Research Article
BibTex RIS Cite

Detection of Organochlorine Pesticides Residues in Garlic and Evaluation of Health Risks

Year 2022, , 69 - 76, 22.01.2022
https://doi.org/10.30910/turkjans.1035468

Abstract

Persistent organic polluting pesticides that have been used extensively historically can still be detected in agricultural products and cause health risks. In this study, banned organochlorine pesticide (OCP) residue levels in 23 garlic samples produced in the fields of different villages located in the potentially polluted area in the center of Kastamonu were determined by GC/MS method combined with QuEChERS extraction and clean-up technique. In our study, at least one OCP was detected in 14 of 23 samples and 20 of the 23 OCPs we examined in our study, were detected in at least one sample. The most frequently detected OCP residue in garlic is dichloro-diphenyl-trichloroethane (DDT) and its metabolites. The residue levels of all garlic samples were below their maximum residue levels (MRL), except for sample 16. Eighteen of the OCPs we examined in our study, were determined in sample 16 and 14 of them had very high concentrations. Estimated daily intake levels (EDI) of all samples were calculated to determine whether the acceptable daily intake (ADI) levels were exceeded in order to make a risk assessment. None of the EDI values calculated from the amounts of residues in the sample 16 exceeded the ADI levels. However, it should not be forgotten that samples such as sample 16 may pose a risk of exposure for people whose actual consumption of garlic is higher than the calculated amount.

Supporting Institution

Kastamonu University Scientific Research Projects Coordinatorship

Project Number

KÜ-HIZDES/2017-15

Thanks

The authors would like to thank the Kastamonu University Scientific Research Projects Coordinatorship, which covered the analysis expenses of this study with the KÜ-HIZDES/2017-15 rapid support project.

References

  • Ali, N., Khan, S., Khan, M.A., Waqas, M. and Yao, H. 2019. Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan. Environmental Science and Pollution Research, 26 (9): 8808-8820.
  • Anastassiades, M., Lehotay, S.J., Štajnbaher, D. and Schenck, F.J. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86 (2): 412-431.
  • Anonymous. 2008. International Institute for Sustainable Development (IISD). In: Summary of the 4th Meeting of the Persistent Organic Pollutants Review Commitiee of the Stockholm Convention: Earth Negotiations Bulletin, vol. 15. pp. 1–17.
  • Anonymous. Codex Alimentarius. Pesticide Index. FAO-WHO records. https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/
  • Anonymous. 2018. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. SANTE/11813/2017. Luxembourg, EU: European Commission Directorate General for Health and Food Safety.
  • Anonymous. 2020. Address based population registration system results. Turkish Statistical Institute (TUIK) Records. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210
  • Anonymous. 2020. Crop production statistics. Turkish Statistical Institute (TUIK) Records. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020-33737
  • Dagli, Z. 2008. Investigation of organic chlorinated pesticide levels in wheat in Konya region. Ph.D. Thesis, Selcuk University, Institute of Science and Technology. Konya.
  • Eskenazi, B., Marks, A.R., Bradman, A., Harley, K., Barr, D.B., Johnson, C., Morga, N. and Jewell, N.P. 2007. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environmental Health Perspectives, 115: 792-798.
  • Eskenazi, B., Rosas, L.G., Marks, A.R., Bradman, A., Harley, K., Holland, N., Johnson, C., Fenster, L., and Barr, D.B. 2008. Pesticide toxicity and the developing brain. Basic and Clinical Pharmacology and Toxicology, 102 (2): 228-236.
  • Gasull, M., Porta, M. Pumarega, J., Vioque, J., de Basea, M.B., Puigdomènech, E., Morales, E., and Grimalt, J.O. Malats, N. 2010. The relative influence of diet and serum concentrations of organochlorine compounds on K-ras mutations in exocrine pancreatic cancer. Chemosphere, 79 (7): 686-697.
  • He, Z., Chen, S., Wang, L., Peng, Y., Luo, M., Wang, W. and Liu, X. 2015. Multiresidue analysis of 213 pesticides in leek and garlic using QuEChERS-based method and gas chromatography-triple quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 407 (9): 2637-2643.
  • Maštovská, K., Lehotay, S.J. and Hajšlová, J. 2001. Optimization and evaluation of low-pressure gas chromatography–mass spectrometry for the fast analysis of multiple pesticide residues in a food commodity. Journal of Chromatography A, 926 (2): 291-308.
  • Miller, S. and Leschewski, A. 2012. Economic impacts of the IR-4 project and IR-4 project programs. East Lansing: Center for Economic Analysis, Michigan State University.
  • Roberts, J.R., Karr, C.J., Paulson, J.A., Brock-Utne, A.C., Brumberg, H.L., Campbell, C.C., Lanphear, B.P., Osterhoudt, K.C., Sandel, M.T., Trasande, L. and Wright, R.O. 2012. Pesticide exposure in children. Pediatrics, 130 (6): e1765-e1788.
  • Serrano, R., Blanes, M.A., Lopez, F.J., 2008. Biomagnification of organochlorine pollutants in farmed and wildgil the adseabream (Sparusaurata) and stable isotope characterization of the trophic chains. Science of the Total Environment. 389: 340-349.
  • Olutona, G.O., Fakunle, I.A. and Adegbola, R.A. 2021. Detection of organochlorine pesticides residue and trace metals in vegetables obtained from Iwo market, Iwo, Nigeria. International Journal of Environmental Science and Technology, doi: 10.1007/s13762-021-03431-x
  • Özcan, C. 2016. Determination of organochlorine pesticides in some vegetable samples using GC-MS. Polish Journal of Environmental Studies, 25 (3): 1141-1147.
  • Özcan, C. and Balkan, S. 2017. Multi-residue determination of organochlorine pesticides in vegetables in Kirklareli, Turkey by gas chromatography–mass spectrometry. Journal of Analytical Chemistry, 72 (7): 761-769.
  • Tahmas Kahyaoğlu, D. 2021. Comparison of the Antioxidant Activity of Garlic Cloves with Garlic Husk and Stem: Determination of Utilization Potential of Garlic Agricultural Wastes. Turkish Journal of Agriculture and Natural Sciences, 8 (2): 463-469.
  • Yu, L., Schoen, R., Dunkin, A., Firman, M. and Cushman, H. 1997. Rapid identification and quantitation of diphenylamine, o-phenylphenol, and propargite pesticide residues on apples by gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 45 (3): 748-752.

Sarımsakta Organoklorlu Pestisit Kalıntılarının Tespiti ve Sağlık Risklerinin Değerlendirilmesi

Year 2022, , 69 - 76, 22.01.2022
https://doi.org/10.30910/turkjans.1035468

Abstract

Tarihsel olarak yaygın olarak kullanılan kalıcı organik kirletici pestisitler, tarım ürünlerinde hala tespit edilebilmekte ve sağlık risklerine neden olabilmektedir. Bu çalışmada, Kastamonu il merkezinde potansiyel olarak kirlenmiş alanda bulunan farklı köylerin tarlalarında üretilen 23 sarımsak örneğinde yasaklı organoklorlu pestisit (OCP) kalıntı seviyeleri QuEChERS ekstraksiyon ve temizleme tekniği ile kombine GC/MS yöntemi ile belirlenmiştir. Çalışmamızda 23 örneğin 14'ünde en az bir OCP, çalışmamızda incelediğimiz 23 OKP'nin 20'sinde en az bir örnekte OCP saptandı. Sarımsakta en sık saptanan OCP kalıntısı dikloro-difenil-trikloroetan (DDT) ve metabolitleridir. Örnek 16 hariç tüm sarımsak örneklerinin kalıntı seviyeleri maksimum kalıntı seviyelerinin (MRL) altındaydı. Çalışmamızda incelediğimiz OCP'lerin 18'i örnek 16'da belirlendi ve 14 tanesi çok yüksek konsantrasyonlara sahipti. Bir risk değerlendirmesi yapmak için kabul edilebilir günlük alım (ADI) seviyelerinin aşıp aşılmadığını belirlemek için tüm numunelerin tahmini günlük alım seviyeleri (EDI) hesaplandı. Örnek 16'daki kalıntı miktarlarından hesaplanan EDI değerlerinin hiçbiri ADI seviyelerini geçmedi. Ancak, gerçek sarımsak tüketimi hesaplanan miktarın üzerinde olan kişiler için örnek 16 gibi örneklerin maruz kalma riski oluşturabileceği unutulmamalıdır.

Project Number

KÜ-HIZDES/2017-15

References

  • Ali, N., Khan, S., Khan, M.A., Waqas, M. and Yao, H. 2019. Endocrine disrupting pesticides in soil and their health risk through ingestion of vegetables grown in Pakistan. Environmental Science and Pollution Research, 26 (9): 8808-8820.
  • Anastassiades, M., Lehotay, S.J., Štajnbaher, D. and Schenck, F.J. 2003. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86 (2): 412-431.
  • Anonymous. 2008. International Institute for Sustainable Development (IISD). In: Summary of the 4th Meeting of the Persistent Organic Pollutants Review Commitiee of the Stockholm Convention: Earth Negotiations Bulletin, vol. 15. pp. 1–17.
  • Anonymous. Codex Alimentarius. Pesticide Index. FAO-WHO records. https://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticides/en/
  • Anonymous. 2018. Guidance document on analytical quality control and method validation procedures for pesticide residues and analysis in food and feed. SANTE/11813/2017. Luxembourg, EU: European Commission Directorate General for Health and Food Safety.
  • Anonymous. 2020. Address based population registration system results. Turkish Statistical Institute (TUIK) Records. https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210
  • Anonymous. 2020. Crop production statistics. Turkish Statistical Institute (TUIK) Records. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-Istatistikleri-2020-33737
  • Dagli, Z. 2008. Investigation of organic chlorinated pesticide levels in wheat in Konya region. Ph.D. Thesis, Selcuk University, Institute of Science and Technology. Konya.
  • Eskenazi, B., Marks, A.R., Bradman, A., Harley, K., Barr, D.B., Johnson, C., Morga, N. and Jewell, N.P. 2007. Organophosphate pesticide exposure and neurodevelopment in young Mexican-American children. Environmental Health Perspectives, 115: 792-798.
  • Eskenazi, B., Rosas, L.G., Marks, A.R., Bradman, A., Harley, K., Holland, N., Johnson, C., Fenster, L., and Barr, D.B. 2008. Pesticide toxicity and the developing brain. Basic and Clinical Pharmacology and Toxicology, 102 (2): 228-236.
  • Gasull, M., Porta, M. Pumarega, J., Vioque, J., de Basea, M.B., Puigdomènech, E., Morales, E., and Grimalt, J.O. Malats, N. 2010. The relative influence of diet and serum concentrations of organochlorine compounds on K-ras mutations in exocrine pancreatic cancer. Chemosphere, 79 (7): 686-697.
  • He, Z., Chen, S., Wang, L., Peng, Y., Luo, M., Wang, W. and Liu, X. 2015. Multiresidue analysis of 213 pesticides in leek and garlic using QuEChERS-based method and gas chromatography-triple quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 407 (9): 2637-2643.
  • Maštovská, K., Lehotay, S.J. and Hajšlová, J. 2001. Optimization and evaluation of low-pressure gas chromatography–mass spectrometry for the fast analysis of multiple pesticide residues in a food commodity. Journal of Chromatography A, 926 (2): 291-308.
  • Miller, S. and Leschewski, A. 2012. Economic impacts of the IR-4 project and IR-4 project programs. East Lansing: Center for Economic Analysis, Michigan State University.
  • Roberts, J.R., Karr, C.J., Paulson, J.A., Brock-Utne, A.C., Brumberg, H.L., Campbell, C.C., Lanphear, B.P., Osterhoudt, K.C., Sandel, M.T., Trasande, L. and Wright, R.O. 2012. Pesticide exposure in children. Pediatrics, 130 (6): e1765-e1788.
  • Serrano, R., Blanes, M.A., Lopez, F.J., 2008. Biomagnification of organochlorine pollutants in farmed and wildgil the adseabream (Sparusaurata) and stable isotope characterization of the trophic chains. Science of the Total Environment. 389: 340-349.
  • Olutona, G.O., Fakunle, I.A. and Adegbola, R.A. 2021. Detection of organochlorine pesticides residue and trace metals in vegetables obtained from Iwo market, Iwo, Nigeria. International Journal of Environmental Science and Technology, doi: 10.1007/s13762-021-03431-x
  • Özcan, C. 2016. Determination of organochlorine pesticides in some vegetable samples using GC-MS. Polish Journal of Environmental Studies, 25 (3): 1141-1147.
  • Özcan, C. and Balkan, S. 2017. Multi-residue determination of organochlorine pesticides in vegetables in Kirklareli, Turkey by gas chromatography–mass spectrometry. Journal of Analytical Chemistry, 72 (7): 761-769.
  • Tahmas Kahyaoğlu, D. 2021. Comparison of the Antioxidant Activity of Garlic Cloves with Garlic Husk and Stem: Determination of Utilization Potential of Garlic Agricultural Wastes. Turkish Journal of Agriculture and Natural Sciences, 8 (2): 463-469.
  • Yu, L., Schoen, R., Dunkin, A., Firman, M. and Cushman, H. 1997. Rapid identification and quantitation of diphenylamine, o-phenylphenol, and propargite pesticide residues on apples by gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry, 45 (3): 748-752.
There are 21 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Şükran Aslan This is me 0000-0001-9716-2038

Nesrin İçli 0000-0002-0617-0639

Project Number KÜ-HIZDES/2017-15
Publication Date January 22, 2022
Submission Date December 11, 2021
Published in Issue Year 2022

Cite

APA Aslan, Ş., & İçli, N. (2022). Detection of Organochlorine Pesticides Residues in Garlic and Evaluation of Health Risks. Turkish Journal of Agricultural and Natural Sciences, 9(1), 69-76. https://doi.org/10.30910/turkjans.1035468