Research Article
BibTex RIS Cite
Year 2025, Volume: 12 Issue: 1, 197 - 215

Abstract

References

  • Aydoğdu, M., Akçar, H. T., Çullu, M. A. (2011). Coğrafi bilgi sistemleri (CBS) ve uzaktan algılama (UA) kullanılarak çiftçi kayıt sistemi (ÇKS) verilerinin analizi ile pamuk ve mısır primlerinin ödenmesi: Şanlıurfa-Harran İlçesi örneği. Jeodezi ve Jeoinformasyon Dergisi, 104(ÖS), 47-52.
  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status, and canopy density using ground-based multispectral data. In 5th International Conference on Precision Agriculture (pp. 1–15). Bloomington, USA.
  • Belgiu, M., Drăguț, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 Biau, G., Scornet, E. (2016). A random forest guided tour. Test, 25, 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Bozkurt, M., Aybek, A. (2016). Şanlıurfa İli Harran Ovasının tarımsal yapı ve mekanizasyon özellikleri. KSÜ Doğa Bilimleri Dergisi, 19(3), 319-331.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. http://dx.doi.org/10.1023/A:1010933404324
  • Conese, C., Maselli, F. (1991). Use of multi-temporal information to improve classification performance of TM scenes in complex terrain. ISPRS Journal of Photogrammetry and Remote Sensing, 46(4), 187–197. https://doi.org/10.1016/0924-2716(91)90052-W
  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
  • Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. L. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
  • Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., Guo, X. (2019). Crop type identification and mapping using machine learning algorithms and Sentinel-2 time series data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 3295–3306. https://doi.org/10.1109/JSTARS.2019.2922469
  • Gómez, C., White, J. C., Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
  • Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., Whitbread, A. M. (2020). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International, 37(11), 1–17. https://doi.org/10.1080/10106049.2020.1805029
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
  • Huete, A. R. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309. http://dx.doi.org/10.1016/0034-4257(88)90106-X
  • Kalkan, K., Maktav, D. (2016). Landsat-8 görüntülerinden gölge ve bulut belirleme. VI. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, Adana, Türkiye.
  • Kang, Y., Meng, Q., Liu, M., Zou, Y., Wang, X. (2021). Crop classification based on red edge features analysis of GF-6 WFV data. Sensors, 21(13). https://doi.org/10.3390/s21134328
  • Karlsen, S. R., Stendardi, L., Tømmervik, H., Nilsen, L., Arntzen, I., Cooper, E. J. (2021). Time-series of cloud-free Sentinel-2 NDVI data used in mapping the onset of growth of Central Spitsbergen, Svalbard. Remote Sensing, 13(15), 3031. https://doi.org/10.3390/rs13153031
  • Kavzoglu, T. (2009). Increasing the accuracy of neural network classification using refined training data. Environmental Modelling & Software, 24(7), 850–858. https://doi.org/10.1016/j.envsoft.2008.11.012
  • Kobayashi, N., Tani, H., Wang, X., Sonobe, R. (2020). Crop classification using spectral indices derived from Sentinel-2A imagery. Journal of Information and Telecommunication, 4(1), 67–90. https://doi.org/10.1080/24751839.2019.1694765
  • Khatami, R., Mountrakis, G., Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028
  • Kim, H. O., Yeom, J. M. (2015). Sensitivity of vegetation indices to spatial degradation of RapidEye imagery for paddy rice detection: A case study of South Korea. GIScience & Remote Sensing, 52(1), 1–17. https://doi.org/10.1080/15481603.2014.1001666
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, 2, 1137–1143.
  • Lu, D., Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823–870. https://doi.org/10.1080/01431160600746456
  • Morsy, S., Hadi, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272–282. https://doi.org/10.26833/ijeg.978961
  • Murthy, C. S., Raju, P. V., Badrinath, K. V. (2003). Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. International Journal of Remote Sensing, 24, 4871–4890. https://doi.org/10.1080/0143116031000070490
  • Pasternak, M., Filipiak, K. P. (2022). The evaluation of spectral vegetation indexes and redundancy reduction on the accuracy of crop type detection. Applied Sciences, 12(10), 5067. https://doi.org/10.3390/app12105067
  • Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G. (2016). Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156–168. http://dx.doi.org/10.1016/j.rse.2016.10.010
  • Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Chova, L. G., Hagolle, O., Puigdollers, O. L., Louis, J., Lubej, M., García, M. G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R., Roger, J. C., Scaramuzza, P., Vermote, E., Vesel, N., Zupanc, A., Žust, L. (2022). Cloud mask intercomparison exercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 274, 112990. https://doi.org/10.1016/j.rse.2022.112990
  • Sun, C., Bian, Y., Zhou, T., Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors, 19(10), 2401. https://doi.org/10.3390/s19102401
  • Stern, A. J., Daughtry, C. S. T., Hunt, E. R., Jr., Gao, F. (2023). Comparison of five spectral indices and six imagery classification techniques for assessment of crop residue cover using four years of Landsat imagery. Remote Sensing, 15, 4596. https://doi.org/10.3390/rs15184596
  • Song, D., Huang, C., Sexton, J. O., Channan, S., Feng, M., Townshend, J. R. (2015). Use of Landsat and corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 81–92. https://doi.org/10.1016/j.isprsjprs.2014.09.005
  • Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., Mochizuki, K. (2018). Crop classification from Sentinel-2 derived vegetation indices using ensemble learning. Journal of Applied Remote Sensing, 12(2). https://doi.org/10.1117/1.JRS.12.026019
  • Şimşek, F. F., Durduran, S. S. (2023). Açık kaynak kodlu Eo-learn kütüphanesi ve çok zamanlı Sentinel-2 görüntüleri ile tarımsal ürün sınıflandırması. Jeodezi ve Jeoinformasyon Dergisi, 10(1), 45–62. https://doi.org/10.9733/JGG.2023R0004.T
  • Şimşek, F. F., Teke, M., Altuntaş, C. (2016). Controlling of product declarations of farmers using remote sensing techniques: The Harran Plain case. UZAL-CBS 6th Symposium, Adana.
  • Tatsumi, M., Yamashiki, Y., Torres, M. A. C., Taipe, C. L. R. (2015). Crop classification of upland fields using random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171–179. https://doi.org/10.1016/j.compag.2015.05.001
  • Teke, M., Yardımcı, Y. Ç. (2021). Multi-year vector dynamic time warping-based crop mapping. Journal of Applied Remote Sensing, 15(1). https://doi.org/10.1117/1.JRS.15.016517
  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127-150. http://dx.doi.org/10.1016/0034-4257(79)90013-0
  • Üstüner, M., Şanlı, F. B., Abdikan, S. (2015). The effect of spectral band and plant index selection on crop pattern classification accuracy: Comparative analysis. TUFUAB 8th Technical Symposium, Konya.
  • Üstüner, M., Şanlı, F. B., Abdikan, S., Esetlili, M. T., Kurucu, Y. (2014). Crop type classification using vegetation indices of RapidEye imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7, 2014.
  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122–130. https://doi.org/10.1016/j.jag.2018.06.007
  • Wilm, U. M. (2017). Sen2Cor configuration and user manual (pp. 9–12).
  • Wilm, U. M., Louis, J., Richter, R., Gascon, F., Niezette, M. (2013). Sentinel-2 Level-2A prototype processor: Architecture, algorithms and first results. ESA, Living Planet Symposium ESA-SP-722.
  • Zhang, H., Kang, J., Xu, X., Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi'an County, Heilongjiang Province, China. Computers and Electronics in Agriculture, 176, 105618. https://doi.org/10.1016/j.compag.2020.105618
  • Zhang, H. K., Roy, D. P. (2017). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment, 197, 15–34. https://doi.org/10.1016/j.rse.2017.05.024
  • Zheng, H., Du, P., Chen, J., Xia, J., Li, E., Xu, Z., Li, X., Yokoya, N. (2007). Performance evaluation of downscaling Sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Remote Sensing, 9(12), 1274. https://doi.org/10.3390/rs9121274
  • Zhong, L., Hu, L., Zhou, H. (2019). Deep learning based multi-temporal crop classification. Remote Sensing of Environment, 221, 430–443. https://doi.org/10.1016/j.rse.2018.11.032
  • Zhu, Z., Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94. https://doi.org/10.1016/j.rse.2011.10.028

Investigating the Effect of Spectral Bands and Vegetation Indices Selection on Agricultural Crop Classification (Especially for Double Crops Regions)

Year 2025, Volume: 12 Issue: 1, 197 - 215

Abstract

In this study, a classification study was carried out using multi-temporal Sentinel-2 imagery and datasets generated from different vegetation and spectral indices, and the effects on the classification result were investigated. As the study area has very fertile soils, suitable climate and temperature conditions and irrigated land, it is possible to grow more than one crop on the same plot during a production season. Wheat_maize (winter_wheat+summer_maize), wheat_cotton (winter_wheat+summer_cotton), lentil_cotton (winter_lentil+summer_cotton), lentil_maize (winter_lentil+summer_maize) are the crops included in the classification study, except for double crops; maize, cotton, wheat and lentils are also included. Time series of vegetation indices can be used to capture information on plant phenology and can be used as reference information in crop classification. Time series curves of different vegetation indices were constructed and compared for all crops, especially for double crops with the same phenological periods. In addition to the vegetation indices, the variation of the time series reflectance values of each spectral band was also observed for all crops and the effect of different indices and bands on the classification result was investigated. The study generated 16 different data sets using conventional vegetation indices, NDVI, SAVI, EVI and NDRE vegetation indices and all other bands of the Sentinel-2 satellite except the 60m bands. While single crops with different time series (maize, cotton, lentil, wheat) had an accuracy of over 90% in each dataset, double crops could not exceed 81% accuracy by mixing with each other in the DS-5 (R-G-B-NIR) dataset. In the DS-1 (NDVI time series) dataset, the overall accuracy for double crops is in the range of 84-85%. Classification with DS-2 (NDRE time series) increased the overall accuracy for double crops to 90%. When comparing the time series reflectance values of each spectral band for all crop types, except the crop indices, it was observed that the B6 (Red Edge-2) and B11 (SWIR-1) bands were separated from the other bands and increased the classification result by 2% when included in the dataset. Especially in the classification studies carried out on products with close phenological periods, the Red Edge band (especially Red Edge-2) and the indices (NDRE) generated from these bands will improve the classification result by preventing confusion between classes, and the B11 (SWIR-1) band also has a positive effect on classification. This study has fully demonstrated the application potential of red edge bands and the indices constructed from them. It also promotes the use of red edge band optical satellite data in agricultural remote sensing.

References

  • Aydoğdu, M., Akçar, H. T., Çullu, M. A. (2011). Coğrafi bilgi sistemleri (CBS) ve uzaktan algılama (UA) kullanılarak çiftçi kayıt sistemi (ÇKS) verilerinin analizi ile pamuk ve mısır primlerinin ödenmesi: Şanlıurfa-Harran İlçesi örneği. Jeodezi ve Jeoinformasyon Dergisi, 104(ÖS), 47-52.
  • Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., Thompson, T., Lascano, R. J., Li, H., & Moran, M. S. (2000). Coincident detection of crop water stress, nitrogen status, and canopy density using ground-based multispectral data. In 5th International Conference on Precision Agriculture (pp. 1–15). Bloomington, USA.
  • Belgiu, M., Drăguț, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011 Biau, G., Scornet, E. (2016). A random forest guided tour. Test, 25, 197–227. https://doi.org/10.1007/s11749-016-0481-7
  • Bozkurt, M., Aybek, A. (2016). Şanlıurfa İli Harran Ovasının tarımsal yapı ve mekanizasyon özellikleri. KSÜ Doğa Bilimleri Dergisi, 19(3), 319-331.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. http://dx.doi.org/10.1023/A:1010933404324
  • Conese, C., Maselli, F. (1991). Use of multi-temporal information to improve classification performance of TM scenes in complex terrain. ISPRS Journal of Photogrammetry and Remote Sensing, 46(4), 187–197. https://doi.org/10.1016/0924-2716(91)90052-W
  • Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37(1), 35–46. https://doi.org/10.1016/0034-4257(91)90048-B
  • Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. L. (2012). Sentinel-2: ESA's optical high-resolution mission for GMES operational services. Remote Sensing of Environment, 120, 25–36. https://doi.org/10.1016/j.rse.2011.11.026
  • Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., Guo, X. (2019). Crop type identification and mapping using machine learning algorithms and Sentinel-2 time series data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12, 3295–3306. https://doi.org/10.1109/JSTARS.2019.2922469
  • Gómez, C., White, J. C., Wulder, M. A. (2016). Optical remotely sensed time series data for land cover classification: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 116, 55–72. https://doi.org/10.1016/j.isprsjprs.2016.03.008
  • Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., Whitbread, A. M. (2020). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International, 37(11), 1–17. https://doi.org/10.1080/10106049.2020.1805029
  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
  • Huete, A. R. (1988). A soil adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309. http://dx.doi.org/10.1016/0034-4257(88)90106-X
  • Kalkan, K., Maktav, D. (2016). Landsat-8 görüntülerinden gölge ve bulut belirleme. VI. Uzaktan Algılama ve Coğrafi Bilgi Sistemleri Sempozyumu, Adana, Türkiye.
  • Kang, Y., Meng, Q., Liu, M., Zou, Y., Wang, X. (2021). Crop classification based on red edge features analysis of GF-6 WFV data. Sensors, 21(13). https://doi.org/10.3390/s21134328
  • Karlsen, S. R., Stendardi, L., Tømmervik, H., Nilsen, L., Arntzen, I., Cooper, E. J. (2021). Time-series of cloud-free Sentinel-2 NDVI data used in mapping the onset of growth of Central Spitsbergen, Svalbard. Remote Sensing, 13(15), 3031. https://doi.org/10.3390/rs13153031
  • Kavzoglu, T. (2009). Increasing the accuracy of neural network classification using refined training data. Environmental Modelling & Software, 24(7), 850–858. https://doi.org/10.1016/j.envsoft.2008.11.012
  • Kobayashi, N., Tani, H., Wang, X., Sonobe, R. (2020). Crop classification using spectral indices derived from Sentinel-2A imagery. Journal of Information and Telecommunication, 4(1), 67–90. https://doi.org/10.1080/24751839.2019.1694765
  • Khatami, R., Mountrakis, G., Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89–100. https://doi.org/10.1016/j.rse.2016.02.028
  • Kim, H. O., Yeom, J. M. (2015). Sensitivity of vegetation indices to spatial degradation of RapidEye imagery for paddy rice detection: A case study of South Korea. GIScience & Remote Sensing, 52(1), 1–17. https://doi.org/10.1080/15481603.2014.1001666
  • Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence, 2, 1137–1143.
  • Lu, D., Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28, 823–870. https://doi.org/10.1080/01431160600746456
  • Morsy, S., Hadi, M. (2022). Impact of land use/land cover on land surface temperature and its relationship with spectral indices in Dakahlia Governorate, Egypt. International Journal of Engineering and Geosciences, 7(3), 272–282. https://doi.org/10.26833/ijeg.978961
  • Murthy, C. S., Raju, P. V., Badrinath, K. V. (2003). Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks. International Journal of Remote Sensing, 24, 4871–4890. https://doi.org/10.1080/0143116031000070490
  • Pasternak, M., Filipiak, K. P. (2022). The evaluation of spectral vegetation indexes and redundancy reduction on the accuracy of crop type detection. Applied Sciences, 12(10), 5067. https://doi.org/10.3390/app12105067
  • Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G. (2016). Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment, 187, 156–168. http://dx.doi.org/10.1016/j.rse.2016.10.010
  • Skakun, S., Wevers, J., Brockmann, C., Doxani, G., Aleksandrov, M., Batič, M., Frantz, D., Gascon, F., Chova, L. G., Hagolle, O., Puigdollers, O. L., Louis, J., Lubej, M., García, M. G., Osman, J., Peressutti, D., Pflug, B., Puc, J., Richter, R., Roger, J. C., Scaramuzza, P., Vermote, E., Vesel, N., Zupanc, A., Žust, L. (2022). Cloud mask intercomparison exercise (CMIX): An evaluation of cloud masking algorithms for Landsat 8 and Sentinel-2. Remote Sensing of Environment, 274, 112990. https://doi.org/10.1016/j.rse.2022.112990
  • Sun, C., Bian, Y., Zhou, T., Pan, J. (2019). Using of multi-source and multi-temporal remote sensing data improves crop-type mapping in the subtropical agriculture region. Sensors, 19(10), 2401. https://doi.org/10.3390/s19102401
  • Stern, A. J., Daughtry, C. S. T., Hunt, E. R., Jr., Gao, F. (2023). Comparison of five spectral indices and six imagery classification techniques for assessment of crop residue cover using four years of Landsat imagery. Remote Sensing, 15, 4596. https://doi.org/10.3390/rs15184596
  • Song, D., Huang, C., Sexton, J. O., Channan, S., Feng, M., Townshend, J. R. (2015). Use of Landsat and corona data for mapping forest cover change from the mid-1960s to 2000s: Case studies from the Eastern United States and Central Brazil. ISPRS Journal of Photogrammetry and Remote Sensing, 103, 81–92. https://doi.org/10.1016/j.isprsjprs.2014.09.005
  • Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., Mochizuki, K. (2018). Crop classification from Sentinel-2 derived vegetation indices using ensemble learning. Journal of Applied Remote Sensing, 12(2). https://doi.org/10.1117/1.JRS.12.026019
  • Şimşek, F. F., Durduran, S. S. (2023). Açık kaynak kodlu Eo-learn kütüphanesi ve çok zamanlı Sentinel-2 görüntüleri ile tarımsal ürün sınıflandırması. Jeodezi ve Jeoinformasyon Dergisi, 10(1), 45–62. https://doi.org/10.9733/JGG.2023R0004.T
  • Şimşek, F. F., Teke, M., Altuntaş, C. (2016). Controlling of product declarations of farmers using remote sensing techniques: The Harran Plain case. UZAL-CBS 6th Symposium, Adana.
  • Tatsumi, M., Yamashiki, Y., Torres, M. A. C., Taipe, C. L. R. (2015). Crop classification of upland fields using random forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171–179. https://doi.org/10.1016/j.compag.2015.05.001
  • Teke, M., Yardımcı, Y. Ç. (2021). Multi-year vector dynamic time warping-based crop mapping. Journal of Applied Remote Sensing, 15(1). https://doi.org/10.1117/1.JRS.15.016517
  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8, 127-150. http://dx.doi.org/10.1016/0034-4257(79)90013-0
  • Üstüner, M., Şanlı, F. B., Abdikan, S. (2015). The effect of spectral band and plant index selection on crop pattern classification accuracy: Comparative analysis. TUFUAB 8th Technical Symposium, Konya.
  • Üstüner, M., Şanlı, F. B., Abdikan, S., Esetlili, M. T., Kurucu, Y. (2014). Crop type classification using vegetation indices of RapidEye imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7, 2014.
  • Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., Ng, W. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? International Journal of Applied Earth Observation and Geoinformation, 72, 122–130. https://doi.org/10.1016/j.jag.2018.06.007
  • Wilm, U. M. (2017). Sen2Cor configuration and user manual (pp. 9–12).
  • Wilm, U. M., Louis, J., Richter, R., Gascon, F., Niezette, M. (2013). Sentinel-2 Level-2A prototype processor: Architecture, algorithms and first results. ESA, Living Planet Symposium ESA-SP-722.
  • Zhang, H., Kang, J., Xu, X., Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi'an County, Heilongjiang Province, China. Computers and Electronics in Agriculture, 176, 105618. https://doi.org/10.1016/j.compag.2020.105618
  • Zhang, H. K., Roy, D. P. (2017). Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sensing of Environment, 197, 15–34. https://doi.org/10.1016/j.rse.2017.05.024
  • Zheng, H., Du, P., Chen, J., Xia, J., Li, E., Xu, Z., Li, X., Yokoya, N. (2007). Performance evaluation of downscaling Sentinel-2 imagery for land use and land cover classification by spectral-spatial features. Remote Sensing, 9(12), 1274. https://doi.org/10.3390/rs9121274
  • Zhong, L., Hu, L., Zhou, H. (2019). Deep learning based multi-temporal crop classification. Remote Sensing of Environment, 221, 430–443. https://doi.org/10.1016/j.rse.2018.11.032
  • Zhu, Z., Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94. https://doi.org/10.1016/j.rse.2011.10.028
There are 46 citations in total.

Details

Primary Language English
Subjects Precision Agriculture Technologies
Journal Section Research Article
Authors

Fatih Fehmi Şimşek 0000-0003-4016-4408

Early Pub Date January 25, 2025
Publication Date
Submission Date November 15, 2024
Acceptance Date December 6, 2024
Published in Issue Year 2025 Volume: 12 Issue: 1

Cite

APA Şimşek, F. F. (n.d.). Investigating the Effect of Spectral Bands and Vegetation Indices Selection on Agricultural Crop Classification (Especially for Double Crops Regions). Turkish Journal of Agricultural and Natural Sciences, 12(1), 197-215. https://doi.org/10.30910/turkjans.1586291