130_0.pdf
  • Ministry of Education, Science, and Technology Korea (2011). Mathematics curriculum. Seoul, Korea: Ministry of Education, Science and Technology. Retreived September 13, 2019 from http://timss2015.org/wpcontent/uploads/encyclopedia/downloadcenter/3.%20Country%20Chapters/Korea,%20Rep.%20of.pdf
  • Miri, B., David, B. C., & Uri, Z. (2007). Purposely teaching for the promotion of higher order thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353-369.
  • Murata, A. (2011). Introduction: Conceptual overview of lesson study. In L. C. Hart, A. Alston, & A. Murata (Eds.), Lesson study research and practice in mathematics education (pp. 1-12). Dordrecht, the Netherlands: Springer.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Newmann, F. M. (1988). Higher order thinking in the high school curriculum. NASSP Bulletin, 72(508), 58-64.
  • Ontario Ministry of Education. (2006). A guide to effective instruction in mathematics, kindergarten to grade 6, Vol. 2. Toronto, ON: Queen’s Printer for Ontario. Retrieved November 2, 2018 from http://eworkshop.on.ca/edu/resources/guides/Guide_Math_K_6_Volume_2.pdf
  • Özaltun-Çelik, A. ve Bukova-Güzel, E. (2016). Bir matematik öğretmenin ders imecesi boyunca öğrencilerin düşüncelerini ortaya çıkaracak soru sorma yaklaşımları. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 7(2), 365-392.
  • Özaltun-Çelik, A. ve Bukova-Güzel, E. (2017). Matematik öğretmenlerinin ders imecesi kapsamında köklü ifadelerin öğretimine ilişkin oluşturdukları ders planı. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 13(2), 561-594.
  • Özaltun-Çelik, A. ve Bukova-Güzel, E. (2018). Doğrusal fonksiyonun öğrenilmesine yönelik tasarlanan modelleme etkinliği üzerine çalışan öğrencilerin nicel muhakemeleri. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 8(2), 53-85.
  • Pang, J. (2016). Improving mathematics instruction and supporting teacher learning in Korea through lesson study using five practices. ZDM Mathematics Education, 48(4), 471-483.
  • Resnick, L. B. (1987). Education and learning to think. Washington, DC: The National Academies Press.
  • Simon, M. A. (2003). Logico-mathematical activity versus empirical activity: Examining a pedagogical distinction. In N. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 183–190). Honolulu, HI: PME.
  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275.
  • Stein, M. K., Smith, M. S., Henningsen, M., & Silver, E. A. (2000). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press.
  • Wilburne, J. M., & Peterson, W. (2007). Using a before-during-after model to plan effective secondary mathematics lessons. Mathematics Teacher, 101(3), 209-213.
  • Yang, Y. (2009). How a Chinese teacher improved classroom teaching in teaching research group: A case study on Pythagoras theorem teaching in Shangai. ZDM Mathematics Education, 41(3), 279–296.
  • Yin, R. K. (2017). Durum çalışması araştırması uygulamaları (I. Gunbayi, Çev.). Ankara: Nobel Akademi Yayıncılık.

Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study

Year 2020, , 774 - 813, 15.12.2020
https://doi.org/10.16949/turkbilmat.683535

Abstract

As part of a comprehensive study that aims to develop teaching practices that trigger higher order thinking through the lesson study model, this study focuses on examining the development of teachers' moves. Following a case study design, the study examined the development of the teacher moves that two mathematics teachers did to support their students’ reasoning during the lesson study. The data were based on the video recordings of the research and revision lessons that the two teachers conducted in their sixth grade mathematics classes. With a focus on the teacher moves for supporting students’ reasoning, all lesson transcripts were analyzed according to the “Teacher Moves For Supporting Student Reasoning” framework (Ellis, Özgür & Reiten, 2019). To ensure consistency in coding, each transcript was first parsed into topically related sets. These sets are small episodes with a natural ending, including discussions between: the teacher and student groups, the teacher and the whole class, or the teacher and student(s). Teacher moves in each episode were coded according to the mentioned framework, which organizes 32 different pedagogical moves into four categories: eliciting, responding, facilitating, and extending. The results of the research show that the frequency of the high-potential moves used by both mathematics teachers increased throughout the year. It was also seen that the category of “Extending Student Reasoning” moves, which was used by the teachers at the lowest rate during the first cycle of the lesson study, was the most developed throughout the study. Thus, it was found that the participant teachers’ instructional practices developed as evidenced by their increased use of teacher moves that trigger students’ high-order thinking skills. For future studies it is recommended to introduce the analysis framework to the participant teachers at the beginning of the study and then examine the development of teacher moves with this awareness.

References

  • Abdullah, A. H., Mokhtar, M., Halim, N. D. A., Ali, D. F., Tahir, L. M., & Kohar, U. H. A. (2017). Mathematics teachers’ level of knowledge and practice on the implementation of higher order thinking skills. EURASIA Journal of Mathematics Science and Technology Education, 13(1), 3-17.
  • Baki, A., Erkan, İ. ve Demir, E. (2012, Haziran). Ders planı etkililiğinin lesson study ile geliştirilmesi: Bir aksiyon araştırması. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi’nde sunulan bildiri, Niğde Üniversitesi, Niğde.
  • Bozkurt, E. ve Yetkin-Özdemir, İ. E. (2016). Ders araştırması yürütmüş bir grup ortaokul matematik öğretmeninden yansımalar. International Online Journal of Educational Sciences, 8(3), 272-289.
  • Bradshaw, Z., & Hazell, A. (2017). Developing problem-solving skills in mathematics: A lesson study. International Journal for Lesson and Learning Studies, 6(1), 32-44.
  • Cengiz, N., Kline, K., & Grant, T. J. (2011). Extending students’ mathematical thinking during whole-group discussions. Journal of Mathematics Teacher Education, 14(5), 355-374.
  • Doğanay, A. (2007). Üst düzey düşünme becerilerinin öğretimi. A. Doğanay (Ed.), Öğretim ilke ve yöntemleri içinde (ss. 284-285). Ankara: PegemA.
  • Dudley, P. (2013). Teacher learning in lesson study: What interaction-level discourse analysis revealed about how teachers utilised imagination, tacit knowledge of teaching and fresh evidence of pupils learning, to develop practice knowledge and so enhance their pupils' learning. Teaching and Teacher Education, 34, 107-121.
  • Ellis, A., Özgür, Z., & Reiten, L. (2019). Teacher moves for supporting student reasoning. Mathematics Education Research Journal, 31(2), 107-132.
  • Finnish National Board of Education [FNBE]. (2016). National core curriculum for basic education 2014. Retrieved September 20, 2018 from https://verkkokauppa.oph.fi/EN/page/product/national-core-curriculum-for-basic-education-2014/2453039.
  • Henningsen, M. A., & Stein, M. K. (1997). Mathematical tasks and student cognition: Classroom-based factors that support and inhibit high-level mathematical thinking and reasoning. Journal for Research in Mathematics Education, 28(5), 524–549.
  • Herbel-Eisenmann, B. A., Steele, M. D., & Cirillo, M. (2013). Developing teacher discourse moves: A framework for professional development. Mathematics Teacher Educator, 1(2), 181–196.
  • Hunter, R. (2012). Coming to ‘know’ mathematics through being scaffolded to ‘talk and do’ mathematics. International Journal for Mathematics Teaching and Learning, 13, 1-12.
  • Kanbolat, O. (2015). Matematik öğretmeni adaylarıyla yürütülen ders imecesinde dış uzmanların paylaşım içerikleri ve rolleri (Yayımlanmamış doktora tezi). Karadeniz Teknik Üniversitesi, Eğitim Bilimleri Enstitüsü, Trabzon.
  • Leikin, R., & Rota, S. (2006). Learning through teaching: A case study on the development of a mathematics teacher’s proficiency in managing an inquiry-based classroom. Mathematics Education Research Journal, 18(3), 44–68.
  • Lewis, A., & Smith, D. (1993). Defining higher order thinking. Theory into Practice, 32(3), 131-137.
  • Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional improvement? The case of lesson study. Educational Researcher, 35(3), 3-14.
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. (2nd ed.). California: SAGE Publications.
  • Ministry of Education Singapore. (2013). Primary mathematics learning and teaching syllabus. Retreived May 24, 2019 from http://www.dphu.org/uploads/attachements/books/books_130_0.pdf
  • Ministry of Education, Science, and Technology Korea (2011). Mathematics curriculum. Seoul, Korea: Ministry of Education, Science and Technology. Retreived September 13, 2019 from http://timss2015.org/wpcontent/uploads/encyclopedia/downloadcenter/3.%20Country%20Chapters/Korea,%20Rep.%20of.pdf
  • Miri, B., David, B. C., & Uri, Z. (2007). Purposely teaching for the promotion of higher order thinking skills: A case of critical thinking. Research in Science Education, 37(4), 353-369.
  • Murata, A. (2011). Introduction: Conceptual overview of lesson study. In L. C. Hart, A. Alston, & A. Murata (Eds.), Lesson study research and practice in mathematics education (pp. 1-12). Dordrecht, the Netherlands: Springer.
  • National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
  • Newmann, F. M. (1988). Higher order thinking in the high school curriculum. NASSP Bulletin, 72(508), 58-64.
  • Ontario Ministry of Education. (2006). A guide to effective instruction in mathematics, kindergarten to grade 6, Vol. 2. Toronto, ON: Queen’s Printer for Ontario. Retrieved November 2, 2018 from http://eworkshop.on.ca/edu/resources/guides/Guide_Math_K_6_Volume_2.pdf
  • Özaltun-Çelik, A. ve Bukova-Güzel, E. (2016). Bir matematik öğretmenin ders imecesi boyunca öğrencilerin düşüncelerini ortaya çıkaracak soru sorma yaklaşımları. Türk Bilgisayar ve Matematik Eğitimi Dergisi, 7(2), 365-392.
  • Özaltun-Çelik, A. ve Bukova-Güzel, E. (2017). Matematik öğretmenlerinin ders imecesi kapsamında köklü ifadelerin öğretimine ilişkin oluşturdukları ders planı. Mersin Üniversitesi Eğitim Fakültesi Dergisi, 13(2), 561-594.
  • Özaltun-Çelik, A. ve Bukova-Güzel, E. (2018). Doğrusal fonksiyonun öğrenilmesine yönelik tasarlanan modelleme etkinliği üzerine çalışan öğrencilerin nicel muhakemeleri. Adıyaman Üniversitesi Eğitim Bilimleri Dergisi, 8(2), 53-85.
  • Pang, J. (2016). Improving mathematics instruction and supporting teacher learning in Korea through lesson study using five practices. ZDM Mathematics Education, 48(4), 471-483.
  • Resnick, L. B. (1987). Education and learning to think. Washington, DC: The National Academies Press.
  • Simon, M. A. (2003). Logico-mathematical activity versus empirical activity: Examining a pedagogical distinction. In N. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 183–190). Honolulu, HI: PME.
  • Stein, M. K., & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-275.
  • Stein, M. K., Smith, M. S., Henningsen, M., & Silver, E. A. (2000). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press.
  • Wilburne, J. M., & Peterson, W. (2007). Using a before-during-after model to plan effective secondary mathematics lessons. Mathematics Teacher, 101(3), 209-213.
  • Yang, Y. (2009). How a Chinese teacher improved classroom teaching in teaching research group: A case study on Pythagoras theorem teaching in Shangai. ZDM Mathematics Education, 41(3), 279–296.
  • Yin, R. K. (2017). Durum çalışması araştırması uygulamaları (I. Gunbayi, Çev.). Ankara: Nobel Akademi Yayıncılık.
There are 35 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Research Articles
Authors

Cemre Pehlivan This is me 0000-0002-3507-0821

Esra Bukova Guzel 0000-0001-7571-1374

Publication Date December 15, 2020
Published in Issue Year 2020

Cite

APA Pehlivan, C., & Bukova Guzel, E. (2020). Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), 774-813. https://doi.org/10.16949/turkbilmat.683535
AMA Pehlivan C, Bukova Guzel E. Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study. Turkish Journal of Computer and Mathematics Education (TURCOMAT). December 2020;11(3):774-813. doi:10.16949/turkbilmat.683535
Chicago Pehlivan, Cemre, and Esra Bukova Guzel. “Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11, no. 3 (December 2020): 774-813. https://doi.org/10.16949/turkbilmat.683535.
EndNote Pehlivan C, Bukova Guzel E (December 1, 2020) Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11 3 774–813.
IEEE C. Pehlivan and E. Bukova Guzel, “Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study”, Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 11, no. 3, pp. 774–813, 2020, doi: 10.16949/turkbilmat.683535.
ISNAD Pehlivan, Cemre - Bukova Guzel, Esra. “Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study”. Turkish Journal of Computer and Mathematics Education (TURCOMAT) 11/3 (December 2020), 774-813. https://doi.org/10.16949/turkbilmat.683535.
JAMA Pehlivan C, Bukova Guzel E. Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2020;11:774–813.
MLA Pehlivan, Cemre and Esra Bukova Guzel. “Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study”. Turkish Journal of Computer and Mathematics Education (TURCOMAT), vol. 11, no. 3, 2020, pp. 774-13, doi:10.16949/turkbilmat.683535.
Vancouver Pehlivan C, Bukova Guzel E. Development of Mathematics Teachers’ Moves That Support Students’ Higher Order Thinking Skills through Lesson Study. Turkish Journal of Computer and Mathematics Education (TURCOMAT). 2020;11(3):774-813.