Research Article
BibTex RIS Cite

Mikrodalga ile Lotus corniculatus L. var. corniculatus Bitkisinin Uçucu Yağ Analizi ve Antimikrobiyal Aktivitesi

Year 2020, Volume: 7 Issue: 2, 381 - 389, 24.04.2020
https://doi.org/10.30910/turkjans.725808

Abstract

Bu çalışmada, Lotus corniculatus L. var. corniculatus bitkisinin uçucu yağı, mikrodalga aparatlı destilasyon ile elde edilmiştir. Elde edilen uçucu yağın kimyasal bileşimi GC/MS, GC/FID cihazı ile aydınlatılmış ve Minimum İnhibisyon Konsantrasyon yöntemi (MIC) kullanılarak antimikrobiyal aktivitesi tayin edilmiştir. Uçucu yağ analizinde, bitkinin % 80.24’lük kısmı tanımlanmış olup, toplam 56 bileşik yapısı aydınlatılmıştır. Ana bileşen sınıfı olarak %30.60 oranında terpen ve terpen benzeri bileşikler, %16.89 oranında hidrokarbonlar, %12.49 aldehitlerden oluştuğu tespit edilmiştir. β-ionon (%4.83), (2E,4E) dekadienal (%4.13), β-pinen (%3.76), karahanoenon (%3.53) bileşikleri uçucu yağ içinde en fazla bulunan bileşikler olarak tespit edilmiştir. Lotus corniculatus bitkisinden ekstrakte edilen uçucu yağın hekzan çözücüsü içinde 51600 μg/mL konsantrasyonunda hazırlanan stok çözeltisinin; Escherichia coli (E. coli) ATCC35218, Yersinia pseudotuberculosis (Y. pseudotuberculosis) ATCC911, Pseudomonas aeruginosa (P. aeruginosa) ATCC43288, Enterococcus faecalis (E. faecalis) ATCC29212, Staphylococcus aureus (S. aureus) ATCC25923, Bacillus cereus (B. cereus) 709 Roma, Mycobacterium smegmatis (M. smegmatis) ATCC607 Gram pozitif, Gram negatif bakterilere ve Candida albicans (C. albicans) ATCC60193 maya mantarına karşı antimikrobiyal aktivite testi yapılmış ve uçucu yağın sadece maya mantarı üzerinde 645 μg/mL etkin değer gösterdiği tespit edilmiştir.

Thanks

Yapılan çalışma, Karadeniz Teknik Üniversitesi BAP birimi tarafından desteklenmiştir. Bitki teşhisi ve herbaryum işlemlerini yapan Prof. Dr. Kamil Coşkunçelebi’ye ve antimikrobiyal aktivite testlerini yapan Prof. Dr. Şengül Alpay Karaoğlu’na teşekkürlerimizi sunarız.

References

  • Akashi, R., Uchiyama T., Sakamoto A., Kawamura O., Hhoffman F. 1998. High frequency embryogenesis from cotyledons of bird'sfoot trefoil (Lotus corniculatus) and its effective utilization in Agrobacterium tumefaciens mediated transformation. Journal of Plant Physiology, 152: 84-91.
  • Akgün, S. 2017. Melanogenez Sürecinde Rol Oynayan Uzun-Kodlanmayan Rna’ların Belirlenmesi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Ando, H., Watabe, H., Valencia, J.C., Yasumoto, K., Furumura, M., Funasaka, Y., Oka, M., Ichihashi, M., Hearing, V.J. 2004. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function. Journal of Biological Chemistry, 279:15427-33.
  • Aykanat F.T., Şahin, İ.H., Çelikezen, F.Ç., Hayta, Ş. 2019. Prangos pabularia Bitkisinin Antioksidan ve Antimikrobiyal Özelliklerinin Belirlenmesi, BEÜ Fen Bilimleri Dergisi, 8 (3):742-748.
  • Bakoglu, A., Bagci, E., Ciftci, H. 2009. Fatty acids, protein contents and metal composition of some feed crops from Turkey. Journal of Food, Agriculture and Environment, 7:343-346.
  • Basmacıoğlu-Malayoğlu, H., P. Özdemir ve E.Esin Hameş-Kocabaş. 2011. Chemical Compositions and Antibacterial Activity of The Essential Oils from Some Plant Species. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(1): 11-8.
  • Bayaz, M. 2014. Esansiyel Yağlar: Antimikrobiyal, Antioksidan ve Antimutajenik Aktiviteleri, Akademik Gıda, 12(3):45-53.
  • Bi, Y., Yang, G., Li, H., Zhang, G., Guo, Z. 2006. Characterization of the chemical composition of lotus plumule oil. Journal of Agricultural and Food Chemistry, 54:7672-7677.
  • Borgi, W., Recio, M.C., Ríos, J.L., Chouchane, N. 2008. Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L.) Lam. South African Journal of Botany, 74(2): 320-324.
  • Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94: 223-253.
  • Cansu, T. B., Yücel, M., Sinek, K., Baltaci, C., A. Karaoglu, S., Yayli, N. 2011. Microwave assisted essential oil analysis and antimicrobial activity of M. alpestris subsp. Alpestris. Asian Journal of Chemistry, 23(3); 1029-1035.
  • Chiquette, J,, Cheng, K.J., Rode, L.M., Milligan, L.P. 1989. Effect of tannin content in two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus) on feed digestibility and rumen fluid composition in sheep. Canadian Journal of Animal Science, 69:1031–1039.
  • Dewhurst, R.J., Shingfield. K.J., Lee. MRF., Scollan, D. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology, 131(3-4):168–206.
  • Dhawan, O.E and Lavania, U.C. 1996. Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica, 87: 81-89.
  • Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P., Sanjuán, J., Ruiz, O.A. 2012. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 182: 121-133.
  • Foo, L.Y, Newman, R., Waghorn, G., Nabb, Mc.WC., Ulyatt. MJ. 1996. Proanthocyanidins from Lotus corniculatus. Phytochemistry,41:617-624.
  • Güner, A., Özhatay, N., Ekim, T., Başer, H.C. 2012. Flora of Turkey and the East Aegean Islands, Vol.11, Edinburgh Univ. Pres. Edinburgh.
  • Hajhashemi, V., Ghannadi, A., Sharif, B., 2003. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of Ethnopharmacology, 89(1): 67–71.
  • Jeon, S., Kim, N.H., Koo, B.S., Kimand, J.Y., Lee, A.Y. 2009. Lotus (Nelumbo nuficera) flower essential oil increased melanogenesis in normal human melanocytes. Experimental and Molecular Medicine, 41(7):517-524.
  • Jung, H.A., Kim, J.E., Chung, H.Y., Choi, J.S. 2003. Antioxidant principles of Nelumbo nucifera stamens. Archives of Pharmacal Research, 26:279-85.
  • Kamra, D.N., Patra, A.K., Chatterjee, P.N., Kumar, R., Agarwal, N. and Chaudhary, L.C. 2008. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Australian Journal of Experimental Agriculture, 48(2): 175-178.
  • Khalighi-Sigaroodia, F., Ahvazib, M., Hadjiakhoondic, A., Taghizadeha, M., Yazdania, D., Khalighi-Sigaroodid, S. and Bidele, S. 2012. Cytotoxicity and Antioxidant Activity of 23 Plant Species of Leguminosae Family. Iranian Journal of Pharmaceutical Research, 11 (1): 295-302.
  • Kirkbride, J.H.J. 1999. Lotus Systematics and Distribution. In Trefoil: The Science and Technology of Lotus, Beuselinck, P. R. ed.; Crop Science Society of America and American Society of Agronomy, Madison, WI, 1999; pp 1-20.
  • Koelzer, J., Pereira, D. A., Dalmarco, J. B., Pizzolatti, M. G., Fröde, T. S. 2009. Evaluation of the anti-inflammatory efficacy of Lotus corniculatus. Food Chemistry, 117: 444–450.
  • Koçak, A., Kokten, K., Bagci, E., Akcura, M., Hayta, S., Bakoglu, A. and Kilic, O. 2011. Chemical analyses of the seeds of some forage legumes from Turkey. A chemotaxonomic approach. Grasas Y Aceites, 62 (4):383-388.
  • Lee, Y.M., Son, E., Kim, S.H., Kim, O.S. and Kim, D.S. 2019. Anti-inflammatory and anti-osteoarthritis effect of Mollugo pentaphylla extract. Pharmaceutical Biology 57, 1, 74-81.
  • Mezrag, A., Mohamed, B., Nicola, M. Massimiliano, D., Aissaoui, M., Lorella, S. 2014. Phytochemıcal investigation and Citotoxicactivity of Lotus corniculatus. Pharmacology Online, 3:222-225.
  • Min, B.R., Attwood, G.T., McNabb, W.C., Molan, A.L., Barry, T.N. 2005. The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Animal Feed Science and Technology, 121:45–58.
  • Morteza-Semnani, K., Saeedi, M. and Akbarzadeh, M. 2012. Chemical Composition and Antimicrobial Activity of the Essential Oil of Verbascum thapsus L. Journal of Essential Oil Bearing Plants, 15(3):373 – 379.
  • Nicolic, R,. Mitic, N., Ninkovic, S. and Neskovic, M., 2007. Efficient genetic transformation of Lotus corniculatus L. using adirect shoot regeneration protocol, Stepwise hygromycin B selection, and asuper binary Agrobacterium tumefacıens vector. Archives of Biological Sciences, 59(4): 311-317.
  • Özbek, H. 2005. Cinsel ve Jinekolojik Sorunların Tedavisinde Bitkilerin Kullanımı. Van Tıp Dergisi, 12(2):170-174.
  • Park, B.K., Kim, C.W., Kwon, J.E., Negi, M., Koo, Y.T., Lee, S.H., Baek, D.H., Noh, Y. H. and Kang, S.C. 2019. Effects of Lespedeza Cuneata aqueous extract on testosterone-induced prostatic hyperplasia. Pharmaceutical Biology, 57(1): 90-98.
  • Patra, A.K. and Saxena, J. 2009. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie van Leeuwenhoek, 96:363–375.
  • Peiretti, P.G., Gai, F. S., Battelli, A.G., Tassone, S. 2017. Characterization of Alpine highland pastures located at different altitudes: forage evaluation, chemical composition, in vitro digestibility, fatty acid, and terpene contents. Plant Biosystems, 151(1), 50–62.
  • Pereira, D.A., Dalmarco, J.B., Wisniewski, Jr.A., Simionatto, L., Pizzolatti, M.G. and Fröde, T.S. 2011. Lotus corniculatus Regulates the Inflammation Induced by Bradykinin in a Murine Model of Pleurisy. Journal of Agricultural and Food Chemistry, 59: 2291–2298.
  • Rijke, D.E, Zappey, H., Arise, F., Gooijer, C., Brinkman, U.A.T. 2004. Flavonoids in Leguminosae: Analysis of extracts of T. pratense L., T. dubium L., T. repens L., and L. corniculatus L. leaves using liquid chromatography with UV, mass spectrometric and fluorescence detection. Analytical and Bioanalytical Chemistry, 378:995–1006.
  • Şahin, F., Güllüce, M., Daferera, D., Sökmen, A., Sökmen, M., Polissiou, M., Ağar, G., Özer, H. 2004. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control, 15(7): 549–557.
  • Tabaeizadeh, Z. 1989. Genetic transformation of a pasture legume, Lotus corniculatus L. (bird's-foot trefoil). Biotechnology Letters, 11:411-416.
  • Torlak, H., Vural, M., Aytaç, Z. 2010. Türkiye’nin Endemik Bitkileri. Kültür ve Turizm Bakanlığı, Ankara, 2010.
  • Toth, I., Neculai, D., Dorin, C., Carmen, D., Rechițean, D., Anca, S., Florin, Nec. 2016. Impact of Applying Organic and Mineral Fertilisers on Dry Matter in Bird’s-foot-trefoil (Lotus corniculatus L.), Scientific Papers. Animal Science and Biotechnologies, 49 (2): 91-94.
  • Trouillasa, P., Callistea, C.A., Allaisc, D.P., Simon, A., Marfaka, A., Delageb, C., Duroux, J.L. 2003. Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chemistry, 80:399–407.
  • Uysal, P. 2014. Memeli Cinsiyet Hormonlarının Gazalboynuzu (Lotus corniculatus L. ) Bitkisinin in Vitro Rejenerasyonu Üzerine Etkisi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Erzurum.
  • Üçüncü, O., Baltacı, C., Karataş, Ş.M., Muslu, A., Büyükçekiç, D., Ejderha, H., Özdemir, E.E. 2019. Galanthus ikariae Baker Bitkisinin Toprak Üstü Kısımlarının Uçucu Yağının Kimyasal Bileşimi ve Biyolojik Aktiviteleri, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4): 674-680.
  • Walter, E. D. 1961. Isolation of oleanolic acid and saponin from trefoil (Lotus corniculatus var. viking). Journal of Pharmaceutical Sciences, 50(2), 173.
  • Wang, Y., Douglas, G.B., Waghor, G.C., Barry, T N., Foote, A.G., Purchas, R.W. 1996. Effects of condensed tannins upon the performance of lambs grazing Lotus corniculatus and lucerne (Medicago sativa). The Journal of Agricultural Science- Cambridge Core, 126: 87–98.
  • Wang, Y., Hua, W., Wang, J., Hannoufa, A., Xu, Z., Wang, Z. 2013. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Molecular genetics and genomics, 288(3-4): 131-139.
  • Wink, M. and Mohamed, GIA. 2003. Evolution of chemical defense traits in the Leguminosae:mapping of distribution patterns of secondary metabolites on a molecular phylogenyinferred from nucleotide sequence softhe rbcL gene. Biochemical Systematics and Ecology, 31(8):897-917.
  • Yasser, A.S. and Mohamed, I.S. 2014. Effect of Time Distillation on Chemical Constituents and Anti-Diabetic Activity of the Essential Oil from Dark Green Parts of Egyptian Allium ampeloprasum L.. Journal of Essential Oil Bearing Plants, 17 (5):838 – 846.
  • Yücel, T. B., Yaylı, N. 2018. GC/MS Analysis and Antimicrobial Activity of The Volatile Compounds From Dianthus carmelitarum Reut. ex Boiss and Dianthus calocephalus Boiss. Grown in Turkey. Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(1); 89-94.

Essential Oil Composition from the Flower of Lotus corniculatus L. var. corniculatus Obtained by Microwave Assisted Distillation Analysis and Antimicrobial Activity

Year 2020, Volume: 7 Issue: 2, 381 - 389, 24.04.2020
https://doi.org/10.30910/turkjans.725808

Abstract

In this study, volatile oil from the flower of Lotus corniculatus L. var. corniculatus was obtained of the plant by microwave-assisted hydro-distillation. The chemical constituents of the volatile oil were illuminated by GC/FID and GC/MS techniques and was determined to antimicrobial activity by the minimal inhibition concentration (MIC) method. As a result of analysis of essential oil from the flower of Lotus corniculatus, 30.60% of terpene and terpene-related compounds, 16.89% hydrocarbons and 12.49% aldehydes were found to be the main component classes. It was found that the compounds were found to be the major compounds with β-pinene (3.76%), karahanoenone (3.53%), β-ionone (4.83%) and (2E,4E)-decadienal (4.13%). In the analysis, a total of 56 compounds were determined and 80.24% of the essential oil was identified. The isolated essential oils of Lotus corniculatus was tested for antimicrobial activity against the Gram positive(+) and Gram negative (-) bacteria Escherichia coli (E. coli) ATCC35218, Yersinia pseudotuberculosis (Y. pseudotuberculosis) ATCC911, Pseudomonas aeruginosa (P. aeruginosa) ATCC43288, Enterococcus faecalis (E. faecalis) ATCC29212, Staphylococcus aureus (S. aureus) ATCC25923, Bacillus cereus (B. cereus) 709 Roma, Mycobacterium smegmatis (M. smegmatis) ATCC60 and the fungus Candida albicans (C. albicans) ATCC60193 at maximum essential oil concentration in hexane of 51600 μg/mL and they showed 645 μg/mL only antibacterial activity against fungus Candida albicans (C. albicans) ATCC60193.

References

  • Akashi, R., Uchiyama T., Sakamoto A., Kawamura O., Hhoffman F. 1998. High frequency embryogenesis from cotyledons of bird'sfoot trefoil (Lotus corniculatus) and its effective utilization in Agrobacterium tumefaciens mediated transformation. Journal of Plant Physiology, 152: 84-91.
  • Akgün, S. 2017. Melanogenez Sürecinde Rol Oynayan Uzun-Kodlanmayan Rna’ların Belirlenmesi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul.
  • Ando, H., Watabe, H., Valencia, J.C., Yasumoto, K., Furumura, M., Funasaka, Y., Oka, M., Ichihashi, M., Hearing, V.J. 2004. Fatty acids regulate pigmentation via proteasomal degradation of tyrosinase: a new aspect of ubiquitin-proteasome function. Journal of Biological Chemistry, 279:15427-33.
  • Aykanat F.T., Şahin, İ.H., Çelikezen, F.Ç., Hayta, Ş. 2019. Prangos pabularia Bitkisinin Antioksidan ve Antimikrobiyal Özelliklerinin Belirlenmesi, BEÜ Fen Bilimleri Dergisi, 8 (3):742-748.
  • Bakoglu, A., Bagci, E., Ciftci, H. 2009. Fatty acids, protein contents and metal composition of some feed crops from Turkey. Journal of Food, Agriculture and Environment, 7:343-346.
  • Basmacıoğlu-Malayoğlu, H., P. Özdemir ve E.Esin Hameş-Kocabaş. 2011. Chemical Compositions and Antibacterial Activity of The Essential Oils from Some Plant Species. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(1): 11-8.
  • Bayaz, M. 2014. Esansiyel Yağlar: Antimikrobiyal, Antioksidan ve Antimutajenik Aktiviteleri, Akademik Gıda, 12(3):45-53.
  • Bi, Y., Yang, G., Li, H., Zhang, G., Guo, Z. 2006. Characterization of the chemical composition of lotus plumule oil. Journal of Agricultural and Food Chemistry, 54:7672-7677.
  • Borgi, W., Recio, M.C., Ríos, J.L., Chouchane, N. 2008. Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L.) Lam. South African Journal of Botany, 74(2): 320-324.
  • Burt, S. 2004. Essential oils: their antibacterial properties and potential applications in foods-a review. International Journal of Food Microbiology, 94: 223-253.
  • Cansu, T. B., Yücel, M., Sinek, K., Baltaci, C., A. Karaoglu, S., Yayli, N. 2011. Microwave assisted essential oil analysis and antimicrobial activity of M. alpestris subsp. Alpestris. Asian Journal of Chemistry, 23(3); 1029-1035.
  • Chiquette, J,, Cheng, K.J., Rode, L.M., Milligan, L.P. 1989. Effect of tannin content in two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus) on feed digestibility and rumen fluid composition in sheep. Canadian Journal of Animal Science, 69:1031–1039.
  • Dewhurst, R.J., Shingfield. K.J., Lee. MRF., Scollan, D. 2006. Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology, 131(3-4):168–206.
  • Dhawan, O.E and Lavania, U.C. 1996. Enhancing the productivity of secondary metabolites via induced polyploidy: a review. Euphytica, 87: 81-89.
  • Escaray, F.J., Menendez, A.B., Gárriz, A., Pieckenstain, F.L., Estrella, M.J., Castagno, L.N., Carrasco, P., Sanjuán, J., Ruiz, O.A. 2012. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. Plant Science, 182: 121-133.
  • Foo, L.Y, Newman, R., Waghorn, G., Nabb, Mc.WC., Ulyatt. MJ. 1996. Proanthocyanidins from Lotus corniculatus. Phytochemistry,41:617-624.
  • Güner, A., Özhatay, N., Ekim, T., Başer, H.C. 2012. Flora of Turkey and the East Aegean Islands, Vol.11, Edinburgh Univ. Pres. Edinburgh.
  • Hajhashemi, V., Ghannadi, A., Sharif, B., 2003. Anti-inflammatory and analgesic properties of the leaf extracts and essential oil of Lavandula angustifolia Mill. Journal of Ethnopharmacology, 89(1): 67–71.
  • Jeon, S., Kim, N.H., Koo, B.S., Kimand, J.Y., Lee, A.Y. 2009. Lotus (Nelumbo nuficera) flower essential oil increased melanogenesis in normal human melanocytes. Experimental and Molecular Medicine, 41(7):517-524.
  • Jung, H.A., Kim, J.E., Chung, H.Y., Choi, J.S. 2003. Antioxidant principles of Nelumbo nucifera stamens. Archives of Pharmacal Research, 26:279-85.
  • Kamra, D.N., Patra, A.K., Chatterjee, P.N., Kumar, R., Agarwal, N. and Chaudhary, L.C. 2008. Effect of plant extracts on methanogenesis and microbial profile of the rumen of buffalo: a brief overview. Australian Journal of Experimental Agriculture, 48(2): 175-178.
  • Khalighi-Sigaroodia, F., Ahvazib, M., Hadjiakhoondic, A., Taghizadeha, M., Yazdania, D., Khalighi-Sigaroodid, S. and Bidele, S. 2012. Cytotoxicity and Antioxidant Activity of 23 Plant Species of Leguminosae Family. Iranian Journal of Pharmaceutical Research, 11 (1): 295-302.
  • Kirkbride, J.H.J. 1999. Lotus Systematics and Distribution. In Trefoil: The Science and Technology of Lotus, Beuselinck, P. R. ed.; Crop Science Society of America and American Society of Agronomy, Madison, WI, 1999; pp 1-20.
  • Koelzer, J., Pereira, D. A., Dalmarco, J. B., Pizzolatti, M. G., Fröde, T. S. 2009. Evaluation of the anti-inflammatory efficacy of Lotus corniculatus. Food Chemistry, 117: 444–450.
  • Koçak, A., Kokten, K., Bagci, E., Akcura, M., Hayta, S., Bakoglu, A. and Kilic, O. 2011. Chemical analyses of the seeds of some forage legumes from Turkey. A chemotaxonomic approach. Grasas Y Aceites, 62 (4):383-388.
  • Lee, Y.M., Son, E., Kim, S.H., Kim, O.S. and Kim, D.S. 2019. Anti-inflammatory and anti-osteoarthritis effect of Mollugo pentaphylla extract. Pharmaceutical Biology 57, 1, 74-81.
  • Mezrag, A., Mohamed, B., Nicola, M. Massimiliano, D., Aissaoui, M., Lorella, S. 2014. Phytochemıcal investigation and Citotoxicactivity of Lotus corniculatus. Pharmacology Online, 3:222-225.
  • Min, B.R., Attwood, G.T., McNabb, W.C., Molan, A.L., Barry, T.N. 2005. The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Animal Feed Science and Technology, 121:45–58.
  • Morteza-Semnani, K., Saeedi, M. and Akbarzadeh, M. 2012. Chemical Composition and Antimicrobial Activity of the Essential Oil of Verbascum thapsus L. Journal of Essential Oil Bearing Plants, 15(3):373 – 379.
  • Nicolic, R,. Mitic, N., Ninkovic, S. and Neskovic, M., 2007. Efficient genetic transformation of Lotus corniculatus L. using adirect shoot regeneration protocol, Stepwise hygromycin B selection, and asuper binary Agrobacterium tumefacıens vector. Archives of Biological Sciences, 59(4): 311-317.
  • Özbek, H. 2005. Cinsel ve Jinekolojik Sorunların Tedavisinde Bitkilerin Kullanımı. Van Tıp Dergisi, 12(2):170-174.
  • Park, B.K., Kim, C.W., Kwon, J.E., Negi, M., Koo, Y.T., Lee, S.H., Baek, D.H., Noh, Y. H. and Kang, S.C. 2019. Effects of Lespedeza Cuneata aqueous extract on testosterone-induced prostatic hyperplasia. Pharmaceutical Biology, 57(1): 90-98.
  • Patra, A.K. and Saxena, J. 2009. Dietary phytochemicals as rumen modifiers: a review of the effects on microbial populations. Antonie van Leeuwenhoek, 96:363–375.
  • Peiretti, P.G., Gai, F. S., Battelli, A.G., Tassone, S. 2017. Characterization of Alpine highland pastures located at different altitudes: forage evaluation, chemical composition, in vitro digestibility, fatty acid, and terpene contents. Plant Biosystems, 151(1), 50–62.
  • Pereira, D.A., Dalmarco, J.B., Wisniewski, Jr.A., Simionatto, L., Pizzolatti, M.G. and Fröde, T.S. 2011. Lotus corniculatus Regulates the Inflammation Induced by Bradykinin in a Murine Model of Pleurisy. Journal of Agricultural and Food Chemistry, 59: 2291–2298.
  • Rijke, D.E, Zappey, H., Arise, F., Gooijer, C., Brinkman, U.A.T. 2004. Flavonoids in Leguminosae: Analysis of extracts of T. pratense L., T. dubium L., T. repens L., and L. corniculatus L. leaves using liquid chromatography with UV, mass spectrometric and fluorescence detection. Analytical and Bioanalytical Chemistry, 378:995–1006.
  • Şahin, F., Güllüce, M., Daferera, D., Sökmen, A., Sökmen, M., Polissiou, M., Ağar, G., Özer, H. 2004. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control, 15(7): 549–557.
  • Tabaeizadeh, Z. 1989. Genetic transformation of a pasture legume, Lotus corniculatus L. (bird's-foot trefoil). Biotechnology Letters, 11:411-416.
  • Torlak, H., Vural, M., Aytaç, Z. 2010. Türkiye’nin Endemik Bitkileri. Kültür ve Turizm Bakanlığı, Ankara, 2010.
  • Toth, I., Neculai, D., Dorin, C., Carmen, D., Rechițean, D., Anca, S., Florin, Nec. 2016. Impact of Applying Organic and Mineral Fertilisers on Dry Matter in Bird’s-foot-trefoil (Lotus corniculatus L.), Scientific Papers. Animal Science and Biotechnologies, 49 (2): 91-94.
  • Trouillasa, P., Callistea, C.A., Allaisc, D.P., Simon, A., Marfaka, A., Delageb, C., Duroux, J.L. 2003. Antioxidant, anti-inflammatory and antiproliferative properties of sixteen water plant extracts used in the Limousin countryside as herbal teas. Food Chemistry, 80:399–407.
  • Uysal, P. 2014. Memeli Cinsiyet Hormonlarının Gazalboynuzu (Lotus corniculatus L. ) Bitkisinin in Vitro Rejenerasyonu Üzerine Etkisi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, Erzurum.
  • Üçüncü, O., Baltacı, C., Karataş, Ş.M., Muslu, A., Büyükçekiç, D., Ejderha, H., Özdemir, E.E. 2019. Galanthus ikariae Baker Bitkisinin Toprak Üstü Kısımlarının Uçucu Yağının Kimyasal Bileşimi ve Biyolojik Aktiviteleri, Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4): 674-680.
  • Walter, E. D. 1961. Isolation of oleanolic acid and saponin from trefoil (Lotus corniculatus var. viking). Journal of Pharmaceutical Sciences, 50(2), 173.
  • Wang, Y., Douglas, G.B., Waghor, G.C., Barry, T N., Foote, A.G., Purchas, R.W. 1996. Effects of condensed tannins upon the performance of lambs grazing Lotus corniculatus and lucerne (Medicago sativa). The Journal of Agricultural Science- Cambridge Core, 126: 87–98.
  • Wang, Y., Hua, W., Wang, J., Hannoufa, A., Xu, Z., Wang, Z. 2013. Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Molecular genetics and genomics, 288(3-4): 131-139.
  • Wink, M. and Mohamed, GIA. 2003. Evolution of chemical defense traits in the Leguminosae:mapping of distribution patterns of secondary metabolites on a molecular phylogenyinferred from nucleotide sequence softhe rbcL gene. Biochemical Systematics and Ecology, 31(8):897-917.
  • Yasser, A.S. and Mohamed, I.S. 2014. Effect of Time Distillation on Chemical Constituents and Anti-Diabetic Activity of the Essential Oil from Dark Green Parts of Egyptian Allium ampeloprasum L.. Journal of Essential Oil Bearing Plants, 17 (5):838 – 846.
  • Yücel, T. B., Yaylı, N. 2018. GC/MS Analysis and Antimicrobial Activity of The Volatile Compounds From Dianthus carmelitarum Reut. ex Boiss and Dianthus calocephalus Boiss. Grown in Turkey. Ege Üniversitesi Ziraat Fakültesi Dergisi, 55(1); 89-94.
There are 49 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Tayyibe Beyza Yücel

Publication Date April 24, 2020
Submission Date October 28, 209
Published in Issue Year 2020 Volume: 7 Issue: 2

Cite

APA Yücel, T. B. (2020). Mikrodalga ile Lotus corniculatus L. var. corniculatus Bitkisinin Uçucu Yağ Analizi ve Antimikrobiyal Aktivitesi. Turkish Journal of Agricultural and Natural Sciences, 7(2), 381-389. https://doi.org/10.30910/turkjans.725808