Research Article
BibTex RIS Cite

Sarımsak Dişinin Antioksidan Aktivitesinin Sarımsak Kabuğu ve Sapı ile Karşılaştırılması: Sarımsak Tarımsal Atıklarının Kullanım Potansiyelinin Belirlenmesi

Year 2021, Volume: 8 Issue: 2, 463 - 469, 23.04.2021
https://doi.org/10.30910/turkjans.884541

Abstract

Hasat döneminde sarımsak başları toplanıp işlenirken, sapları ve yaprakları atılır. Toplam sarımsak ağırlığının %10'unu (w/w) oluşturan bu kısımların işlenmesi, hem ülke ekonomisi açısından kazanımlar sağlaması hem de katı atık miktarının azaltılması açısından büyük önem taşımaktadır. Çalışmamızda Türkiye’nin Kastamonu İlinin Taşköprü İlçesinde bulunan 25 farklı tarladan temin edilen sarımsakların dişi ve bu sarımsakların kurumuş formdaki kabuk ve saplarında bazı fizikokimyasal analizler yapılmış ve antioksidan kapasitenin belirlenmesi için toplam fenolik bileşik, toplam flavonoid madde, toplam antioksidan aktivite, 2,2-difenil-1-pikrilhidrazil (DPPH), 2,2′-azinobis-3-etilbenztiazolin-6 sülfonat (ABTS) ve demir indirgeyici/antioksidan güç (FRAP) testleri yapılmıştır. Ortalama değerler gözönüne alındığında, en yüksek toplam fenolik bileşik, toplam flavonoid madde, toplam antioksidan aktivite, DPPH, ABTS ve FRAP değerleri sarımsak dişlerinde tespit edilmiştir; bunu sarımsak kabuğu ve sarımsak sapı takip etmiştir. Sarımsak kabuğu ve sarımsak saplarında belirlenen toplam biyoaktif bileşikler ve antioksidan aktivite umut vericidir.

Project Number

Project Number: KÜ-BAP01/2016-43

References

  • Agarwal, K.C. 1996. Therapeutic actions of garlic constituents. Medicinal Research Reviews, 16: 111-124.
  • Ağbaş, B., Karakuş, D., Adıgüzel, R., Keser, S. and Demir, E. 2013. Comparison of total antioxidant properties and dry matter content of Tunceli Garlic (Allium tuncelianum) and Normal Garlic (Allium sativum). Bilim ve Gençlik Dergisi, 1: 50-62.
  • Akan, S. and Ünüvar, İ. 2020. Economic Status of Garlic Production and Evaluation in Terms of Taşköprü District. Turkish Journal of Agricultural and Natural Sciences, 7: 627-636.
  • Amagase, H. 2006. Clarifying the real bioactive constituents of garlic. The Journal of Nutrition, 136: 716-725.
  • Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S. and Itakura, Y. 2001. Intake of garlic and its bioactive components. The Journal of Nutrition, 131: 955-962.
  • Anonymous. 2009. Turkish Patent Institute Geographical Sign Registration Certificate, Taşköprü Sarımsağı, Registration No: 135.
  • Bhatt, A. and Patel, V. 2013. Antioxidant activity of garlic using conventional extraction and in vitro gastrointestinal digestion. Free Radicals and Antioxidants, 3: 30-34.
  • Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A. and Igic, R. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chemistry, 111: 925-929.
  • Cai, Y., Luo, Q., Sun, M. and Corke, H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74: 2157-2184.
  • Cemeroğlu BS. 1992. Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Biltav Publishing, Ankara, 381 pp.
  • Cemeroğlu BS. 2013. Gıda Analizleri. Bizim Grup Publishing, Ankara, 682 pp.
  • Chen S, Shen X, Cheng S, Li P, Du J, Chang Y and Meng H. 2013. Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS ONE, 8: e79730.
  • Chhouk, K., Uemori, C., Wahyudiono, Kanda, H. and Goto, M. 2017. Extraction of phenolic compounds and antioxidant activity from garlic husk using carbon dioxide expanded ethanol. Chemical Engineering and Processing: Process Intensification, 117: 113-119.
  • Han, X., Cheng, Z. and Meng, H. 2017. Growth of wheat and lettuce and enzyme activities of soils under garlic stalk decomposition for different durations. Journal of the Science of Food and Agriculture, 97: 2727–2735.
  • Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoids content in mulberry and scavenging effect on superoxide radicals. Food Chemistry, 64: 555-599.
  • Kallel, F., Driss, D., Chaari, F., Belghith, L., Bouaziz, F., Ghorbel, R. and Chaabouni, S.E. 2014. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products, 62: 34-41.
  • Kasapçopur-Özel, G.S. and Birdane, Y.O. 2014. Antioxidants. Kocatepe Veterinary Journal, 7: 41-52.
  • Khalid, N., Ahmed, I., Latif, M.S.Z., Rafique, T. and Fawad, S.A. 2014. Comparison of antimicrobial activity, phytochemical profile and minerals composition of garlic Allium sativum and Allium tuberosum. Journal of the Korean Society for Applied Biological Chemistry, 57: 311-317.
  • Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography A, 1112: 3-22.
  • Locatelli, D.A., Nazareno, M.A., Fusari, C.M. and Camargo, A.B. 2017. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chemistry, 220: 219-224.
  • Liu, H., Zhang, G., Wang, J., Ba, Q., Che, H., Song, Y., Zhang, P., Niu, N., Wang, J., Ma, S. and Chen, L. 2015. The relationship between male sterility and membrane lipid peroxidation and antioxidant enzymes in wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 20: 179-187.
  • Martins, N., Petropoulos, S. and Ferreira, I.C.F.R. 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 211: 41-50.
  • Mates, J.M., Perez-Gomez, C. and Nurez de Castro, I. 1999. Antioxidant enzymes and human diseases. Clinical Biochemistry, 32: 595-603.
  • Naheed, Z., Cheng, Z., Wu, C., Wen, Y. and Ding, H. 2017. Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biology and Technology, 131: 39-45.
  • Nencini, C., Menchiari, A., Franchi, G.G. and Micheli, L. 2011. In vitro antioxidant activity of aged extracts of some Italian allium species. Plant Foods for Human Nutrition, 66: 11- 16.
  • Nuutila, A.M., Puupponen-Pimiä, R., Aarni, M. and Oksman-Caldentey, K.M. 2003. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81: 485-493.
  • Panche, A.N., Diwan, A.D. and Chandra, S.R. 2016. Flavonoids: an overview. Journal of Nutritional Science, 5: 1-15.
  • Pascual-Teresa, S., Moreno, D.A. and García-Viguera, C. 2010. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11: 1679-1703.
  • Petropoulos, S., Fernandes, A., Barros, L., Ciric, A., Sokovic, M. and Ferreira, I.C.F.R. 2018. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, 245: 7-12.
  • Piechowiak, T., Antos, P., Kosowski, P., Skrobacz, K., Józefczyk, R. and Balawejder, M. 2019. Impact of ozonation process on the microbiological and antioxidant status of raspberries (Rubus ideaeus L.) during storage at room temperature. Agricultural and Food Science, 28: 35-44.
  • Prieto, P., Pineda, M. and Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269: 337-341.
  • Queiroz, Y.S., Ishimoto, E.Y., Bastos, D.H.M., Sampaio, G.R. and Torres, E.A.F.S. 2009. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chemistry, 115: 371-374.
  • Selvan, D.A., Mahendiran, D., Kumar, R.S. and Rahiman, A.K. 2018. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, 180: 243-252.
  • Slinkard, K. and Singleton, V.L. 1977. Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
  • Wang, X., Liu, R., Yang, Y. and Zhang, M. 2015. Isolation, purification and identification of antioxidants in an aqueous aged garlic extract. Food Chemistry, 187: 37–43.
  • Yeh, Y.Y. and Liu, L. 2001. Cholesterol-lowing effect of garlic extracts and organosulfur compounds: human and animals studies. The Journal of Nutrition, 131: 989-993.
  • Zhang, L., Guan, P., Zhang, Z., Dai, Y. and Hao, L. 2018. Physicochemical characteristics of complexes between amylose and garlic bioactive components generated by milling activating method. Food Research International, 105: 499-506.
  • Zor, T.T. 2006. Determination of allicin and alliin content of garlic Kastamonu (Allium sativum L.) by using HPLC. Dissertation, University of Ankara.

Comparison of the Antioxidant Activity of Garlic Cloves with Garlic Husk and Stem: Determination of Utilization Potential of Garlic Agricultural Wastes

Year 2021, Volume: 8 Issue: 2, 463 - 469, 23.04.2021
https://doi.org/10.30910/turkjans.884541

Abstract

During the harvest period, garlic heads are collected and processed, while stems and leaves are discarded. Processing of these sections, forming 10% (w/w) of the total weight of garlic, has great importance in terms of both gains for the country’s economy and to reduce the amount of solid waste. In our study, some physicochemical analysis were performed, along with total phenolic compound, total flavonoid matter, total antioxidant activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis-3-ethylbenzthiazoline-6-sulfonate (ABTS), ferric reducing/antioxidant power (FRAP) tests to determine antioxidant capasity in garlic cloves, and the husk and stem of the dried form of this garlic obtained from 25 different fields in Taşköprü county, Kastamonu province in Turkey. When mean values are noted, the highest total phenolic compounds, total flavonoid matter, total antioxidant activity, DPPH, ABTS and FRAP values were found for garlic cloves; this was followed by garlic husk and garlic stem. The total bioactive compounds and antioxidant activity determined in garlic husks and garlic stems are promising.

Supporting Institution

Kastamonu University Scientific Research Projects Coordination Department

Project Number

Project Number: KÜ-BAP01/2016-43

Thanks

This research has been supported by Kastamonu University Scientific Research Projects Coordination Department. Project Number: KÜ-BAP01/2016-43.

References

  • Agarwal, K.C. 1996. Therapeutic actions of garlic constituents. Medicinal Research Reviews, 16: 111-124.
  • Ağbaş, B., Karakuş, D., Adıgüzel, R., Keser, S. and Demir, E. 2013. Comparison of total antioxidant properties and dry matter content of Tunceli Garlic (Allium tuncelianum) and Normal Garlic (Allium sativum). Bilim ve Gençlik Dergisi, 1: 50-62.
  • Akan, S. and Ünüvar, İ. 2020. Economic Status of Garlic Production and Evaluation in Terms of Taşköprü District. Turkish Journal of Agricultural and Natural Sciences, 7: 627-636.
  • Amagase, H. 2006. Clarifying the real bioactive constituents of garlic. The Journal of Nutrition, 136: 716-725.
  • Amagase, H., Petesch, B.L., Matsuura, H., Kasuga, S. and Itakura, Y. 2001. Intake of garlic and its bioactive components. The Journal of Nutrition, 131: 955-962.
  • Anonymous. 2009. Turkish Patent Institute Geographical Sign Registration Certificate, Taşköprü Sarımsağı, Registration No: 135.
  • Bhatt, A. and Patel, V. 2013. Antioxidant activity of garlic using conventional extraction and in vitro gastrointestinal digestion. Free Radicals and Antioxidants, 3: 30-34.
  • Bozin, B., Mimica-Dukic, N., Samojlik, I., Goran, A. and Igic, R. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chemistry, 111: 925-929.
  • Cai, Y., Luo, Q., Sun, M. and Corke, H. 2004. Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74: 2157-2184.
  • Cemeroğlu BS. 1992. Meyve ve Sebze İşleme Endüstrisinde Temel Analiz Metotları. Biltav Publishing, Ankara, 381 pp.
  • Cemeroğlu BS. 2013. Gıda Analizleri. Bizim Grup Publishing, Ankara, 682 pp.
  • Chen S, Shen X, Cheng S, Li P, Du J, Chang Y and Meng H. 2013. Evaluation of garlic cultivars for polyphenolic content and antioxidant properties. PLoS ONE, 8: e79730.
  • Chhouk, K., Uemori, C., Wahyudiono, Kanda, H. and Goto, M. 2017. Extraction of phenolic compounds and antioxidant activity from garlic husk using carbon dioxide expanded ethanol. Chemical Engineering and Processing: Process Intensification, 117: 113-119.
  • Han, X., Cheng, Z. and Meng, H. 2017. Growth of wheat and lettuce and enzyme activities of soils under garlic stalk decomposition for different durations. Journal of the Science of Food and Agriculture, 97: 2727–2735.
  • Jia, Z., Tang, M. and Wu, J. 1999. The determination of flavonoids content in mulberry and scavenging effect on superoxide radicals. Food Chemistry, 64: 555-599.
  • Kallel, F., Driss, D., Chaari, F., Belghith, L., Bouaziz, F., Ghorbel, R. and Chaabouni, S.E. 2014. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products, 62: 34-41.
  • Kasapçopur-Özel, G.S. and Birdane, Y.O. 2014. Antioxidants. Kocatepe Veterinary Journal, 7: 41-52.
  • Khalid, N., Ahmed, I., Latif, M.S.Z., Rafique, T. and Fawad, S.A. 2014. Comparison of antimicrobial activity, phytochemical profile and minerals composition of garlic Allium sativum and Allium tuberosum. Journal of the Korean Society for Applied Biological Chemistry, 57: 311-317.
  • Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography A, 1112: 3-22.
  • Locatelli, D.A., Nazareno, M.A., Fusari, C.M. and Camargo, A.B. 2017. Cooked garlic and antioxidant activity: Correlation with organosulfur compound composition. Food Chemistry, 220: 219-224.
  • Liu, H., Zhang, G., Wang, J., Ba, Q., Che, H., Song, Y., Zhang, P., Niu, N., Wang, J., Ma, S. and Chen, L. 2015. The relationship between male sterility and membrane lipid peroxidation and antioxidant enzymes in wheat (Triticum aestivum L.). Turkish Journal of Field Crops, 20: 179-187.
  • Martins, N., Petropoulos, S. and Ferreira, I.C.F.R. 2016. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chemistry, 211: 41-50.
  • Mates, J.M., Perez-Gomez, C. and Nurez de Castro, I. 1999. Antioxidant enzymes and human diseases. Clinical Biochemistry, 32: 595-603.
  • Naheed, Z., Cheng, Z., Wu, C., Wen, Y. and Ding, H. 2017. Total polyphenols, total flavonoids, allicin and antioxidant capacities in garlic scape cultivars during controlled atmosphere storage. Postharvest Biology and Technology, 131: 39-45.
  • Nencini, C., Menchiari, A., Franchi, G.G. and Micheli, L. 2011. In vitro antioxidant activity of aged extracts of some Italian allium species. Plant Foods for Human Nutrition, 66: 11- 16.
  • Nuutila, A.M., Puupponen-Pimiä, R., Aarni, M. and Oksman-Caldentey, K.M. 2003. Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity. Food Chemistry, 81: 485-493.
  • Panche, A.N., Diwan, A.D. and Chandra, S.R. 2016. Flavonoids: an overview. Journal of Nutritional Science, 5: 1-15.
  • Pascual-Teresa, S., Moreno, D.A. and García-Viguera, C. 2010. Flavanols and anthocyanins in cardiovascular health: A review of current evidence. International Journal of Molecular Sciences, 11: 1679-1703.
  • Petropoulos, S., Fernandes, A., Barros, L., Ciric, A., Sokovic, M. and Ferreira, I.C.F.R. 2018. Antimicrobial and antioxidant properties of various Greek garlic genotypes. Food Chemistry, 245: 7-12.
  • Piechowiak, T., Antos, P., Kosowski, P., Skrobacz, K., Józefczyk, R. and Balawejder, M. 2019. Impact of ozonation process on the microbiological and antioxidant status of raspberries (Rubus ideaeus L.) during storage at room temperature. Agricultural and Food Science, 28: 35-44.
  • Prieto, P., Pineda, M. and Aguilar, M. 1999. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphor molybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269: 337-341.
  • Queiroz, Y.S., Ishimoto, E.Y., Bastos, D.H.M., Sampaio, G.R. and Torres, E.A.F.S. 2009. Garlic (Allium sativum L.) and ready-to-eat garlic products: In vitro antioxidant activity. Food Chemistry, 115: 371-374.
  • Selvan, D.A., Mahendiran, D., Kumar, R.S. and Rahiman, A.K. 2018. Garlic, green tea and turmeric extracts-mediated green synthesis of silver nanoparticles: Phytochemical, antioxidant and in vitro cytotoxicity studies. Journal of Photochemistry and Photobiology B: Biology, 180: 243-252.
  • Slinkard, K. and Singleton, V.L. 1977. Total phenol analyses: automation and comparison with manual methods. American Journal of Enology and Viticulture, 28: 49-55.
  • Wang, X., Liu, R., Yang, Y. and Zhang, M. 2015. Isolation, purification and identification of antioxidants in an aqueous aged garlic extract. Food Chemistry, 187: 37–43.
  • Yeh, Y.Y. and Liu, L. 2001. Cholesterol-lowing effect of garlic extracts and organosulfur compounds: human and animals studies. The Journal of Nutrition, 131: 989-993.
  • Zhang, L., Guan, P., Zhang, Z., Dai, Y. and Hao, L. 2018. Physicochemical characteristics of complexes between amylose and garlic bioactive components generated by milling activating method. Food Research International, 105: 499-506.
  • Zor, T.T. 2006. Determination of allicin and alliin content of garlic Kastamonu (Allium sativum L.) by using HPLC. Dissertation, University of Ankara.
There are 38 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Deren Tahmas Kahyaoğlu 0000-0001-5863-1452

Project Number Project Number: KÜ-BAP01/2016-43
Publication Date April 23, 2021
Submission Date February 21, 2021
Published in Issue Year 2021 Volume: 8 Issue: 2

Cite

APA Tahmas Kahyaoğlu, D. (2021). Comparison of the Antioxidant Activity of Garlic Cloves with Garlic Husk and Stem: Determination of Utilization Potential of Garlic Agricultural Wastes. Türk Tarım Ve Doğa Bilimleri Dergisi, 8(2), 463-469. https://doi.org/10.30910/turkjans.884541