Research Article
BibTex RIS Cite

Identification of cotton non-pathogenic fungal agent isolates based on morphological and MALDI-TOF mass spectrometry method

Year 2024, Volume: 11 Issue: 4, 1161 - 1167, 12.10.2024
https://doi.org/10.30910/turkjans.1477542

Abstract

In this study, morphological and MALDI-TOF MS identification and comparison of non-pathogenic fungal species isolated from diseased root, leaf and boll tissues of cotton plants were carried out. For this purpose, surveys were conducted in Bağlar, Sur, Çınar, Bismil, Yenişehir, Ergani, Eğil, Kayapınar and Silvan districts of Diyarbakır province where cotton production is intensive between June and September 2020 and 2021. 209 samples of plants showing typical fungal disease symptoms were collected from 75 different cotton production areas. A total of 171 fungal isolates were obtained by isolation, culture and purification procedures from diseased plant tissues in the samples. The 20 isolates that were negative in the pathogenicity test in the main host were identified and compared by morphological (traditional) and MALDI-TOF MS methods. According to the results, Aspergillus niger, Aspergillus flavus, Aspergillus terreus, Aspergillus fumigatus, Aspergillus minisclerotigenes, Penicillium nalgıovense, Chaetomium globosum, Dichotomopilus funicola, Arthroderma gloria, Pseudogmnoacus pannorum, Tichophyton interdigitale, and Penicillium sp. Penicillium sp. were found to be intensively colonized in different parts of cotton such as leaves, bolls and roots. Again, it was determined that the most common species among the total saprophyte isolates was Aspergillus niger with a high similarity rate.

References

  • Alamer, F. A., Althagafy, K. & Alghamdi, H. et al. (2023). Thermo-Electric Properties of Conductive Cotton Fabrics: Synergistic. Effects of Graphene Doping Ratio and Amount. J Inorg Organomet Polym https://doi.org/10.1007/s10904-023-02918-z
  • Anonim, (2009). International Year Of Natural Fibers 2009: https://www.fao.org/natural-fibres-2009/about/15-natural.
  • Anonim, (2017). http://www.gap.gov.tr/tarim-sayfa-15.html (Erişim: 13.02.2017).
  • Anonim, (2019). GLOBAL GARMENT AND TEXTILE INDUSTRIES Workers, Rights and Working Conditions: https://www.solidaritycenter.org/wp-content/uploads/2019/08/Garment-Textile-Industry-Fact-Sheet.8.2019.pdf
  • Anonim, (2024a). Teksthile Exchange: https://textileexchange.org/plant-fibers/
  • Anonim, (2024b). International Labour Organization https://www.ilo.org/ipec/projects/global/clearcotton/lang--en/index.htm
  • Atalay, A., Koc A. N. & Suel A, et al. (2016). Conventional Morphology Versus PCR Sequencing, rep-PCR, and MALDI-TOF-MS for Identification of Clinical Aspergillus Isolates Collected Over a 2-Year Period in a University Hospital at Kayseri, Turkey. J Clin Lab Anal. 30: 745-50.
  • Devay, J. E. (2001). Seedling Diseases 13-14, in Eds., T.L. Kirkpatrickand C.S. Rothrock “Compendium of Cotton Diseases” Second ed. APS Press, VII, 77.
  • Erdoğan O. (2009). Bazı Pamuk Çeşit Adaylarının Verticillium Solgunluk Hastalığı Etmeni (Verticillium dahliae Kleb.)’ne Karşı Reaksiyonlarının Belirlenmesi. ADÜ Ziraat Fakültesi Dergisi, 6 (2): 9-16, Aydın.
  • Harem E. (2014) Türkiye Pamuk Çeşit Kataloğu. Yayın No:74, Sayfa No:1-134. Nazilli.
  • Kaya, C. (2020). Güneydoğu Anadolu Bölgesi Pamuk Ekiliş Alanlarında Bulunan Pamuk Yaprakbiti [Aphis gossypii glover (hemiptera: aphididae)] Popülasyonlarının Neonikotinoidli İnsektisitlere Direncinin İncelenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
  • Kim SH, Shin JH, HaMok J, et al. (2014). Misidentification of Kan¬dida guilliermondii as C. famata among Strains Isolated from Blood Cultures by the VITEK 2 System. Bio Med Research International, Article ID 250408, 6 pages.
  • Lamoth, F. (2016). Aspergillus fumigatus-Related Species in Clinical Practice.Front Microbiol. 7: 683.
  • Li, Y., Wang, H., Zhao, Y. P., Xu, Y. C. & Hsueh, P. R. (2017). Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media. Front Microbiol.; 8: 1209.
  • Özcan, N., Ezin, Ö., Akpolat, N., Mete, M. & Gül, K. (2016). Identification of Candida species isolated from clinical specimens by MALDI-TOF MS. Dicle Medical Journal; 43: 390-4.
  • Park, J. H., Shin, J. H. & Choi, M. J. et all. (2017). Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification. Diagn Microbiol Infect Dis; 87: 28-31.
  • Pelit, S., Erköse Genç, G., Barış, A. & Erturan, Z. (2017). Trichosporon Türlerinin Tanımlanmasında Matriks Aracılı Lazer Dezorpsiyon İyonizasyon-Uçuş Zamanlı-Kütle Spektrometresi (MALDI-TOF MS) Sisteminin API ID 32C ve VITEK 2 ile Karşılaştırılması. Türk Mikrobiyol Cem Derg; 47: 169-75.
  • Shahbandeh, M. (2019). Cotton production by country worldwide, 2019, https://www.statista.com/statistics/263055/cotton-production-worldwide-by-top-countries/.
  • Sharratt, B. & Auvermann. B. (2014). Dust Pollution from Agriculture. In Encyclopedia of Agriculture and Food Systems. Elsevier. p 487-504
  • Vidal-Acuña, M. R., Ruiz-Pérez de Pipaón, M., Torres-Sánchez, M. J. & Aznar, J. (2018). Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med Mycol; 56: 838-46.
  • Yılmaz, Ö. (2009). Pamuk alanlarında çökertene yol açan patojenlere karşı bazı ilaçların etkinliğinin saptanması. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Yılmaz, S., Duyan, S., Artuk, C. & Diktaş, H. (2014). Applications of MALDI-TOF MS in Microbiological Identification. TAF Prev Med Bull; 13: 421-6.

Morfolojik ve MALDI-TOF kütle spektrometresi yöntemine dayalı pamuk patojenik olmayan mantar ajanı izolatlarının tanımlanması

Year 2024, Volume: 11 Issue: 4, 1161 - 1167, 12.10.2024
https://doi.org/10.30910/turkjans.1477542

Abstract

Bu çalışmada pamuk bitkisinin hastalıklı kök, yaprak ve koza dokularından izole edilmekle beraber, patojen özellik göstermeyen fungus türlerinin morfolojik ve MALDI-TOF MS yöntemine bağlı teşhis ve karşılaştırması yapılmıştır. Bu amaç için 2020 ve 2021 in Haziran – Eylül ayları arasında pamuk üretiminin yoğun olarak yapıldığı Diyarbakır ilinin Bağlar, Sur, Çınar, Bismil, Yenişehir, Ergani, Eğil, Kayapınar ve Silvan ilçelerinde surveyler yapılmıştır. 75 farklı pamuk üretim alanından tipik fungal hastalık belirtileri gösteren bitkilerden 209 adet örnek toplanmıştır. Örneklerdeki hastalıklı bitki dokularından izolasyon, kültür ve saflaştırma işlemleri yapılarak toplam da 171 adet fungal izolat elde edilmiştir. Ana konukçudaki patogenisite testinde negatif çıkan 20 izolat morfolojik (geleneksel) ve MALDI-TOF MS yöntemiyle teşhis edilmiş ve karşılaştırılmıştır. Sonuçlara göre, Aspergıllus niger, Aspergillus flavus, Aspergıllus terreus, Aspergillus fumigatus, Aspergıllus minisclerotigenes, Penicillium nalgıovense, Chaetomium globosum , Dichotomopilus funicola, Arthroderma gloria, Pseudogmnoacus pannorum, Tichophyton interdigitale türleriyle beraber Penicillium sp. cinsine ait fungus türlerinin pamuğun hastalık belirtisi sergileyen yaprak koza ve kök gibi farklı kısımlarında yoğun olarak kolonize olduğu belirlenmiştir. Yine toplam saprofit izolatlar içerisinde en yaygın türün ise Aspergillus niger olduğu yüksek benzerlik oranı ile tespit edilmiştir.

References

  • Alamer, F. A., Althagafy, K. & Alghamdi, H. et al. (2023). Thermo-Electric Properties of Conductive Cotton Fabrics: Synergistic. Effects of Graphene Doping Ratio and Amount. J Inorg Organomet Polym https://doi.org/10.1007/s10904-023-02918-z
  • Anonim, (2009). International Year Of Natural Fibers 2009: https://www.fao.org/natural-fibres-2009/about/15-natural.
  • Anonim, (2017). http://www.gap.gov.tr/tarim-sayfa-15.html (Erişim: 13.02.2017).
  • Anonim, (2019). GLOBAL GARMENT AND TEXTILE INDUSTRIES Workers, Rights and Working Conditions: https://www.solidaritycenter.org/wp-content/uploads/2019/08/Garment-Textile-Industry-Fact-Sheet.8.2019.pdf
  • Anonim, (2024a). Teksthile Exchange: https://textileexchange.org/plant-fibers/
  • Anonim, (2024b). International Labour Organization https://www.ilo.org/ipec/projects/global/clearcotton/lang--en/index.htm
  • Atalay, A., Koc A. N. & Suel A, et al. (2016). Conventional Morphology Versus PCR Sequencing, rep-PCR, and MALDI-TOF-MS for Identification of Clinical Aspergillus Isolates Collected Over a 2-Year Period in a University Hospital at Kayseri, Turkey. J Clin Lab Anal. 30: 745-50.
  • Devay, J. E. (2001). Seedling Diseases 13-14, in Eds., T.L. Kirkpatrickand C.S. Rothrock “Compendium of Cotton Diseases” Second ed. APS Press, VII, 77.
  • Erdoğan O. (2009). Bazı Pamuk Çeşit Adaylarının Verticillium Solgunluk Hastalığı Etmeni (Verticillium dahliae Kleb.)’ne Karşı Reaksiyonlarının Belirlenmesi. ADÜ Ziraat Fakültesi Dergisi, 6 (2): 9-16, Aydın.
  • Harem E. (2014) Türkiye Pamuk Çeşit Kataloğu. Yayın No:74, Sayfa No:1-134. Nazilli.
  • Kaya, C. (2020). Güneydoğu Anadolu Bölgesi Pamuk Ekiliş Alanlarında Bulunan Pamuk Yaprakbiti [Aphis gossypii glover (hemiptera: aphididae)] Popülasyonlarının Neonikotinoidli İnsektisitlere Direncinin İncelenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi.
  • Kim SH, Shin JH, HaMok J, et al. (2014). Misidentification of Kan¬dida guilliermondii as C. famata among Strains Isolated from Blood Cultures by the VITEK 2 System. Bio Med Research International, Article ID 250408, 6 pages.
  • Lamoth, F. (2016). Aspergillus fumigatus-Related Species in Clinical Practice.Front Microbiol. 7: 683.
  • Li, Y., Wang, H., Zhao, Y. P., Xu, Y. C. & Hsueh, P. R. (2017). Evaluation of the Bruker Biotyper Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry System for Identification of Aspergillus Species Directly from Growth on Solid Agar Media. Front Microbiol.; 8: 1209.
  • Özcan, N., Ezin, Ö., Akpolat, N., Mete, M. & Gül, K. (2016). Identification of Candida species isolated from clinical specimens by MALDI-TOF MS. Dicle Medical Journal; 43: 390-4.
  • Park, J. H., Shin, J. H. & Choi, M. J. et all. (2017). Evaluation of matrix-assisted laser desorption/ionization time-of-fight mass spectrometry for identification of 345 clinical isolates of Aspergillus species from 11 Korean hospitals: comparison with molecular identification. Diagn Microbiol Infect Dis; 87: 28-31.
  • Pelit, S., Erköse Genç, G., Barış, A. & Erturan, Z. (2017). Trichosporon Türlerinin Tanımlanmasında Matriks Aracılı Lazer Dezorpsiyon İyonizasyon-Uçuş Zamanlı-Kütle Spektrometresi (MALDI-TOF MS) Sisteminin API ID 32C ve VITEK 2 ile Karşılaştırılması. Türk Mikrobiyol Cem Derg; 47: 169-75.
  • Shahbandeh, M. (2019). Cotton production by country worldwide, 2019, https://www.statista.com/statistics/263055/cotton-production-worldwide-by-top-countries/.
  • Sharratt, B. & Auvermann. B. (2014). Dust Pollution from Agriculture. In Encyclopedia of Agriculture and Food Systems. Elsevier. p 487-504
  • Vidal-Acuña, M. R., Ruiz-Pérez de Pipaón, M., Torres-Sánchez, M. J. & Aznar, J. (2018). Identification of clinical isolates of Aspergillus, including cryptic species, by matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Med Mycol; 56: 838-46.
  • Yılmaz, Ö. (2009). Pamuk alanlarında çökertene yol açan patojenlere karşı bazı ilaçların etkinliğinin saptanması. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
  • Yılmaz, S., Duyan, S., Artuk, C. & Diktaş, H. (2014). Applications of MALDI-TOF MS in Microbiological Identification. TAF Prev Med Bull; 13: 421-6.
There are 22 citations in total.

Details

Primary Language English
Subjects Phytopathology
Journal Section Research Article
Authors

Adalet Karadaşlı 0009-0001-5977-6087

Hamit Kavak 0000-0002-9475-0421

Early Pub Date October 12, 2024
Publication Date October 12, 2024
Submission Date May 5, 2024
Acceptance Date May 23, 2024
Published in Issue Year 2024 Volume: 11 Issue: 4

Cite

APA Karadaşlı, A., & Kavak, H. (2024). Identification of cotton non-pathogenic fungal agent isolates based on morphological and MALDI-TOF mass spectrometry method. Turkish Journal of Agricultural and Natural Sciences, 11(4), 1161-1167. https://doi.org/10.30910/turkjans.1477542