Research Article
BibTex RIS Cite

Biyokömür ve Kükürt Uygulamasının Alkali Killi-Tınlı Topraklarda Fosfor Alınabilirliği ve Toprak Enzim Aktivitesi Üzerine Etkileri

Year 2019, , 527 - 535, 23.07.2019
https://doi.org/10.30910/turkjans.595376

Abstract

Biyokömür adı verilen “biochar (BC)” zengin
besin elementi içeriğine ve toprak ıslah edici özelliklere sahiptir. BC son zamanlarda
gübre veya toprak düzenleyici materyal olarak kullanılmaktadır. Ancak BC’nin
kükürt (S) ile birlikte uygulandığı çalışmalar sınırlıdır. Bu çalışma ile zeytin posasından elde edilmiş BC ve
S’in ayrı ayrı ve birlikte uygulanmasının killi-tınlı ve pH si yüksek olan
topraklarda fosfor (P) elverişliliği ile toprak sağlığı açısından önemli olan
enzim aktiviteleri (asit fosfataz, alkalin fosfataz, β-Glukozidaz ve
dehidrogenaz) üzerine etkileri araştırılmıştır. Topraklara farklı BC (0, %
0.75, % 1.5) ve S (0, 800 mg kg-1) dozları uygulanarak kontrollü
şartlarda faktöriyel deneme planına göre 45 gün süre ile inkübasyona
bırakılmıştır. Bu çalışma sonuçlarına göre; elektriksel iletkenlik (EC), Toplam
P ve β-glukozidaz enzim aktivitesi üzerine BC ve S interaksiyonu önemli
bulunmuştur. BC’nin, S ile birlikte uygulanması toplam fosfor miktarını
artırırken, hem BC hem de S uygulamaları elverişli P miktarını artırmıştır.
Bununla birlikte, BC ve S toprak EC değerinde artışa neden olurken S uygulaması
toprak pH değerini düşürmüştür. Ek olarak, toprak organik madde miktarı BC
dozunun artmasıyla yükselmiştir. Dikkat çekici bir şekilde BC ve S
uygulamaları; asit fosfataz, alkalin fosfataz ve dehidrogenaz enzim aktivitesi
üzerine etki yapmazken, BC uygulaması yapılmayan S uygulamasında β-glukozidaz
enzim aktivitesi azalmıştır. Bu ön çalışma BC ve S uygulamalarının arazi
koşullarında ve uygun dozlarda çalışılmasının zorunlu olduğunu göstermektedir.

References

  • Akça, M.O., Namlı, A. 2015. Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. EURASIAN J. SOIL Sci. EJSS, 4: 161-168. https://doi.org/10.18393/ejss.2015.3.161-168.
  • Allison, L.E., Moodie, C.D. 1965. Carbonate, in: In Methods of Soil Analysis. Agronomy No. 9, Part 2. Ed. C A Black American Society of Agronomy, Inc., Madison, Wisconsin, pp. 1379-1396.
  • Bailey, V.L., Fansler, S.J., Smith, J.L., Bolton, H. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem., 43: 296-301.
  • Bornø, M.L., Müller-Stöver, D.S., Liu, F. 2018. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci. Total Environ., 627: 963-974. https://doi.org/10.1016/j.scitotenv.2018.01.283.
  • Bouyoucos, G.J. 1951. A Recalibration of the hydrometer method for making mechanical analysis of soils 1. Agron. J., 43: 434. https://doi.org/10.2134/agronj1951.00021962004300090005x.
  • Bruun, S., El-Zehery, T. 2012. Biochar effect on the mineralization of soil organic matter. Pesqui. Agropecuária Bras., 47: 665-671.
  • Bustamante, M.A., Ceglie, F.G., Aly, A., Mihreteab, H.T., Ciaccia, C., Tittarelli, F. 2016. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. J. Environ. Manage., 182: 557-563.
  • Carpenter, S.R. 2008. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci., 105: 11039-11040.
  • Cordell, D., Drangert, J.O., White, S. 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change, 19: 292-305.
  • Dick, W.A., Cheng, L., Wang, P. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32: 1915-1919.
  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., Zheng, B. 2016. Biochar to improve soil fertility. A review. Agron. Sustain. Dev., 36: 36.
  • Islam, M. 2012. The effect of different rates and forms of sulfur on seed yield and micronutrient uptake by chickpea. Plant Soil Environ., 58: 399-404.
  • Jaggi, R.C., Aulakh, M.S., Sharma, R. 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biol. Fertil. Soils, 41: 52-58.
  • Jiang, X., Haddix, M.L., Cotrufo, M.F. 2016. Interactions between biochar and soil organic carbon decomposition: Effects of nitrogen and low molecular weight carbon compound addition. Soil Biol. Biochem., 100: 92-101.
  • Hashemimajd, K. 2012. Effect of elemental sulphur and compost on pH, electrical conductivity and phosphorus availability of one clay soil. Afr. J. Biotechnol., 11:. https://doi.org/10.5897/AJB11.2800.
  • Khadem, A., Raiesi, F. 2019. Response of soil alkaline phosphatase to biochar amendments: Changes in kinetic and thermodynamic characteristics. Geoderma, 337: 44–54. https://doi.org/10.1016/j.geoderma.2018.09.001.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. 2011. Biochar effects on soil biota – A review. Soil Biol. Biochem., 43: 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
  • Lehmann, J., Joseph, S. 2015. Biochar for Environmental Management: Science, Technology and Implementation. Taylor & Francis.
  • Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A. 2012. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 87: 151-157. https://doi.org/10.1016/j.chemosphere.2011.12.007.
  • Mahmoud, E., Ibrahim, M., Abd El-Rahman, L., Khader, A. 2019. Effects of Biochar and Phosphorus Fertilizers on Phosphorus Fractions, Wheat Yield and Microbial Biomass Carbon in Vertic torrifluvents. Commun. Soil Sci. Plant Anal., 50: 362-372. https://doi.org/10.1080/00103624.2018.1563103.
  • Nannipieri, P., Giagnoni, L., Landi, L., Renella, G. 2011. Role of Phosphatase Enzymes in Soil, in: Bünemann, E., Oberson, A., Frossard, E. (Eds.), Phosphorus in Action. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 215-243. https://doi.org/10.1007/978-3-642-15271-9_9.
  • Noyce, G., Jones, T., Fulthorpe, R., Basiliko, N. 2017. Phosphorus uptake and availability and short-term seedling growth in three Ontario soils amended with ash and biochar. Can. J. Soil Sci., https://doi.org/10.1139/CJSS-2017-0007.
  • Olsen, S.R., Cole, C.V., Watanable, F.S., Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Wash. DC US Dep. Agric., 939: 19.
  • Olsen, S.R., Sommers, L.E. 1982. Phosphorus, in: In: Page, A.L., Ed., Methods of Soil Analysis Part 2, Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, pp. 403-430.
  • Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. In: USDA Hand Book. United States Salinity Laboratory, Washington, USA.
  • Rousk, J., Brookes, P.C., Bååth, E. 2010. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem., 42: 516-520. https://doi.org/10.1016/j.soilbio.2009.11.026.
  • Schlichting, E., Blume, H.P. 1966. Bodenkundliches Praktikum. In Parley, Hamburg.
  • Schönegger, D., Gómez-Brandón, M., Mazzier, T., Insam, H., Hermanns, R., Leijenhorst, E., Bardelli, T., Fernández-Delgado Juárez, M. 2018. Phosphorus fertilising potential of fly ash and effects on soil microbiota and crop. Resour. Conserv. Recycl., 134: 262-270. https://doi.org/10.1016/j.resconrec.2018.03.018.
  • Sherman, C., Unc, A., Doniger, T., Ehrlich, R., Steinberger, Y. 2019. The effect of human trampling activity on a soil microbial community at the Oulanka Natural Reserve, Finland. Appl. Soil Ecol., 135: 104-112. https://doi.org/10.1016/j.apsoil.2018.11.013.
  • Sonmez, O., Turan, V., Kaya, C. 2016. The effects of sulfur, cattle, and poultry manure addition on soil phosphorus. Turk. J. Agric. For., 40: 536-541. https://doi.org/10.3906/tar-1601-41.
  • Stewart, C.E., Zheng, J., Botte, J., Cotrufo, M.F. 2013. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy, 5: 153-164. https://doi.org/10.1111/gcbb.12001.
  • Sun, D., Hale, L., Kar, G., Soolanayakanahally, R., Adl, S. 2018. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere, 194: 682-691. https://doi.org/10.1016/j.chemosphere.2017.12.035.
  • Tabatabai, M.A. 1994. Soil Enzymes, in: Methods of Soil Analysis: In R. W. Weaver, J. S. Angle, & P. S. Botttomley (Eds.),. WI: Soil Science Society of America, Madison, Wisconsin, pp. 775-833.
  • Turan, V., Khan, S.A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P.M.A., Fatima, M. 2018a. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf., 161: 409-419. https://doi.org/10.1016/j.ecoenv.2018.05.082.
  • Turan, V., Ramzani, P.M.A., Ali, Q., Abbas, F., Iqbal, M., Irum, A., Khan, W.D. 2018b. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch. Agron. SOIL Sci., 64: 1053-1067. https://doi.org/10.1080/03650340.2017.1410542.
  • Van Vuuren, D.P., Bouwman, A.F., Beusen, A.H.W. 2010. Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion. Glob. Environ. Change, 20: 428-439. https://doi.org/10.1016/j.gloenvcha.2010.04.004.
  • Wu, F., Jia, Z., Wang, S., Chang, S.X., Startsev, A. 2013. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils, 49: 555-565. https://doi.org/10.1007/s00374-012-0745-7.
  • Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., Chen, J., Dyck, M., Wang, X., Zhang, J., Zhang, A. 2017. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res., 24: 10108-10120. https://doi.org/10.1007/s11356-017-8505-8.

Effects of Biochar and Sulfur amendment on Soil Phosphorus and Soil Enzyme Activity in Alkaline Clay-Loam Soil

Year 2019, , 527 - 535, 23.07.2019
https://doi.org/10.30910/turkjans.595376

Abstract

Biochar (BC) has rich
nutrient content and soil-improving properties. BC has recently been used as a
fertilizer or soil amendment material. However, studies in which BC is applied
with sulfur (S) are limited. In this study, effects of BC obtained from olive
pulp and S separately and in combination with phosphorus (P) in soil with clay
loam and high pH effects on enzyme activities -important for soil health- (acid
phosphatase, alkaline phosphatase, β-Glucosidase and Dehydrogenase) have been
examined. Different BC (0, 0.75%, 1.5%) and S (0, 800 mg kg-1) doses
have been applied to the soil and incubated under controlled conditions for 45
days according to the factorial trial plan. According to the results of this
study, BC and S interaction on electrical conductivity (EC), Total P and
β-Glucosidase enzyme activity were found to be significant. BC and S
application increased the total phosphorus amount, while both BC and S
applications increased the available amount of P. However, BC and S resulted in
an increase in soil EC value and S application decreased soil pH value. In
addition, the amount of soil organic matter increased with the increase in the
dose of BC. Strikingly while BC and S applications did not affect enzyme
activity acid phosphatase, alkaline phosphatase and dehydrogenase,
β-glucosidase enzyme activity was decreased in S application without BC
application. This preliminary study shows that BC and S applications are
required to be studied at appropriate field conditions and at appropriate
doses.

References

  • Akça, M.O., Namlı, A. 2015. Effects of poultry litter biochar on soil enzyme activities and tomato, pepper and lettuce plants growth. EURASIAN J. SOIL Sci. EJSS, 4: 161-168. https://doi.org/10.18393/ejss.2015.3.161-168.
  • Allison, L.E., Moodie, C.D. 1965. Carbonate, in: In Methods of Soil Analysis. Agronomy No. 9, Part 2. Ed. C A Black American Society of Agronomy, Inc., Madison, Wisconsin, pp. 1379-1396.
  • Bailey, V.L., Fansler, S.J., Smith, J.L., Bolton, H. 2011. Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol. Biochem., 43: 296-301.
  • Bornø, M.L., Müller-Stöver, D.S., Liu, F. 2018. Contrasting effects of biochar on phosphorus dynamics and bioavailability in different soil types. Sci. Total Environ., 627: 963-974. https://doi.org/10.1016/j.scitotenv.2018.01.283.
  • Bouyoucos, G.J. 1951. A Recalibration of the hydrometer method for making mechanical analysis of soils 1. Agron. J., 43: 434. https://doi.org/10.2134/agronj1951.00021962004300090005x.
  • Bruun, S., El-Zehery, T. 2012. Biochar effect on the mineralization of soil organic matter. Pesqui. Agropecuária Bras., 47: 665-671.
  • Bustamante, M.A., Ceglie, F.G., Aly, A., Mihreteab, H.T., Ciaccia, C., Tittarelli, F. 2016. Phosphorus availability from rock phosphate: Combined effect of green waste composting and sulfur addition. J. Environ. Manage., 182: 557-563.
  • Carpenter, S.R. 2008. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci., 105: 11039-11040.
  • Cordell, D., Drangert, J.O., White, S. 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change, 19: 292-305.
  • Dick, W.A., Cheng, L., Wang, P. 2000. Soil acid and alkaline phosphatase activity as pH adjustment indicators. Soil Biol. Biochem. 32: 1915-1919.
  • Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., Zheng, B. 2016. Biochar to improve soil fertility. A review. Agron. Sustain. Dev., 36: 36.
  • Islam, M. 2012. The effect of different rates and forms of sulfur on seed yield and micronutrient uptake by chickpea. Plant Soil Environ., 58: 399-404.
  • Jaggi, R.C., Aulakh, M.S., Sharma, R. 2005. Impacts of elemental S applied under various temperature and moisture regimes on pH and available P in acidic, neutral and alkaline soils. Biol. Fertil. Soils, 41: 52-58.
  • Jiang, X., Haddix, M.L., Cotrufo, M.F. 2016. Interactions between biochar and soil organic carbon decomposition: Effects of nitrogen and low molecular weight carbon compound addition. Soil Biol. Biochem., 100: 92-101.
  • Hashemimajd, K. 2012. Effect of elemental sulphur and compost on pH, electrical conductivity and phosphorus availability of one clay soil. Afr. J. Biotechnol., 11:. https://doi.org/10.5897/AJB11.2800.
  • Khadem, A., Raiesi, F. 2019. Response of soil alkaline phosphatase to biochar amendments: Changes in kinetic and thermodynamic characteristics. Geoderma, 337: 44–54. https://doi.org/10.1016/j.geoderma.2018.09.001.
  • Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D. 2011. Biochar effects on soil biota – A review. Soil Biol. Biochem., 43: 1812-1836. https://doi.org/10.1016/j.soilbio.2011.04.022.
  • Lehmann, J., Joseph, S. 2015. Biochar for Environmental Management: Science, Technology and Implementation. Taylor & Francis.
  • Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A. 2012. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere, 87: 151-157. https://doi.org/10.1016/j.chemosphere.2011.12.007.
  • Mahmoud, E., Ibrahim, M., Abd El-Rahman, L., Khader, A. 2019. Effects of Biochar and Phosphorus Fertilizers on Phosphorus Fractions, Wheat Yield and Microbial Biomass Carbon in Vertic torrifluvents. Commun. Soil Sci. Plant Anal., 50: 362-372. https://doi.org/10.1080/00103624.2018.1563103.
  • Nannipieri, P., Giagnoni, L., Landi, L., Renella, G. 2011. Role of Phosphatase Enzymes in Soil, in: Bünemann, E., Oberson, A., Frossard, E. (Eds.), Phosphorus in Action. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 215-243. https://doi.org/10.1007/978-3-642-15271-9_9.
  • Noyce, G., Jones, T., Fulthorpe, R., Basiliko, N. 2017. Phosphorus uptake and availability and short-term seedling growth in three Ontario soils amended with ash and biochar. Can. J. Soil Sci., https://doi.org/10.1139/CJSS-2017-0007.
  • Olsen, S.R., Cole, C.V., Watanable, F.S., Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Wash. DC US Dep. Agric., 939: 19.
  • Olsen, S.R., Sommers, L.E. 1982. Phosphorus, in: In: Page, A.L., Ed., Methods of Soil Analysis Part 2, Chemical and Microbiological Properties. American Society of Agronomy, Soil Science Society of America, Madison, pp. 403-430.
  • Richards, L.A. 1954. Diagnosis and Improvement of Saline and Alkali Soils. In: USDA Hand Book. United States Salinity Laboratory, Washington, USA.
  • Rousk, J., Brookes, P.C., Bååth, E. 2010. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem., 42: 516-520. https://doi.org/10.1016/j.soilbio.2009.11.026.
  • Schlichting, E., Blume, H.P. 1966. Bodenkundliches Praktikum. In Parley, Hamburg.
  • Schönegger, D., Gómez-Brandón, M., Mazzier, T., Insam, H., Hermanns, R., Leijenhorst, E., Bardelli, T., Fernández-Delgado Juárez, M. 2018. Phosphorus fertilising potential of fly ash and effects on soil microbiota and crop. Resour. Conserv. Recycl., 134: 262-270. https://doi.org/10.1016/j.resconrec.2018.03.018.
  • Sherman, C., Unc, A., Doniger, T., Ehrlich, R., Steinberger, Y. 2019. The effect of human trampling activity on a soil microbial community at the Oulanka Natural Reserve, Finland. Appl. Soil Ecol., 135: 104-112. https://doi.org/10.1016/j.apsoil.2018.11.013.
  • Sonmez, O., Turan, V., Kaya, C. 2016. The effects of sulfur, cattle, and poultry manure addition on soil phosphorus. Turk. J. Agric. For., 40: 536-541. https://doi.org/10.3906/tar-1601-41.
  • Stewart, C.E., Zheng, J., Botte, J., Cotrufo, M.F. 2013. Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. GCB Bioenergy, 5: 153-164. https://doi.org/10.1111/gcbb.12001.
  • Sun, D., Hale, L., Kar, G., Soolanayakanahally, R., Adl, S. 2018. Phosphorus recovery and reuse by pyrolysis: Applications for agriculture and environment. Chemosphere, 194: 682-691. https://doi.org/10.1016/j.chemosphere.2017.12.035.
  • Tabatabai, M.A. 1994. Soil Enzymes, in: Methods of Soil Analysis: In R. W. Weaver, J. S. Angle, & P. S. Botttomley (Eds.),. WI: Soil Science Society of America, Madison, Wisconsin, pp. 775-833.
  • Turan, V., Khan, S.A., Mahmood-ur-Rahman, Iqbal, M., Ramzani, P.M.A., Fatima, M. 2018a. Promoting the productivity and quality of brinjal aligned with heavy metals immobilization in a wastewater irrigated heavy metal polluted soil with biochar and chitosan. Ecotoxicol. Environ. Saf., 161: 409-419. https://doi.org/10.1016/j.ecoenv.2018.05.082.
  • Turan, V., Ramzani, P.M.A., Ali, Q., Abbas, F., Iqbal, M., Irum, A., Khan, W.D. 2018b. Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Arch. Agron. SOIL Sci., 64: 1053-1067. https://doi.org/10.1080/03650340.2017.1410542.
  • Van Vuuren, D.P., Bouwman, A.F., Beusen, A.H.W. 2010. Phosphorus demand for the 1970-2100 period: A scenario analysis of resource depletion. Glob. Environ. Change, 20: 428-439. https://doi.org/10.1016/j.gloenvcha.2010.04.004.
  • Wu, F., Jia, Z., Wang, S., Chang, S.X., Startsev, A. 2013. Contrasting effects of wheat straw and its biochar on greenhouse gas emissions and enzyme activities in a Chernozemic soil. Biol. Fertil. Soils, 49: 555-565. https://doi.org/10.1007/s00374-012-0745-7.
  • Zhang, M., Cheng, G., Feng, H., Sun, B., Zhao, Y., Chen, H., Chen, J., Dyck, M., Wang, X., Zhang, J., Zhang, A. 2017. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China. Environ. Sci. Pollut. Res., 24: 10108-10120. https://doi.org/10.1007/s11356-017-8505-8.
There are 38 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Veysel Turan

Publication Date July 23, 2019
Submission Date May 19, 2019
Published in Issue Year 2019

Cite

APA Turan, V. (2019). Effects of Biochar and Sulfur amendment on Soil Phosphorus and Soil Enzyme Activity in Alkaline Clay-Loam Soil. Turkish Journal of Agricultural and Natural Sciences, 6(3), 527-535. https://doi.org/10.30910/turkjans.595376