Research Article
BibTex RIS Cite

Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine Etkileri

Year 2024, , 396 - 408, 30.04.2024
https://doi.org/10.30910/turkjans.1433803

Abstract

Gıda atığı kompostunun (GAK) kimyasal gübreyle beraber ve ayrı uygulanmasının toprak verimliliği üzerindeki etkilerini araştırmak amacıyla yürütülmüştür. Deneme tesadüf parselleri deneme desenine göre sera koşullarında, 2 kimyasal gübre uygulaması (kimyasal gübreli ve gübresiz), 1 kompost materyali (gıda atığı kompostu), 4 farklı doz (0, 8, 16, 24, 32 gr kg-1) ve 3 tekerrürlü olacak şekilde yürütülmüştür. Kimyasal gübre olarak 15 kg saf azot (N) da-1 için 15-15-15 NPK (N:P2O5:K2O) gübresi 2 t da-1 olacak şekilde uygulanmıştır. Genel olarak, GAK uygulamaları toprakların verimlilik parametrelerini ve bitki besin elementi içeriklerini artırmıştır. Hem marul hem de ıspanak deneme sonuçlarının ortalamaları birlikte değerlendirildiğinde; toprağın elektriksel iletkenliğini (EC) %57.21, organik maddeyi (OM) % 61.23, toplam N’yi %48.35 oranında artırdığı ve toprak reaksiyonunu (pH) %3.29 oranında düşürdüğü belirlenmiştir. Toprağa GAK + NPK eklendiğinde ise, toprağın EC'sini %76.85, OM'yi % 72.35, toplam N'yi %56.25 ve alınabilir çinkoyu (Zn) % 29.19 oranında artırdığı, toprak pH'ını da % 4.66 oranında azalttığı belirlenmiştir. Bu sonuçlardan farklı olarak; GAK tek başına uygulandığında marul bitkisinin bulunduğu topraklarda alınabilir fosfordaki (P) artış % 67.63, GAK+NPK uygulamasında artışı % 47.14 gerçekleştirmiştir. Bu parametrelerin en yüksek değerleri GAK ilavesinin 32 g kg-1 dozunda elde edilmiştir. GAK’nin toprağa uygulanması, toprağın pH'ını düşürmüş ve EC’yi arttırmıştır. GAK uygulamasıyla birlikte toprağın OM içeriği olmak üzere toplam N, ve yarayışlı P ile Zn, bakır (Cu) ve mangan (Mn) gibi bazı mikro element içeriğinde artış görülmüştür.

Ethical Statement

Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine Etkileri isimli araştırma, hayvan deneyleri, anket, mülakat, odak grup çalışması vb. çalışmaları içermediği için Etik kurul Onayı gerekmemektedir

Supporting Institution

Bursa Uludağ Üniversitesi Bilimsel Araştırma Fonu

Project Number

FHIZ-2022/835

Thanks

Araştırma Bursa Uludağ Üniversitesi Bilimsel Araştırma Fonu tarafından desteklenmiştir. Yardım ve desteğinden ötürü birimimize teşekkür ederim.

References

  • Abd El-Gawad, A.M., Morsy, A.S.M. 2017. Integrated impact of organic and inorganic fertilizers on growth, yield of maize (Zea mays L.) and soil properties under upper Egypt conditions. J. Plant Production, Mansoura Univ., 8(11): 1103-1112. https://doi.org/10.21608/jpp.2017.41121
  • Aksoy, E., Dirim, M.S., Tümsavaş, Z., Özsoy, G. 2001. Formation of Uludag University Campus Area Soils, Important Physical, Chemical Properties and Classification. Research Fund of the University of Uludag, Project No:98/32, Bursa, Turkey, 118p.
  • Anonim. 1988. Türkiye gübreler ve gübreleme rehberi. T.C.T.O.K.B. Köy Hizmetleri genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Genel Yayın No: 151, Teknik Yayın No: T-50, Ankara, 182s.
  • Anonim. 1994. Method EPA 3051, Microwave assisted acid digestion of sediments, sludges, soils and oils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, 1–14. Washington, DC: U.S. Government Printing Office
  • Aziz, T., Ullah, S., Sattar, A., Nasım, M., Farooq, M., Khan, M. 2010. Nutrient Availability and Maize (Zea mays) Growth in Soil Amended with Organic Manures. International Journal of Agriculture & Biology, 12(4): 621-624. 10–070/RAS/2010/12–4–621–624
  • Barzee, T.J., Edalati, A., El-Mashad, H., Wang, D., Scow, K., Zhang, R. 2019. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Frontiers in Sustainable Food Systems, 58(3): 1-13; doi: 10.3389/fsufs.2019.00058
  • Bıyıklı, M., Dorak, S., Aşık, B.B. 2020. Effects of Food Industry Wastewater Treatment Sludge on Corn Plant Development and Soil Properties. Pol. J. Environ. Stud., 29(4): 2565-2578; doi: 10.15244/pjoes/112897
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., Scheckel, K. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266(1):141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
  • Bouyoucos, G.H. 1951. A recalibration of the hydrometer for making mechanical analysis of soils. Journal of Agronomy, 43(1): 434-438.
  • Bremner, J.M. 1965. Total nitrogen. C.A. Black (Ed) Methods of soil analysis, Part 2. American Soc. Ag. Inc. Pub. Agronomy Series, No.9, Madison, Wisconsin, pp 1149-1178.
  • Cecilia, J.A., Garcia-Sancho, C., Maireles-Torres, P. J., R., Luque. 2019. Industrial food waste valorization: a general overview. Biorefinery. Springer, pp. 253-277. http://dx.doi.org/10.1007/978-3-030-10961-5-11
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresour Technol, 248: 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  • Cheong, J.C., Lee, J.T., Lim, J.M., Song, S., Tan, J.K., Chiam, Z.Y., Yap., K.Y., Lim, E.Y., Zhang, J., Tan, H.T. 2020. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Science of The Total Environment, 715: 136789; doi:10.1016/j.scitotenv.2020.136789
  • Çerçioğlu, M., Okur, B., Delibacak, S., Ongun, A.R. 2012. Effects of Tobacco Waste and Farmyard Manure on Soil Properties and Yield of Lettuce (Lactuca sativa L. var. capitata). Communications in Soil Science and Plant Analysis, 43:875–886; doi: 10.1080/00103624.2012.653023
  • Çıtak, S., Sönmez, S., Koçak, F., Yasin, S. 2011. The effect of vermicompost and barnyard manure applications on the development of spinach plant and soil fertility. West Mediterranean Agricultural Research Institute. Derim Journal, 28(1): 56-59.
  • De Nobile, F.O., Hurtado, A.C., Prado, R.de M., de Souza, H.A., Anunciação, M.G., Palaretti, L.F., Dezem, L.A.S.N. 2021. A novel technology for processing urban waste compost as a fast releasing nitrogen source to ımprove soil properties and broccoli and lettuce production. Waste and Biomass Valorization, 12(1):6191–6203; https://doi.org/10.1007/s12649-021-01415-z
  • Eghball, B., Ginting, D., Gilley, J.E. 2004. Residual Effects of Manure and Compost Applications on Corn Production and Soil Properties. Agron. J., 96:442–447. htp/digitalcommons.unl.edu/biosysengfacpub/14
  • Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D. 2013. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 70: 71-77. https://doi.org/10.1016/j.bej.2012.10.004
  • FAO, 2008. Guide to Laboratory Establishment for Plant Nutrient Analysis. FAO Fertilizer and Plant Nutrition Bulletin 19 (Eds. M. R. Motsara, R. N. Roy), Rome. ISBN 978–92–5–10598. https://jardindemaud.fr/pdf/MotsaraMRetal.pdf
  • Gezahegn, A.M. 2021. Effect of organic fertilizers on maize (Zea mays L.) production and soil physical and chemical properties. World Applied Sciences Journal, 39 (1): 11-19; doi: 10.5829/idosi.wasj.2021.11.19
  • Giannakis, G.V., Kourgialas, N., Paranychianakis, N.V., Nikolaidis, N.P., Kalogerakis, N. 2014. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Science & Utilization, 22(3):116-131, doi: 10.1080/1065657X.2014.899938
  • Gill, S.S., Jana, A.M., A., Shrivastav. 2014. Aerobic Bacterial Degradation of Kitchen waste: A review. J Microbiol Biotechnol Food Sci., 3(6): 477-483. https://doi.org/10.15414/jmbfs.2014.3.6.477-483
  • Giménez, A., Gómez, P. Á., Bustamante, M. A., Pérez-Murcia, M. D., Martínez-Sabater, E., Ros, M., Pascual, J.A., Egea-Gilabert, C., Fernández, J. A. 2021. Effect of Compost Extract Addition to Different Types of Fertilizers on Quality at Harvest and Shelf Life of Spinach. Agronomy, 11(4): 632; doi:10.3390/agronomy11040632
  • Ghinea, C., Leahu, A. 2020. Monitoring of Fruit and Vegetable Waste Composting Process: Relationship between Microorganisms and Physico-Chemical Parameters. Processes, 8(3): 302. https://doi.org/10.3390/pr8030302
  • Gondek, M., Weindorf, D. C., Thiel, C., Kleinheinz, G. 2020. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Science and Utilization. 28 (2): 59-75. https://doi.org/10.1080/1065657X.2020.1772906
  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybek, A. 2011. Global food losses and food waste. The Swedish Institute for Food and Biotechnology Save Food Congress, Düsseldorf 16 May 2011.
  • Güneş, A., Alpaslan, M., İnal, A. 2013. Bitki Besleme ve Gübreleme. 6. Baskı, Ders Kitabı No: 533, Ankara Üniversitesi Ziraat Fakültesi Yayınları, No: 158, Ankara, ISBN 978-975-482-878-8
  • Hafid, H. S., Rahman, N. A. A., Shah, U. K. M., Baharuddin, A. S., Ariff, A.B. 2017. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew. Sust. Energ. Rev., 74 (2): 671–686; doi: 10.1016/j.rser.2017.02.071
  • Hashimi, R., Habibi, H.K. 2021. Effects of organic and inorganic fertilizers Applications levels on greenhouse tomato (Solanum lycopersicum) yield and soil quality in Khost Province. Asian Journal of Soil Science and Plant Nutrition, 7(4): 1-10; doi: 10.9734/AJSSPN/2021/v7i430117
  • Hernández, A., Castillo, H., Ojeda, D., Arras, A., López, J., Sánchez, E. 2010. Effect of Vermicompost and Compost on Lettuce Production. Chilean Journal of Agricultural Research, 70 (4): 583-589. http://dx.doi.org/10.4067/S0718-58392010000400008
  • Hossain, M. B., Ryu, K. S. 2017. Effects of Organic and Inorganıc Fertilizers on Lettuce (Lactuca Sativa L.) and Soil Properties. SAARC J. Agri., 15(2): 93-102. http://dx.doi.org/10.3329/sja.v15i2.35158
  • Jackson, M. L. 1958. Soil chemical analysis, 38–226. New Jersey, USA: Prentice Hall Inc.
  • Jakhro, M. I., Shah, S. I., Zehri, M. Y., Rahujo, Z. A., Ahmed, S., Ahmed, S., Jakhro, M. A. 2017. Growth and Yield of Spinach (Spinacia oleracea L.) Under Fluctuating Levels of Organic and Inorganic Fertilizers. International Journal of Development Research, 7(2):11454-11460. Issn: 2230-9926, http://www.journalijdr.com.
  • Jara-Samaniego, J., Pérez-Murcia, M.D., Bustamande, M.A., Paredes, C., Pérez-Espinosa, A., Gavilanes-Terán, I., López, M., Marhuenda-Egea, F.C., Brito, H., Moral, R. 2017. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. Plos One, 12(7): 1-17; doi: 10.1371/journal.pone.0181621
  • Kacar, B., ve İnal. A. 2008. Bitki analizleri (1. Baskı). Nobel Akademi Yayıncılık. No.1241 Ankara, 892s.
  • Kacar, B. 2009. Toprak Analizleri (3. Baskı). Nobel Akademi Yayıncılık, No. 1387. Ankara, 466 s.
  • Kacar, B., ve Kütük, C. 2010. Gübre Analizleri (1. Baskı). Nobel Akademi Yayıncılık, No.1497, Ankara. 400 s.
  • Karaman, M.R., Brohi, A.R., Müftüoğlu, N.M., Öztaş, T., Zengin, M. 2012. Sürdürülebilir Toprak Verimliliği, 3. Baskı, Koyulhisar Ziraat Odası Kültür yayınları No:1, Pelin Matbacılık, 391s. ISBN 978-605-86684-0-9
  • Kebede, T., Diriba, D., Boki, A. 2023. The effect of organic solid waste compost on soil properties, growth, and yield of swiss chard crop (Beta vulgaris L.). Hindavi, The Scientific World Journal, Vol. 2023, Article ID 6175746, 10p; doi:10.1155/2023/6175746
  • Kelley, A. J., Campbell, D. N., Wilkie, A. C., Maltais-Landry, G. 2022. Compost Composition and Application Rate Have a Greater Impact on Spinach Yield and Soil Fertility Benefits Than Feedstock Origin. Horticulturae, 8(8): 688. https://doi.org/10.3390/horticulturae8080688
  • Kovács, A.B., Kremper, R., Kincses, I., Leviczky, Á. 2016. Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of Spinach (Spinacia oleracea L.). Agraria Debreceniensis, 70: 23-28; doi:10.34101/actaagrar/70/1812
  • Kumar, V., Chopra, A.K., Srivastava, S. 2016. Assessment of Heavy Metals in Spinach (Spinacia oleracea L.) Grown in Sewage Sludge Amended Soil. Communications in Soil Science and Plant Analysis, 47(2): 221-236, 10.1080/00103624.2015.1122799
  • Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J. 2012. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of The Total Environment. 438:477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092
  • Leogrande, R., Lopedota, O., Fiore, A., Vitti, C., Ventrella, D., Montemurro, F. 2013. Previous crops and organic fertilizers in lettuce: effects on yields and soil properties. Journal of Plant Nutrition, 36(13):1945–1962; doi: 10.1080/01904167.2012.754042
  • Lindsay, W. L., ve Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x
  • Liu, C.W., Sung, Y., Chen, B.C., Lai, H.Y. 2014. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health, 11: 4427-4440; doi:10.3390/ijerph110404427
  • Lodha, S., Sharma, S.K., Aggrawal, R.K. 2002. Inactivation of Macrophomina phaseolina propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean. Eur J Plant Pathol, 108(3): 253-361. http://dx.doi.org/10.1023/A:1015103315068
  • Machado, R. M. A., Alves-Pereira, I., Lourenço, D., Ferreira, R.M.A. 2020. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon, 6(9): e05085. https://doi.org/10.1016/j.heliyon.2020.e05085
  • Maftoun, M., Moshiri, F., Karimian, N., Ronaghi, A.M. 2004. Effects of Two Organic Wastes in Combination with Phosphorus on Growth and Chemical Composition of Spinach and Soil Properties. Journal of Plant Nutrition, 27 (9): 1635-1651. http://dx.doi.org/10.1081/PLN-200026005
  • Mahmoud, E., Abd El-Kader, N., Elbaroudy, A., Lamyaa, A.R. 2007. Residual effects of different organic and inorganic fertilizers on spinach (Spinacia Oleracea L.) plant grown on clay and sandy soils. J.Agric.&Env.Sci.Alex.Univ., Egypt, 6 (3): 49-65.
  • Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., Abid, M., Ullah, S. 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of Soil Science and Plant Nutrition, 17(1): 22-32. doi:10.4067/S0718-95162017005000002
  • Majaule, U., Dikinya, O., Glaser, B. 2020. Interactive effects of biochar and sewage sludge on bioavailability and plant uptake of Cu, Fe, and Zn, and spinach (Spinacia oleracea L.) yields under wastewater irrigation. Agronomy, 10(1901):7-15; doi:10.3390/agronomy10121901
  • Mak, T. M. W., Xiong, X., Tsang, D. C. W., Yu, I. K. M., C. S. Poon. 2020. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. BioresourceTechnology, 297(2020):122497;doi:10.1016/j.biortech.2019.122497
  • Melikoğlu, M., Lin, C.S.K., Webb, C. 2013. Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3(2):157-164. https://doi.org/10.2478/s13531-012-0058-5
  • Munesue, Y., Masui, T., Fushima, T. 2015. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies, 17:43–77; doi 10.1007/s10018-014-0083-0
  • Nasreen, Z., Qazi, J.I. 2012. Lab scale composting of fruits and vegetable waste at elevated temperature and forced aeration. Pak J Zool., 44(5):1285-1290; doi: 0030-9923/2012/0005-1185 $ 8.00/0
  • Nathan, E.M., Starbuck, C.J., Kremer, R.J., Jett, L.W. 2005. Effects of a Food Waste-Based Soil Conditioner on Soil Properties and Plant Growth. Compost Science & Utilization, 13 (2): 116-121; doi: 10.1080/1065657X.2005.10702227
  • Ngwira, A.R., Nyırenda, M., Taylor, D. 2013. Toward Sustainable Agriculture: An Evaluation of Compost and Inorganic Fertilizer on Soil Nutrient Status and Productivity of Three Maize Varieties Across Multiple Sites in Malawi. Agroecology and Sustainable Food Systems, 37(8):859-881; doi: 10.1080/21683565.2013.763889
  • O’Connor, J., Hoang, S.A., Bradley, L., Dutta, S., Xiong, X., Tsang, D.C.W., Ramadass, K., Vinu, A., Kirkham, M.B., Bolan, N.S. 2021. A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272: 115985. https://doi.org/10.1016/j.envpol.2020.115985
  • Olsen, S. R., Dean, L. A. 1965. Phosphorus. In Methods of soil analysis. Part II, ed. C. A. Black, 1035–49. Madison, Wisconsin: American Society of Agronomy Inc.
  • Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N. 2015. Biochar: Production, chacterization, and applications. CRC Press, Frolrida, USA, 408p.
  • Özkan, N., Dağlıoğlu, M., Ünser, E., Müftüoğlu, N.M. 2016. Vermikompostun ıspanak (Spinacia oleracea L.) verimi ve bazın toprak özellikleri üzerine etkisi. ÇOMÜ Zir. Fak. Derg., 4 (1): 1-5, www.researchgate.net/publication/311845432
  • Özsoy, G. 2001. Uludağ Üniversitesi Kampüs Alanı Topraklarının Genesisi ve Sınıflandırılması. Uludağ Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı (Yüksek Lisans Tezi), Bursa. 120s.
  • Pathak, A.K., ve Christopher, K. 2019. Study of socio-economic condition and constraints faced by the farmers in adoption of Bio fertilizer in Bhadohi district (Uttar Pradesh). Journal of Pharmacognosy and Phytochemistry, 8 (2): 1916-1917. e-ıssn: 2278-4136
  • Poore, J., ve Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392): 987-992. https://doi.org/10.1126/science.aaq0216
  • Rajaie, M., ve Tavakoly, A.R. 2016. Effects of municipal waste compost and nitrogen fertilizer on growth and mineral composition of tomato. Int J Recycl Org Waste Agricult, 5:339–347; doi: 10.1007/s40093-016-0144-4
  • Reis, M., Coelho, L., Beltrão, J., Domingos, I., Moura, M. 2014. Comparative effects of inorganic and organic compost fertilization on lettuce (Lactuca sativa L.). Internatıonal Journal of Energy and Envıronment, 8 (1): 137-146. https://www.researchgate.net/publication/263854351
  • Reyes-Torres, M., Oviedo-Ocaňa, E., Dominguez, L., Komilis, D., Sánchez, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77(1): 486-499, https://doi.org/10.1016/j.wasman.2018.04.037
  • Reynolds, W.D., Drury, C.F., Tan, S.,Yang, M. 2015. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci., 95(1): 251-268; doi:10.4141/CJSS-2014-114
  • Robarge, W. P., Edwards, A., Johnson, B. 1983. Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14 (12):1207–15. doi: 10.1080/00103628309367444
  • Sall, P.M., Antoun, H., Chalifour, F.P., Beauchamp, C.J. 2019. Potential use of leachate from composted fruit and vegetable waste as fertilizer for corn. Cogent Food & Agriculture, 5: 1580180, https://doi.org/10.1080/23311932.2019.1580180
  • Shestha, P., Small G. E., Kay, A. 2020. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. Plos One, 15(4):1-15. https://doi.org/10.1371/journal.pone.0230996
  • Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G., Eich-Greatorex, S. 2018. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 7:49–58. https://doi.org/10.1007/s40093-017-0188-0
  • Solorzano, L. 1969. Determination of ammonia in natural waters by phenol hypochlorite method. Limnology and Oceanography, 14 (5):799–801. doi: 10.4319/lo.1969.14.5.07
  • Sotamenoua, J., ve Parrot, L. 2013. Sustainable urban agriculture and the adoption of composts in Cameroon. Int J Agric Sustain., 11 (3): 282-295. http://dx.doi.org/10.1080/14735903.2013.811858
  • Swift, R. S., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Sumner, M. E. 1996. Organic matter characterization. In Methods of soil analysis. Part 3: Chemical methods. Madison, USA: Soil Science Society America Inc, 1011–69.
  • Tamer, N., Başalma, D., Türkmen, C., Namlı, A. 2016. Organik toprak düzenleyicilerin toprak parametreleri ve ayçiçeği (Helianthus annuus L.) bitkisinin verim ve verim öğeleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (1): 11-21, e-ISSN: 2146-8141
  • Tampio, E., Ervasti, S., Rintala, J. 2015. Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. Journal of Cleaner Production, 94: 86-92; doi: 10.1016/j.jclepro.2015.01.086
  • Thi, N.B.D., Kumar, G., Lin, C.Y. 2015. An overview of food waste management in developing countries: Current status and future perspective. J Environ Manage, 157: 220-229. doi:10.1016/j.jenvman.2015.04.022
  • Tümsavaş, Z. 2003. Bursa ili vertisol büyük toprak grubu topraklarının verimlilik durumlarının toprak analizleriyle belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 17(2): 9-21. https://dergipark.org.tr/tr/download/article-file/153982
  • USDA. 2013. U.S. dept. of agriculture soil taxonomy. Accessed November 14, 2013. Erişim adresi: http://www.soils.usda.gov/tecnical/ classification/osd/index.html
  • Voběrková, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., ve Vaverková, M. D. 2020. Food waste composting - Is it really so simple as stated in scientific literature? – A case study. Science of the Total Environment, 723 (1):1-14. doi:10.1016/j.scitotenv.2020.138202
  • Voelklein, M.A., O’Shea, R., Jakob, A., Murphy, J.D. 2017. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy, 121(1): 185-192, https://doi.org/10.1016/j.energy.2017.01.009
  • Walkley, A., ve Black, L. A. 1934. An examination of the Degtjareff method for determining soils organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37:29–38.
  • Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Rashid, M.I., Ismail, I.M.I. 2018. Optimization of food waste compost with the use of biochar. Journal of Environmental Management, 216(1): 70-81; doi:10.1016/j.jenvman.2017.06.015
  • Xu, F., Li, Y., Ge, X., Yang, L., Li, Y. 2018. Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247 (1) :1047-1058, https://doi.org/10.1016/j.biortech.2017.09.020
  • Yağmur, B., ve Okur, B. 2018. Bazı Doğal Toprak Düzenleyicilerin Mısır (Zea Mays L.) Bitkisinin Verim Parametreleri Üzerine Etkileri. Ege Üniv. Ziraat Fakültesi Dergisi, 55(4): 471-477. Doi: 10.20289/zfdergi.419225
  • Yang, F., Li, Y., Han, Y., Qian, W., Li, G., Lua, W. 2019. Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 657(1): 262-269. https://doi.org/10.1016/j.scitotenv.2018.12.030
  • Zhang, L., Lee, Y.W., Jahng, G. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8): 5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082
  • Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4): 929-935. https://doi.org/10.1016/j.biortech.2006.02.039

Effects of Food Waste Compost and Chemical Fertilizer Application on the Fertility of Vertisol Group Soils Growing Lettuce and Spinach

Year 2024, , 396 - 408, 30.04.2024
https://doi.org/10.30910/turkjans.1433803

Abstract

The study was carried out to investigate the effects of applying food waste compost (FWC) on soil fertility. The experiment was carried out according to the random plot design in greenhouse conditions, with 2 chemical fertilizer applications (with and without chemical fertilizer), 1 compost material, 5 different doses (0, 8, 16, 24, 32 g kg-1) and 3 replications was carried out in such a way that. As chemical fertilizer, 15-15-15 NPK (N:P2O5:K2O) fertilizer was applied at 2 t da-1. In general, applications increased the fertility parameters and plant nutrient contents of soils. When the averages of both lettuce and spinach trial results are evaluated together; It was determined that it increased the EC of the soil by 57.21%, OM by 61.23%, total N by 48.35% and decreased pH by 3.29%. It was determined that when FWC + NPK was added to the soil, it increased the soil EC by 76.85%, OM by 72.35%, total N by 56.25% and available Zn by 29.19%, and decreased pH by 4.66%. Unlike these results; When FWC was applied alone, the increase in available P in the soil where lettuce plants were located was 67.63%, and in GAK + NPK application, the increase was 47.14%. The highest values of these parameters were obtained at the dose of 32 g kg-1 of FWC supplementation. Application of FWC to soil decreased soil pH and increased EC.

Project Number

FHIZ-2022/835

References

  • Abd El-Gawad, A.M., Morsy, A.S.M. 2017. Integrated impact of organic and inorganic fertilizers on growth, yield of maize (Zea mays L.) and soil properties under upper Egypt conditions. J. Plant Production, Mansoura Univ., 8(11): 1103-1112. https://doi.org/10.21608/jpp.2017.41121
  • Aksoy, E., Dirim, M.S., Tümsavaş, Z., Özsoy, G. 2001. Formation of Uludag University Campus Area Soils, Important Physical, Chemical Properties and Classification. Research Fund of the University of Uludag, Project No:98/32, Bursa, Turkey, 118p.
  • Anonim. 1988. Türkiye gübreler ve gübreleme rehberi. T.C.T.O.K.B. Köy Hizmetleri genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Genel Yayın No: 151, Teknik Yayın No: T-50, Ankara, 182s.
  • Anonim. 1994. Method EPA 3051, Microwave assisted acid digestion of sediments, sludges, soils and oils. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, 1–14. Washington, DC: U.S. Government Printing Office
  • Aziz, T., Ullah, S., Sattar, A., Nasım, M., Farooq, M., Khan, M. 2010. Nutrient Availability and Maize (Zea mays) Growth in Soil Amended with Organic Manures. International Journal of Agriculture & Biology, 12(4): 621-624. 10–070/RAS/2010/12–4–621–624
  • Barzee, T.J., Edalati, A., El-Mashad, H., Wang, D., Scow, K., Zhang, R. 2019. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Frontiers in Sustainable Food Systems, 58(3): 1-13; doi: 10.3389/fsufs.2019.00058
  • Bıyıklı, M., Dorak, S., Aşık, B.B. 2020. Effects of Food Industry Wastewater Treatment Sludge on Corn Plant Development and Soil Properties. Pol. J. Environ. Stud., 29(4): 2565-2578; doi: 10.15244/pjoes/112897
  • Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., Kirkham, M.B., Scheckel, K. 2014. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Journal of Hazardous Materials, 266(1):141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018
  • Bouyoucos, G.H. 1951. A recalibration of the hydrometer for making mechanical analysis of soils. Journal of Agronomy, 43(1): 434-438.
  • Bremner, J.M. 1965. Total nitrogen. C.A. Black (Ed) Methods of soil analysis, Part 2. American Soc. Ag. Inc. Pub. Agronomy Series, No.9, Madison, Wisconsin, pp 1149-1178.
  • Cecilia, J.A., Garcia-Sancho, C., Maireles-Torres, P. J., R., Luque. 2019. Industrial food waste valorization: a general overview. Biorefinery. Springer, pp. 253-277. http://dx.doi.org/10.1007/978-3-030-10961-5-11
  • Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresour Technol, 248: 57–67. https://doi.org/10.1016/j.biortech.2017.06.133
  • Cheong, J.C., Lee, J.T., Lim, J.M., Song, S., Tan, J.K., Chiam, Z.Y., Yap., K.Y., Lim, E.Y., Zhang, J., Tan, H.T. 2020. Closing the food waste loop: Food waste anaerobic digestate as fertilizer for the cultivation of the leafy vegetable, xiao bai cai (Brassica rapa). Science of The Total Environment, 715: 136789; doi:10.1016/j.scitotenv.2020.136789
  • Çerçioğlu, M., Okur, B., Delibacak, S., Ongun, A.R. 2012. Effects of Tobacco Waste and Farmyard Manure on Soil Properties and Yield of Lettuce (Lactuca sativa L. var. capitata). Communications in Soil Science and Plant Analysis, 43:875–886; doi: 10.1080/00103624.2012.653023
  • Çıtak, S., Sönmez, S., Koçak, F., Yasin, S. 2011. The effect of vermicompost and barnyard manure applications on the development of spinach plant and soil fertility. West Mediterranean Agricultural Research Institute. Derim Journal, 28(1): 56-59.
  • De Nobile, F.O., Hurtado, A.C., Prado, R.de M., de Souza, H.A., Anunciação, M.G., Palaretti, L.F., Dezem, L.A.S.N. 2021. A novel technology for processing urban waste compost as a fast releasing nitrogen source to ımprove soil properties and broccoli and lettuce production. Waste and Biomass Valorization, 12(1):6191–6203; https://doi.org/10.1007/s12649-021-01415-z
  • Eghball, B., Ginting, D., Gilley, J.E. 2004. Residual Effects of Manure and Compost Applications on Corn Production and Soil Properties. Agron. J., 96:442–447. htp/digitalcommons.unl.edu/biosysengfacpub/14
  • Facchin, V., Cavinato, C., Fatone, F., Pavan, P., Cecchi, F., Bolzonella, D. 2013. Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: The influence of inoculum origin. Biochemical Engineering Journal, 70: 71-77. https://doi.org/10.1016/j.bej.2012.10.004
  • FAO, 2008. Guide to Laboratory Establishment for Plant Nutrient Analysis. FAO Fertilizer and Plant Nutrition Bulletin 19 (Eds. M. R. Motsara, R. N. Roy), Rome. ISBN 978–92–5–10598. https://jardindemaud.fr/pdf/MotsaraMRetal.pdf
  • Gezahegn, A.M. 2021. Effect of organic fertilizers on maize (Zea mays L.) production and soil physical and chemical properties. World Applied Sciences Journal, 39 (1): 11-19; doi: 10.5829/idosi.wasj.2021.11.19
  • Giannakis, G.V., Kourgialas, N., Paranychianakis, N.V., Nikolaidis, N.P., Kalogerakis, N. 2014. Effects of Municipal Solid Waste Compost on Soil Properties and Vegetables Growth. Compost Science & Utilization, 22(3):116-131, doi: 10.1080/1065657X.2014.899938
  • Gill, S.S., Jana, A.M., A., Shrivastav. 2014. Aerobic Bacterial Degradation of Kitchen waste: A review. J Microbiol Biotechnol Food Sci., 3(6): 477-483. https://doi.org/10.15414/jmbfs.2014.3.6.477-483
  • Giménez, A., Gómez, P. Á., Bustamante, M. A., Pérez-Murcia, M. D., Martínez-Sabater, E., Ros, M., Pascual, J.A., Egea-Gilabert, C., Fernández, J. A. 2021. Effect of Compost Extract Addition to Different Types of Fertilizers on Quality at Harvest and Shelf Life of Spinach. Agronomy, 11(4): 632; doi:10.3390/agronomy11040632
  • Ghinea, C., Leahu, A. 2020. Monitoring of Fruit and Vegetable Waste Composting Process: Relationship between Microorganisms and Physico-Chemical Parameters. Processes, 8(3): 302. https://doi.org/10.3390/pr8030302
  • Gondek, M., Weindorf, D. C., Thiel, C., Kleinheinz, G. 2020. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Science and Utilization. 28 (2): 59-75. https://doi.org/10.1080/1065657X.2020.1772906
  • Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybek, A. 2011. Global food losses and food waste. The Swedish Institute for Food and Biotechnology Save Food Congress, Düsseldorf 16 May 2011.
  • Güneş, A., Alpaslan, M., İnal, A. 2013. Bitki Besleme ve Gübreleme. 6. Baskı, Ders Kitabı No: 533, Ankara Üniversitesi Ziraat Fakültesi Yayınları, No: 158, Ankara, ISBN 978-975-482-878-8
  • Hafid, H. S., Rahman, N. A. A., Shah, U. K. M., Baharuddin, A. S., Ariff, A.B. 2017. Feasibility of using kitchen waste as future substrate for bioethanol production: a review. Renew. Sust. Energ. Rev., 74 (2): 671–686; doi: 10.1016/j.rser.2017.02.071
  • Hashimi, R., Habibi, H.K. 2021. Effects of organic and inorganic fertilizers Applications levels on greenhouse tomato (Solanum lycopersicum) yield and soil quality in Khost Province. Asian Journal of Soil Science and Plant Nutrition, 7(4): 1-10; doi: 10.9734/AJSSPN/2021/v7i430117
  • Hernández, A., Castillo, H., Ojeda, D., Arras, A., López, J., Sánchez, E. 2010. Effect of Vermicompost and Compost on Lettuce Production. Chilean Journal of Agricultural Research, 70 (4): 583-589. http://dx.doi.org/10.4067/S0718-58392010000400008
  • Hossain, M. B., Ryu, K. S. 2017. Effects of Organic and Inorganıc Fertilizers on Lettuce (Lactuca Sativa L.) and Soil Properties. SAARC J. Agri., 15(2): 93-102. http://dx.doi.org/10.3329/sja.v15i2.35158
  • Jackson, M. L. 1958. Soil chemical analysis, 38–226. New Jersey, USA: Prentice Hall Inc.
  • Jakhro, M. I., Shah, S. I., Zehri, M. Y., Rahujo, Z. A., Ahmed, S., Ahmed, S., Jakhro, M. A. 2017. Growth and Yield of Spinach (Spinacia oleracea L.) Under Fluctuating Levels of Organic and Inorganic Fertilizers. International Journal of Development Research, 7(2):11454-11460. Issn: 2230-9926, http://www.journalijdr.com.
  • Jara-Samaniego, J., Pérez-Murcia, M.D., Bustamande, M.A., Paredes, C., Pérez-Espinosa, A., Gavilanes-Terán, I., López, M., Marhuenda-Egea, F.C., Brito, H., Moral, R. 2017. Development of organic fertilizers from food market waste and urban gardening by composting in Ecuador. Plos One, 12(7): 1-17; doi: 10.1371/journal.pone.0181621
  • Kacar, B., ve İnal. A. 2008. Bitki analizleri (1. Baskı). Nobel Akademi Yayıncılık. No.1241 Ankara, 892s.
  • Kacar, B. 2009. Toprak Analizleri (3. Baskı). Nobel Akademi Yayıncılık, No. 1387. Ankara, 466 s.
  • Kacar, B., ve Kütük, C. 2010. Gübre Analizleri (1. Baskı). Nobel Akademi Yayıncılık, No.1497, Ankara. 400 s.
  • Karaman, M.R., Brohi, A.R., Müftüoğlu, N.M., Öztaş, T., Zengin, M. 2012. Sürdürülebilir Toprak Verimliliği, 3. Baskı, Koyulhisar Ziraat Odası Kültür yayınları No:1, Pelin Matbacılık, 391s. ISBN 978-605-86684-0-9
  • Kebede, T., Diriba, D., Boki, A. 2023. The effect of organic solid waste compost on soil properties, growth, and yield of swiss chard crop (Beta vulgaris L.). Hindavi, The Scientific World Journal, Vol. 2023, Article ID 6175746, 10p; doi:10.1155/2023/6175746
  • Kelley, A. J., Campbell, D. N., Wilkie, A. C., Maltais-Landry, G. 2022. Compost Composition and Application Rate Have a Greater Impact on Spinach Yield and Soil Fertility Benefits Than Feedstock Origin. Horticulturae, 8(8): 688. https://doi.org/10.3390/horticulturae8080688
  • Kovács, A.B., Kremper, R., Kincses, I., Leviczky, Á. 2016. Influences of different organic fertilizers on nutrients of humic sandy soil and on the growth of Spinach (Spinacia oleracea L.). Agraria Debreceniensis, 70: 23-28; doi:10.34101/actaagrar/70/1812
  • Kumar, V., Chopra, A.K., Srivastava, S. 2016. Assessment of Heavy Metals in Spinach (Spinacia oleracea L.) Grown in Sewage Sludge Amended Soil. Communications in Soil Science and Plant Analysis, 47(2): 221-236, 10.1080/00103624.2015.1122799
  • Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J. 2012. Lost food, wasted resources: Global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Science of The Total Environment. 438:477-489. https://doi.org/10.1016/j.scitotenv.2012.08.092
  • Leogrande, R., Lopedota, O., Fiore, A., Vitti, C., Ventrella, D., Montemurro, F. 2013. Previous crops and organic fertilizers in lettuce: effects on yields and soil properties. Journal of Plant Nutrition, 36(13):1945–1962; doi: 10.1080/01904167.2012.754042
  • Lindsay, W. L., ve Norvell, W. A. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society of America Journal, 42:421–28. doi:10.2136/sssaj1978.03615995004200030009x
  • Liu, C.W., Sung, Y., Chen, B.C., Lai, H.Y. 2014. Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). Int. J. Environ. Res. Public Health, 11: 4427-4440; doi:10.3390/ijerph110404427
  • Lodha, S., Sharma, S.K., Aggrawal, R.K. 2002. Inactivation of Macrophomina phaseolina propagules during composting and effect of composts on dry root rot severity and on seed yield of clusterbean. Eur J Plant Pathol, 108(3): 253-361. http://dx.doi.org/10.1023/A:1015103315068
  • Machado, R. M. A., Alves-Pereira, I., Lourenço, D., Ferreira, R.M.A. 2020. Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon, 6(9): e05085. https://doi.org/10.1016/j.heliyon.2020.e05085
  • Maftoun, M., Moshiri, F., Karimian, N., Ronaghi, A.M. 2004. Effects of Two Organic Wastes in Combination with Phosphorus on Growth and Chemical Composition of Spinach and Soil Properties. Journal of Plant Nutrition, 27 (9): 1635-1651. http://dx.doi.org/10.1081/PLN-200026005
  • Mahmoud, E., Abd El-Kader, N., Elbaroudy, A., Lamyaa, A.R. 2007. Residual effects of different organic and inorganic fertilizers on spinach (Spinacia Oleracea L.) plant grown on clay and sandy soils. J.Agric.&Env.Sci.Alex.Univ., Egypt, 6 (3): 49-65.
  • Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., Abid, M., Ullah, S. 2017. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of Soil Science and Plant Nutrition, 17(1): 22-32. doi:10.4067/S0718-95162017005000002
  • Majaule, U., Dikinya, O., Glaser, B. 2020. Interactive effects of biochar and sewage sludge on bioavailability and plant uptake of Cu, Fe, and Zn, and spinach (Spinacia oleracea L.) yields under wastewater irrigation. Agronomy, 10(1901):7-15; doi:10.3390/agronomy10121901
  • Mak, T. M. W., Xiong, X., Tsang, D. C. W., Yu, I. K. M., C. S. Poon. 2020. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. BioresourceTechnology, 297(2020):122497;doi:10.1016/j.biortech.2019.122497
  • Melikoğlu, M., Lin, C.S.K., Webb, C. 2013. Analysing global food waste problem: pinpointing the facts and estimating the energy content. Central European Journal of Engineering, 3(2):157-164. https://doi.org/10.2478/s13531-012-0058-5
  • Munesue, Y., Masui, T., Fushima, T. 2015. The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions. Environmental Economics and Policy Studies, 17:43–77; doi 10.1007/s10018-014-0083-0
  • Nasreen, Z., Qazi, J.I. 2012. Lab scale composting of fruits and vegetable waste at elevated temperature and forced aeration. Pak J Zool., 44(5):1285-1290; doi: 0030-9923/2012/0005-1185 $ 8.00/0
  • Nathan, E.M., Starbuck, C.J., Kremer, R.J., Jett, L.W. 2005. Effects of a Food Waste-Based Soil Conditioner on Soil Properties and Plant Growth. Compost Science & Utilization, 13 (2): 116-121; doi: 10.1080/1065657X.2005.10702227
  • Ngwira, A.R., Nyırenda, M., Taylor, D. 2013. Toward Sustainable Agriculture: An Evaluation of Compost and Inorganic Fertilizer on Soil Nutrient Status and Productivity of Three Maize Varieties Across Multiple Sites in Malawi. Agroecology and Sustainable Food Systems, 37(8):859-881; doi: 10.1080/21683565.2013.763889
  • O’Connor, J., Hoang, S.A., Bradley, L., Dutta, S., Xiong, X., Tsang, D.C.W., Ramadass, K., Vinu, A., Kirkham, M.B., Bolan, N.S. 2021. A review on the valorisation of food waste as a nutrient source and soil amendment. Environmental Pollution, 272: 115985. https://doi.org/10.1016/j.envpol.2020.115985
  • Olsen, S. R., Dean, L. A. 1965. Phosphorus. In Methods of soil analysis. Part II, ed. C. A. Black, 1035–49. Madison, Wisconsin: American Society of Agronomy Inc.
  • Ok, Y.S., Uchimiya, S.M., Chang, S.X., Bolan, N. 2015. Biochar: Production, chacterization, and applications. CRC Press, Frolrida, USA, 408p.
  • Özkan, N., Dağlıoğlu, M., Ünser, E., Müftüoğlu, N.M. 2016. Vermikompostun ıspanak (Spinacia oleracea L.) verimi ve bazın toprak özellikleri üzerine etkisi. ÇOMÜ Zir. Fak. Derg., 4 (1): 1-5, www.researchgate.net/publication/311845432
  • Özsoy, G. 2001. Uludağ Üniversitesi Kampüs Alanı Topraklarının Genesisi ve Sınıflandırılması. Uludağ Üniversitesi Fen Bilimleri Enstitüsü Toprak Anabilim Dalı (Yüksek Lisans Tezi), Bursa. 120s.
  • Pathak, A.K., ve Christopher, K. 2019. Study of socio-economic condition and constraints faced by the farmers in adoption of Bio fertilizer in Bhadohi district (Uttar Pradesh). Journal of Pharmacognosy and Phytochemistry, 8 (2): 1916-1917. e-ıssn: 2278-4136
  • Poore, J., ve Nemecek, T., 2018. Reducing food’s environmental impacts through producers and consumers. Science, 360(6392): 987-992. https://doi.org/10.1126/science.aaq0216
  • Rajaie, M., ve Tavakoly, A.R. 2016. Effects of municipal waste compost and nitrogen fertilizer on growth and mineral composition of tomato. Int J Recycl Org Waste Agricult, 5:339–347; doi: 10.1007/s40093-016-0144-4
  • Reis, M., Coelho, L., Beltrão, J., Domingos, I., Moura, M. 2014. Comparative effects of inorganic and organic compost fertilization on lettuce (Lactuca sativa L.). Internatıonal Journal of Energy and Envıronment, 8 (1): 137-146. https://www.researchgate.net/publication/263854351
  • Reyes-Torres, M., Oviedo-Ocaňa, E., Dominguez, L., Komilis, D., Sánchez, A. 2018. A systematic review on the composting of green waste: Feedstock quality and optimization strategies. Waste Management, 77(1): 486-499, https://doi.org/10.1016/j.wasman.2018.04.037
  • Reynolds, W.D., Drury, C.F., Tan, S.,Yang, M. 2015. Temporal effects of food waste compost on soil physical quality and productivity. Can. J. Soil Sci., 95(1): 251-268; doi:10.4141/CJSS-2014-114
  • Robarge, W. P., Edwards, A., Johnson, B. 1983. Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14 (12):1207–15. doi: 10.1080/00103628309367444
  • Sall, P.M., Antoun, H., Chalifour, F.P., Beauchamp, C.J. 2019. Potential use of leachate from composted fruit and vegetable waste as fertilizer for corn. Cogent Food & Agriculture, 5: 1580180, https://doi.org/10.1080/23311932.2019.1580180
  • Shestha, P., Small G. E., Kay, A. 2020. Quantifying nutrient recovery efficiency and loss from compost-based urban agriculture. Plos One, 15(4):1-15. https://doi.org/10.1371/journal.pone.0230996
  • Sogn, T. A., Dragicevic, I., Linjordet, R., Krogstad, T., Eijsink, V.G., Eich-Greatorex, S. 2018. Recycling of biogas digestates in plant production: NPK fertilizer value and risk of leaching. International Journal of Recycling of Organic Waste in Agriculture, 7:49–58. https://doi.org/10.1007/s40093-017-0188-0
  • Solorzano, L. 1969. Determination of ammonia in natural waters by phenol hypochlorite method. Limnology and Oceanography, 14 (5):799–801. doi: 10.4319/lo.1969.14.5.07
  • Sotamenoua, J., ve Parrot, L. 2013. Sustainable urban agriculture and the adoption of composts in Cameroon. Int J Agric Sustain., 11 (3): 282-295. http://dx.doi.org/10.1080/14735903.2013.811858
  • Swift, R. S., Sparks, D. L., Page, A. L., Helmke, P. A., Loeppert, R. H., Soltanpour, P. N., Sumner, M. E. 1996. Organic matter characterization. In Methods of soil analysis. Part 3: Chemical methods. Madison, USA: Soil Science Society America Inc, 1011–69.
  • Tamer, N., Başalma, D., Türkmen, C., Namlı, A. 2016. Organik toprak düzenleyicilerin toprak parametreleri ve ayçiçeği (Helianthus annuus L.) bitkisinin verim ve verim öğeleri üzerine etkileri. Toprak Bilimi ve Bitki Besleme Dergisi, 4 (1): 11-21, e-ISSN: 2146-8141
  • Tampio, E., Ervasti, S., Rintala, J. 2015. Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. Journal of Cleaner Production, 94: 86-92; doi: 10.1016/j.jclepro.2015.01.086
  • Thi, N.B.D., Kumar, G., Lin, C.Y. 2015. An overview of food waste management in developing countries: Current status and future perspective. J Environ Manage, 157: 220-229. doi:10.1016/j.jenvman.2015.04.022
  • Tümsavaş, Z. 2003. Bursa ili vertisol büyük toprak grubu topraklarının verimlilik durumlarının toprak analizleriyle belirlenmesi. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 17(2): 9-21. https://dergipark.org.tr/tr/download/article-file/153982
  • USDA. 2013. U.S. dept. of agriculture soil taxonomy. Accessed November 14, 2013. Erişim adresi: http://www.soils.usda.gov/tecnical/ classification/osd/index.html
  • Voběrková, S., Maxianová, A., Schlosserová, N., Adamcová, D., Vršanská, M., Richtera, L., Gagić, M., Zloch, J., ve Vaverková, M. D. 2020. Food waste composting - Is it really so simple as stated in scientific literature? – A case study. Science of the Total Environment, 723 (1):1-14. doi:10.1016/j.scitotenv.2020.138202
  • Voelklein, M.A., O’Shea, R., Jakob, A., Murphy, J.D. 2017. Role of trace elements in single and two-stage digestion of food waste at high organic loading rates. Energy, 121(1): 185-192, https://doi.org/10.1016/j.energy.2017.01.009
  • Walkley, A., ve Black, L. A. 1934. An examination of the Degtjareff method for determining soils organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37:29–38.
  • Waqas, M., Nizami, A.S., Aburiazaiza, A.S., Barakat, M.A., Rashid, M.I., Ismail, I.M.I. 2018. Optimization of food waste compost with the use of biochar. Journal of Environmental Management, 216(1): 70-81; doi:10.1016/j.jenvman.2017.06.015
  • Xu, F., Li, Y., Ge, X., Yang, L., Li, Y. 2018. Anaerobic digestion of food waste – Challenges and opportunities. Bioresource Technology, 247 (1) :1047-1058, https://doi.org/10.1016/j.biortech.2017.09.020
  • Yağmur, B., ve Okur, B. 2018. Bazı Doğal Toprak Düzenleyicilerin Mısır (Zea Mays L.) Bitkisinin Verim Parametreleri Üzerine Etkileri. Ege Üniv. Ziraat Fakültesi Dergisi, 55(4): 471-477. Doi: 10.20289/zfdergi.419225
  • Yang, F., Li, Y., Han, Y., Qian, W., Li, G., Lua, W. 2019. Performance of mature compost to control gaseous emissions in kitchen waste composting. Science of the Total Environment, 657(1): 262-269. https://doi.org/10.1016/j.scitotenv.2018.12.030
  • Zhang, L., Lee, Y.W., Jahng, G. 2011. Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8): 5048-5059. https://doi.org/10.1016/j.biortech.2011.01.082
  • Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P. 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technology, 98(4): 929-935. https://doi.org/10.1016/j.biortech.2006.02.039
There are 90 citations in total.

Details

Primary Language Turkish
Subjects Plant Nutrition and Soil Fertility
Journal Section Research Article
Authors

Serhat Gürel 0000-0002-2971-8353

Project Number FHIZ-2022/835
Early Pub Date April 30, 2024
Publication Date April 30, 2024
Submission Date February 8, 2024
Acceptance Date March 25, 2024
Published in Issue Year 2024

Cite

APA Gürel, S. (2024). Gıda Atığı Kompostu ile Kimyasal Gübre Uygulamasının Marul ve Ispanak Yetiştirilen Vertisol Grubu Toprakların Verimliliğine Etkileri. Turkish Journal of Agricultural and Natural Sciences, 11(2), 396-408. https://doi.org/10.30910/turkjans.1433803