Research Article
BibTex RIS Cite

Year 2025, Volume: 12 Issue: 3, 574 - 584, 23.07.2025
https://doi.org/10.30910/turkjans.1666602

Abstract

References

  • Ayoub, L., Hassan, F., Hamid, S., Abdelhamid, Z., & Souad, A. (2019). Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation, 15(3), 226–231. https://doi.org/10.6026/97320630015226
  • Badgujar, S. B., Patel, V. V., Bandivdekar, A. H., & Mahajan, R. T. (2014). Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology, 52(11), 1487–1503. https://doi.org/10.3109/13880209.2014.892515
  • Bayrak, Ç., Birinci, C., Kemal, M., & Kolayli, S. (2023). The phenolic composition and antioxidant properties of figs (Ficus carica L.) grown in the Black Sea region. Plant Foods for Human Nutrition, 78(3), 539–545. https://doi.org/10.1007/s11130-023-01089-z
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT–Food Science and Technology, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Burdock, G. A., & Carabin, I. G. (2004). Generally recognized as safe (GRAS): History and description. Toxicology Letters, 150(1), 3–18. https://doi.org/10.1016/j.toxlet.2003.07.004
  • Buyuktuncel, E., Porgali, E., & Colak, C. (2014). Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food and Nutrition Sciences, 5, 1660–1667. https://doi.org/10.4236/fns.2014.517179
  • Çalışkan, O., & Aytekin Polat, A. (2012). Bazı incir çeşitlerinin fitokimyasal ve antioksidan özelliklerinin belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 49(2), 201–208.
  • Caliskan, O., & Polat, A. (2011). Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from ten eastern Mediterranean region of Turkey. Scientia Horticulturae, 128, 473–478. https://doi.org/10.1016/j.scienta.2011.02.023
  • Çalışkan, O., & Dalkılıç, Z. (2022). Ancient history and cultural heritage of Ficus carica in Turkey. In Z. Dalkılıç (Ed.), Ficus carica: Production, Cultivation and Uses (pp. 1–20). Nova Science Publishers, https://doi.org/10.52305/TPCS5872
  • Davis, P. H. (1965–1988). Flora of Turkey and the East Aegean Islands (Vols. I–X). Edinburgh: Edinburgh University Press.
  • Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
  • Hajam, T. A., & Saleem, H. (2022). Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): A review. Chemico-Biological Interactions, 368, 110237. https://doi.org/10.1016/j.cbi.2022.110237
  • Harzallah, A., Bhouri, A. M., Amri, Z., Soltana, H., & Hammami, M. (2016). Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Industrial Crops and Products, 83, 255–267. https://doi.org/10.1016/j.indcrop.2015.12.043
  • Kaewseejan, N., & Siriamornpun, S. (2015). Bioactive components and properties of ethanolic extract and its fractions from Gynura procumbens leaves. Industrial Crops and Products, 74, 271–278. https://doi.org/10.1016/j.indcrop.2015.05.019
  • Kamiloglu, S., & Capanoglu, E. (2013). Investigating the in vitro bioaccessibility of polyphenols in fresh and sun-dried figs (Ficus carica L.). International Journal of Food Science and Technology, 48, 2621–2629. https://doi.org/10.1111/ijfs.12258
  • Karantzi, A. D., Kafkaletou, M., Christopoulos, M. V., & Tsantili, E. (2021). Peel colour and flesh phenolic compounds at ripening stages in pollinated commercial varieties of fig (Ficus carica L.) fruit grown in Southern Europe. Journal of Food Measurement and Characterization, 15, 2049–2063. https://doi.org/10.1007/s11694-020-00796-4
  • Kebal, L., Djebli, N., Pokajewicz, K., Mostefa, N., & Wieczorek, P. P. (2024). Antioxidant activity and effectiveness of fig extract in counteracting carbon tetrachloride-induced oxidative damage in rats. Molecules, 29(9), 1997. https://doi.org/10.3390/molecules29091997
  • Kebal, L., Pokajewicz, K., Djebli, N., Mostefa, N., Poliwoda, A., & Wieczorek, P. P. (2022). HPLC-DAD profile of phenolic compounds and in vitro antioxidant activity of Ficus carica L. fruits from two Algerian varieties. Biomedicine & Pharmacotherapy, 155, 113738. https://doi.org/10.1016/j.biopha.2022.113738
  • Konak, R., Kosoglu, I., & Yemenicioglu, A. (2017). Effects of different drying methods on phenolic content, antioxidant capacity and general characteristics of selected Turkish fig cultivars. Acta Horticulturae, 1173, 335–340. https://doi.org/10.17660/ActaHortic.2017.1173.58
  • Li, P., Ma, F., & Cheng, L. (2013). Primary and secondary metabolism in the sun-exposed peel and the shaded peel of apple fruit. Physiologia Plantarum, 148, 9–24. https://doi.org/10.1111/j.1399-3054.2012.01692.x
  • Li, X., Xu, C., Korban, S. S., & Chen, K. (2010). Regulatory mechanisms of textural changes in ripening fruits. Critical Reviews in Plant Sciences, 29(4), 222–243. https://doi.org/10.1080/07352689.2010.487776
  • López-Martínez, L. X., Parkin, K. L., & Garcia, H. S. (2012). Effect of processing of corn for production of masa, tortillas and tortilla chips on the scavenging capacity of reactive nitrogen species. International Journal of Food Science and Technology, 47(6), 1321–1327. https://doi.org/10.1111/j.1365-2621.2012.02976.x
  • Mujic, I., Dudas, S., Zekovic, Z., Lepojevic, Z., & Radojkovic, M. (2012). Determination of antioxidant properties of fig fruit extracts (Ficus carica). Acta Horticulturae, 940, 369–376. https://doi.org/10.17660/ActaHortic.2012.940.52
  • Nakilcioğlu, E., & Hışıl, Y. (2013). Research on the phenolic compounds in Sarilop (Ficus carica L.) fig variety. Journal of Food Processing and Preservation, 37(5), 564–570. https://doi.org/10.1111/j.1745-4549.2012.00701.x
  • Ngo, T. V., Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V. (2017). Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, 2017, 1–8. https://doi.org/10.1155/2017/9305047
  • Oliveira, A. P., Valentao, P., Pereira, J. A., Silva, B. M., Tavares, F., & Andrade, P. B. (2009). Ficus carica L.: Metabolic and biological screening. Food and Chemical Toxicology, 47, 2841–2846. https://doi.org/10.1016/j.fct.2009.09.004
  • Ouchemoukh, S., Hachoud, S., Boudraham, H., Mokrani, A., & Louaileche, H. (2012). Antioxidant activities of some dried fruits consumed in Algeria. LWT–Food Science and Technology, 49, 329–332. https://doi.org/10.1016/j.lwt.2012.07.022
  • Pereira, C., Lopez-Corrales, M., Serradilla, M. J., Villalobos, M. del C., Ruiz Moyano, S., & Martín, A. (2017). Influence of ripening stage on bioactive compounds and antioxidant activity in nine fig (Ficus carica L.) varieties grown in Extremadura, Spain. Journal of Food Composition and Analysis, 64, 203–212. https://doi.org/10.1016/j.jfca.2017.09.006
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019
  • Rodríguez, V. M., Soengas, P., Landa, A., Ordás, A., & Revilla, P. (2013). Effects of selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica, 193(3), 339–345. https://doi.org/10.1007/s10681-013-0924-0
  • Sirisha, N., Sreenivasulu, M., Sangeeta, K., & Chetty, C. M. (2010). Antioxidant properties of Ficus species – a review. International Journal of PharmTech Research, 2(4), 2174–2182.
  • Slatnar, A., Klancar, U., Stampar, F., & Veberic, R. (2011). Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. Journal of Agricultural and Food Chemistry, 59, 11696–11702. https://doi.org/10.1021/jf202707y
  • Slavin, J. L. (2006). Figs: Past, present and future. Nutrition Today, 41(4), 180–184. https://doi.org/10.1097/00017285-200607000-00009
  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55. https://doi.org/10.5344/ajev.1977.28.1.49
  • Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H. E., et al. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54, 7717–7723. https://doi.org/10.1021/jf060497h
  • Soni, N., Mehta, S., Satpathy, G., & Gupta, R. K. (2014). Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Journal of Pharmacognosy and Phytochemistry, 3, 158–165.
  • Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268–3295. https://doi.org/10.1002/jssc.200700261
  • Tram, N. N., Hien, P. P., & Oanh, H. N. (2015). Optimizing the extraction conditions of phenolic compounds from fresh tea shoot. Journal of Food and Nutrition Sciences, 3(1–2), 106–110. https://doi.org/10.11648/j.jfns.s.2015030102.30
  • Vallejo, F., Marin, J. G., & Tomás-Barberán, F. A. (2012). Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chemistry, 130, 485–492. https://doi.org/10.1016/j.foodchem.2011.07.032
  • Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis, 24(4–5), 615–619. https://doi.org/10.1016/j.jfca.2010.09.018
  • Ydjedd, S., Chaala, M., Richard, G., Kati, D. E., López-Nicolás, R., Fauconnier, M. L., & Louaileche, H. (2017). Assessment of antioxidant potential of phenolic compounds fractions of Algerian Ceratonia siliqua L. pods during ripening stages. International Food Research Journal, 24(5).
  • Zieliński, H., & Kozłowska, H. (2000). Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008–2016. https://doi.org/10.1021/jf990619o

Comparison of Total Phenolic Contents and Antioxidant Activities of Ripe and Unripe Fig (Ficus carica L.) Extracts Using Different Solvents

Year 2025, Volume: 12 Issue: 3, 574 - 584, 23.07.2025
https://doi.org/10.30910/turkjans.1666602

Abstract

This study aimed to evaluate the effects of solvent polarity and fruit maturity on the antioxidant potential and total phenolic content of fig (Ficus carica L.) extracts. Unripe and ripe fig fruits collected from the Akseki district of Antalya, Türkiye, were extracted using three different solvents: ethanol, acetone, and ethyl acetate. The extraction yield, total phenolic content (TPC), total antioxidant capacity (TAC), and antioxidant activity (DPPH assay) were determined for each extract. In this study, extraction yield varied depending on both the type of solvent and the ripening stage of the fig. Ethanol was the most efficient solvent, particularly for ripe samples, yielding up to 80.3%. The highest TPC was observed in the ripe–acetone extract (3976.2 ± 526.5 mg GAE/kg DW), while the ripe–ethyl acetate extract exhibited the highest TAC (48.8 ± 0.87 mg AE/g DW). Antioxidant activity measured by the DPPH assay was greatest in the ripe–ethyl acetate extract (57.6 ± 10.37 mmol TE/kg DW). Among the tested extracts, the ripe–ethyl acetate extract exhibited the most favorable antioxidant properties, highlighting its potential as a promising source of bioactive compounds for functional applications. These results suggest that solvent polarity and fruit maturity interact to influence the extractability of phenolic compounds and antioxidant capacity. Semi-polar solvents such as acetone and ethyl acetate enhanced the recovery of bioactive compounds in both unripe and ripe samples, although the effectiveness varied depending on the specific antioxidant parameter evaluated. This study provides comparative data that may contribute to the optimization of extraction strategies for developing natural antioxidant sources from fig fruits.

References

  • Ayoub, L., Hassan, F., Hamid, S., Abdelhamid, Z., & Souad, A. (2019). Phytochemical screening, antioxidant activity and inhibitory potential of Ficus carica and Olea europaea leaves. Bioinformation, 15(3), 226–231. https://doi.org/10.6026/97320630015226
  • Badgujar, S. B., Patel, V. V., Bandivdekar, A. H., & Mahajan, R. T. (2014). Traditional uses, phytochemistry and pharmacology of Ficus carica: A review. Pharmaceutical Biology, 52(11), 1487–1503. https://doi.org/10.3109/13880209.2014.892515
  • Bayrak, Ç., Birinci, C., Kemal, M., & Kolayli, S. (2023). The phenolic composition and antioxidant properties of figs (Ficus carica L.) grown in the Black Sea region. Plant Foods for Human Nutrition, 78(3), 539–545. https://doi.org/10.1007/s11130-023-01089-z
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT–Food Science and Technology, 28, 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Burdock, G. A., & Carabin, I. G. (2004). Generally recognized as safe (GRAS): History and description. Toxicology Letters, 150(1), 3–18. https://doi.org/10.1016/j.toxlet.2003.07.004
  • Buyuktuncel, E., Porgali, E., & Colak, C. (2014). Comparison of total phenolic content and total antioxidant activity in local red wines determined by spectrophotometric methods. Food and Nutrition Sciences, 5, 1660–1667. https://doi.org/10.4236/fns.2014.517179
  • Çalışkan, O., & Aytekin Polat, A. (2012). Bazı incir çeşitlerinin fitokimyasal ve antioksidan özelliklerinin belirlenmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 49(2), 201–208.
  • Caliskan, O., & Polat, A. (2011). Phytochemical and antioxidant properties of selected fig (Ficus carica L.) accessions from ten eastern Mediterranean region of Turkey. Scientia Horticulturae, 128, 473–478. https://doi.org/10.1016/j.scienta.2011.02.023
  • Çalışkan, O., & Dalkılıç, Z. (2022). Ancient history and cultural heritage of Ficus carica in Turkey. In Z. Dalkılıç (Ed.), Ficus carica: Production, Cultivation and Uses (pp. 1–20). Nova Science Publishers, https://doi.org/10.52305/TPCS5872
  • Davis, P. H. (1965–1988). Flora of Turkey and the East Aegean Islands (Vols. I–X). Edinburgh: Edinburgh University Press.
  • Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y.-H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302. https://doi.org/10.1016/j.jfda.2013.11.001
  • Hajam, T. A., & Saleem, H. (2022). Phytochemistry, biological activities, industrial and traditional uses of fig (Ficus carica): A review. Chemico-Biological Interactions, 368, 110237. https://doi.org/10.1016/j.cbi.2022.110237
  • Harzallah, A., Bhouri, A. M., Amri, Z., Soltana, H., & Hammami, M. (2016). Phytochemical content and antioxidant activity of different fruit parts juices of three figs (Ficus carica L.) varieties grown in Tunisia. Industrial Crops and Products, 83, 255–267. https://doi.org/10.1016/j.indcrop.2015.12.043
  • Kaewseejan, N., & Siriamornpun, S. (2015). Bioactive components and properties of ethanolic extract and its fractions from Gynura procumbens leaves. Industrial Crops and Products, 74, 271–278. https://doi.org/10.1016/j.indcrop.2015.05.019
  • Kamiloglu, S., & Capanoglu, E. (2013). Investigating the in vitro bioaccessibility of polyphenols in fresh and sun-dried figs (Ficus carica L.). International Journal of Food Science and Technology, 48, 2621–2629. https://doi.org/10.1111/ijfs.12258
  • Karantzi, A. D., Kafkaletou, M., Christopoulos, M. V., & Tsantili, E. (2021). Peel colour and flesh phenolic compounds at ripening stages in pollinated commercial varieties of fig (Ficus carica L.) fruit grown in Southern Europe. Journal of Food Measurement and Characterization, 15, 2049–2063. https://doi.org/10.1007/s11694-020-00796-4
  • Kebal, L., Djebli, N., Pokajewicz, K., Mostefa, N., & Wieczorek, P. P. (2024). Antioxidant activity and effectiveness of fig extract in counteracting carbon tetrachloride-induced oxidative damage in rats. Molecules, 29(9), 1997. https://doi.org/10.3390/molecules29091997
  • Kebal, L., Pokajewicz, K., Djebli, N., Mostefa, N., Poliwoda, A., & Wieczorek, P. P. (2022). HPLC-DAD profile of phenolic compounds and in vitro antioxidant activity of Ficus carica L. fruits from two Algerian varieties. Biomedicine & Pharmacotherapy, 155, 113738. https://doi.org/10.1016/j.biopha.2022.113738
  • Konak, R., Kosoglu, I., & Yemenicioglu, A. (2017). Effects of different drying methods on phenolic content, antioxidant capacity and general characteristics of selected Turkish fig cultivars. Acta Horticulturae, 1173, 335–340. https://doi.org/10.17660/ActaHortic.2017.1173.58
  • Li, P., Ma, F., & Cheng, L. (2013). Primary and secondary metabolism in the sun-exposed peel and the shaded peel of apple fruit. Physiologia Plantarum, 148, 9–24. https://doi.org/10.1111/j.1399-3054.2012.01692.x
  • Li, X., Xu, C., Korban, S. S., & Chen, K. (2010). Regulatory mechanisms of textural changes in ripening fruits. Critical Reviews in Plant Sciences, 29(4), 222–243. https://doi.org/10.1080/07352689.2010.487776
  • López-Martínez, L. X., Parkin, K. L., & Garcia, H. S. (2012). Effect of processing of corn for production of masa, tortillas and tortilla chips on the scavenging capacity of reactive nitrogen species. International Journal of Food Science and Technology, 47(6), 1321–1327. https://doi.org/10.1111/j.1365-2621.2012.02976.x
  • Mujic, I., Dudas, S., Zekovic, Z., Lepojevic, Z., & Radojkovic, M. (2012). Determination of antioxidant properties of fig fruit extracts (Ficus carica). Acta Horticulturae, 940, 369–376. https://doi.org/10.17660/ActaHortic.2012.940.52
  • Nakilcioğlu, E., & Hışıl, Y. (2013). Research on the phenolic compounds in Sarilop (Ficus carica L.) fig variety. Journal of Food Processing and Preservation, 37(5), 564–570. https://doi.org/10.1111/j.1745-4549.2012.00701.x
  • Ngo, T. V., Scarlett, C. J., Bowyer, M. C., Ngo, P. D., & Vuong, Q. V. (2017). Impact of different extraction solvents on bioactive compounds and antioxidant capacity from the root of Salacia chinensis L. Journal of Food Quality, 2017, 1–8. https://doi.org/10.1155/2017/9305047
  • Oliveira, A. P., Valentao, P., Pereira, J. A., Silva, B. M., Tavares, F., & Andrade, P. B. (2009). Ficus carica L.: Metabolic and biological screening. Food and Chemical Toxicology, 47, 2841–2846. https://doi.org/10.1016/j.fct.2009.09.004
  • Ouchemoukh, S., Hachoud, S., Boudraham, H., Mokrani, A., & Louaileche, H. (2012). Antioxidant activities of some dried fruits consumed in Algeria. LWT–Food Science and Technology, 49, 329–332. https://doi.org/10.1016/j.lwt.2012.07.022
  • Pereira, C., Lopez-Corrales, M., Serradilla, M. J., Villalobos, M. del C., Ruiz Moyano, S., & Martín, A. (2017). Influence of ripening stage on bioactive compounds and antioxidant activity in nine fig (Ficus carica L.) varieties grown in Extremadura, Spain. Journal of Food Composition and Analysis, 64, 203–212. https://doi.org/10.1016/j.jfca.2017.09.006
  • Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341. https://doi.org/10.1006/abio.1999.4019
  • Rodríguez, V. M., Soengas, P., Landa, A., Ordás, A., & Revilla, P. (2013). Effects of selection for color intensity on antioxidant capacity in maize (Zea mays L.). Euphytica, 193(3), 339–345. https://doi.org/10.1007/s10681-013-0924-0
  • Sirisha, N., Sreenivasulu, M., Sangeeta, K., & Chetty, C. M. (2010). Antioxidant properties of Ficus species – a review. International Journal of PharmTech Research, 2(4), 2174–2182.
  • Slatnar, A., Klancar, U., Stampar, F., & Veberic, R. (2011). Effect of drying of figs (Ficus carica L.) on the contents of sugars, organic acids, and phenolic compounds. Journal of Agricultural and Food Chemistry, 59, 11696–11702. https://doi.org/10.1021/jf202707y
  • Slavin, J. L. (2006). Figs: Past, present and future. Nutrition Today, 41(4), 180–184. https://doi.org/10.1097/00017285-200607000-00009
  • Slinkard, K., & Singleton, V. L. (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28, 49–55. https://doi.org/10.5344/ajev.1977.28.1.49
  • Solomon, A., Golubowicz, S., Yablowicz, Z., Grossman, S., Bergman, M., Gottlieb, H. E., et al. (2006). Antioxidant activities and anthocyanin content of fresh fruits of common fig (Ficus carica L.). Journal of Agricultural and Food Chemistry, 54, 7717–7723. https://doi.org/10.1021/jf060497h
  • Soni, N., Mehta, S., Satpathy, G., & Gupta, R. K. (2014). Estimation of nutritional, phytochemical, antioxidant and antibacterial activity of dried fig (Ficus carica). Journal of Pharmacognosy and Phytochemistry, 3, 158–165.
  • Stalikas, C. D. (2007). Extraction, separation, and detection methods for phenolic acids and flavonoids. Journal of Separation Science, 30(18), 3268–3295. https://doi.org/10.1002/jssc.200700261
  • Tram, N. N., Hien, P. P., & Oanh, H. N. (2015). Optimizing the extraction conditions of phenolic compounds from fresh tea shoot. Journal of Food and Nutrition Sciences, 3(1–2), 106–110. https://doi.org/10.11648/j.jfns.s.2015030102.30
  • Vallejo, F., Marin, J. G., & Tomás-Barberán, F. A. (2012). Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chemistry, 130, 485–492. https://doi.org/10.1016/j.foodchem.2011.07.032
  • Wijekoon, M. M. J. O., Bhat, R., & Karim, A. A. (2011). Effect of extraction solvents on the phenolic compounds and antioxidant activities of bunga kantan (Etlingera elatior Jack.) inflorescence. Journal of Food Composition and Analysis, 24(4–5), 615–619. https://doi.org/10.1016/j.jfca.2010.09.018
  • Ydjedd, S., Chaala, M., Richard, G., Kati, D. E., López-Nicolás, R., Fauconnier, M. L., & Louaileche, H. (2017). Assessment of antioxidant potential of phenolic compounds fractions of Algerian Ceratonia siliqua L. pods during ripening stages. International Food Research Journal, 24(5).
  • Zieliński, H., & Kozłowska, H. (2000). Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. Journal of Agricultural and Food Chemistry, 48(6), 2008–2016. https://doi.org/10.1021/jf990619o
There are 42 citations in total.

Details

Primary Language English
Subjects Plant Biochemistry
Journal Section Research Article
Authors

Zeynep Doğru 0000-0001-7115-3360

Mehmet Akbulut 0000-0001-5621-8293

Hüsamettin Vatansev 0000-0002-0230-3414

Serdar Karakurt 0000-0002-4449-6103

Publication Date July 23, 2025
Submission Date March 27, 2025
Acceptance Date May 29, 2025
Published in Issue Year 2025 Volume: 12 Issue: 3

Cite

APA Doğru, Z., Akbulut, M., Vatansev, H., Karakurt, S. (2025). Comparison of Total Phenolic Contents and Antioxidant Activities of Ripe and Unripe Fig (Ficus carica L.) Extracts Using Different Solvents. Turkish Journal of Agricultural and Natural Sciences, 12(3), 574-584. https://doi.org/10.30910/turkjans.1666602