Review
BibTex RIS Cite

Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines

Year 2022, , 245 - 254, 15.08.2022
https://doi.org/10.19159/tutad.1071658

Abstract

In Wuhan, China, a severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) has emerged, causing serious symptoms in patients such as fever, dry cough, and exhaustion. This fatal pandemic spreads over the globe, causing significant infections in humans, mainly in the respiratory tract. To date, researchers have paid close attention to new therapeutic methods, particularly promising antiviral medicines and vaccines. Especially, existing synthetic antivirals have been used against viruses that prevent replication, entry into the cell, and transmission of the virus. These antiviral agents have been the subject of the basis of drug discovery studies that directly affect COVID 19. Since the COVID-19 outbreak, a variety of conventional herbal remedies have been employed either alone or in combination with current medications to treat infected people with encouraging results. Flavonoids, lectins, polysaccharides, alkaloids, terpenes, lectins and essential oils are some natural ingredients with demonstrated antiviral activity. These secondary metabolites have been shown to be effective against a wide range of viruses in the studies on this subject. In this review, we investigated the potential herbal medicines against various RNA, and DNA viruses, including SARS-CoV-2. We also investigated the bioactive substances from medicinal plants and their potential antiviral efficacy.

References

  • Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-ldrissi, M., Bouachrine, M., 2020. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, 39(8): 2971-2979.
  • Abdelli, I., Hassani, F., Bekkel Brikci, S., Ghalem, S., 2020. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. Journal of Biomolecular Structure and Dynamic, 39(9): 1-14.
  • Açıkgöz, Ö., Günay, A., 2020. The early impact of the Covid-19 pandemic on the global and Turkish economy. Turkish Journal of Medical Sciences, 50(9): 520-526.
  • Ahmad, S., Abbasi, H.W., Shahid, S., Gul, S., Abbasi, S.W., 2021. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics, 39(12): 4225-4233.
  • Akbudak, N., Şen, Ö., 2021. GLOBALGAP in the COVID-19 epidemic process. Turkish Journal of Agricultural Research, 8(2): 248-255. (In Turkish).
  • Akindele, A.J., Sowemimo, A., Agunbiade, F.O., Sofidiya, M.O., Awodele, O., Ade-Ademilua, O., 2022. Bioprospecting for anti-COVID-19 interventions from African medicinal plants: A review. Natural Product Communications, 17(5): 1-42.
  • Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., Dhama, K., 2021. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules, 26(6): 1775.
  • Anbazhagan, G.K., Palaniyandi, S., Joseph, B., 2019. Antiviral plant extracts. In: A. Dekebo (Ed.), Plant Extracts, IntechOpen, London, UK, pp. 1-10.
  • Baig, A., Srinivasan, H., 2022. SARS-CoV-2 Inhibitors from Nigella sativa. Applied Biochemistry and Biotechnology, 194(3): 1051-1092.
  • Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Damme, E. Van, Peumans, W., Clercq, E., 1992. The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication. Antiviral Research, 18(2): 191-207.
  • Banerjee, A., Kanwar, M., Mohapatra, P.K.D., Saso, L., Nicoletti, M., Maiti, S., 2021. Nigellidine (Nigella sativa, black-cumin seed) docking to SARS CoV-2 nsp3 and host inflammatory proteins may inhibit viral replication/transcription and FAS-TNF death signal via TNFR 1/2 blocking. Natural Product Research, 1-6.
  • Barakat, A.B., Shoman, S.A., Dina, N., Alfarouk, O.R., 2010. Antiviral activity and mode of action of Dianthus caryophyllus L. and Lupinus termes L. seed extracts against in vitro herpes simplex and hepatitis A viruses infection. Journal of Microbiology and Antimicrobials, 2(3): 23-29.
  • Barakat, E.M.F., El Wakeel, L.M., Hagag, R.S., 2013. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World Journal of Gastroenterology, 19(16): 2529-2536.
  • Bastida Armengol, J., Berkov, S., Torras Claveria, L., Pigni, N.B., De Andrade, J.P., Martínez, V., Codina Mahrer, C., Viladomat Meya, F., 2011. Chemical and biological aspects of Amaryllidaceae alkaloids. In: D. Muñoz-Torrero (Ed.), Recent Advances in Pharmaceutical Sciences, Transworld Research Network, Kerala, India, pp. 65-100.
  • Benarba, B., Pandiella, A., 2020. Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology, 11: 1-16.
  • Bouchentouf, S., Missoum, N., 2020. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronasvirus (Covid-19): Molecular docking study. ChemRxiv, 1-12.
  • Chen, C., Chou, T., Cheng, L., Ho, C., 2011. In vitro anti-adenoviral activity of five Allium plants. Journal of the Taiwan Institute of Chemical Engineers, 42(2): 228-232.
  • Chen, Y., Li, X., Yang, G., Chen, Z., Hu, Q., Miao, M., 2012. Phenolic compounds from Nicotiana tabacum and their biological activities. Journal of Asian Natural Products Research, 14(5): 450-456.
  • Chowdhury, P., 2021. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 39(17): 6792-6809.
  • De Andrade, J.P., Pigni, N.B., Torras-Claveria, L., Guo, Y., Berkov, S., Reyes-Chilpa, R., El Amrani, A., Zuanazzi, J.A.S., Codina, C., Viladomat, F., Bastida, J., 2012. Alkaloids from the Hippeastrum genus: Chemistry and biological activity. Revista Latinoamericana De Química, 40(2): 83-98.
  • Dhouibi, R., Affes, H., Salem, M. Ben, Hammami, S., Sahnoun, Z., Zeghal, K.M., Ksouda, K., 2020. Screening of pharmacological uses of Urtica dioica and others benefits. Progress in Biophysics and Molecular Biology, 150: 67-77.
  • Dorra, N., El-Berrawy, M., Sallam, S., Mahmoud, R., 2019. Evaluation of antiviral and antioxidant activity of selected herbal extracts. The Journal of High Institute of Public Health, 49(1): 36-40.
  • Du, J., He, Z., Jiang, R., Ye, W., Xu, H., But, P.P.H., 2003. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 62(8): 1235-1238.
  • Duru, C.E., Duru, I.A., Adegboyega, A.E., 2021. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bulletin of the National Research Centre, 45(1): 1-13.
  • El Sayed, K.A., 2000. Natural products as antiviral agents. In: A. Ur-Rahman (Ed.), Studies in Natural Products Chemistry Bioactive Natural Products (Part E), Elsevier (North Holland Publishing Co.), Netherlands, pp. 473-571.
  • Esharkawy, E.R., Almalki, F., Hadda, T.B., 2022. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorganic Chemistry, 120: 1-9.
  • Esposito, F., Tintori, C., Martini, R., Christ, F., Debyser, Z., Ferrarese, R., Cabiddu, G., Corona, A., Ceresola, E.R., Calcaterra, A., Iovine, V., Botta, B., Clementi, M., Canducci, F., Botta, M., Tramontano, E., 2015. Kuwanon-L as a new allosteric HIV-1 integrase inhibitor: Molecular modeling and biological evaluation. ChemBioChem, 16(17): 2507-2512.
  • Flores-Ocelotl, M.R., Rosas-murrieta, N.H., Moreno, D.A., Vallejo-Ruiz, V., Reyes-Leyva, J., Domínguez, F., Santos-López, G., 2018. Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC Complementary and Alternative Medicine, 18(95): 1-10.
  • Gangal, N., Nagle, V., Pawar, Y., Dasgupta, S., 2020. Reconsidering traditional medicinal plants to combat COVID-19. AIJR Preprints, 34: 1-6.
  • Geng, C., Ma, Y., Zhang, X., Yao, S., Xue, D., Zhang, R., Chen, J.J., 2012. Mulberrofuran G and isomulberrofuran G from Morus alba L.: Anti- hepatitis B virus activity and mass spectrometric fragmentation. Journal of Agricultural and Food Chemistry, 60(33): 8197-8202.
  • Ghosh, R., Chakraborty, A., Biswas, A., Chowdhuri, S., 2020. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12): 4362-4374.
  • Hom, K., Gochin, M., Peumans, W.J., Shine, N., 1995. Ligand-induced perturbations in Urtica dioica agglutinin. Federation of European Biochemical Societies Letters, 361(2-3): 157-161.
  • Hsieh, L., Lin, C., Su, B., Jan, T., Chen, C., Wang, C., Lin, D., Lin, C., Chueh, L., 2010. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Research, 88(1): 25-30.
  • Huan, W., Yue-Hu, W., Fu-Wei, Z., Qiao-Qin, H., Jin-Jin, X.U., Li-Juan, M.A., Chun-Lin, L., 2011. Benzylphenethylamine alkaloids from the bulbs and flowers of Lycoris radiata. Chinese Herbal Medicines, 3(1): 60-63.
  • Imran, M., Khan, S.A., Alshammari, M.K., Alkhaldi, S.M., Alshammari, F.N., Kamal, M., Alam, O., Asdaq, S.M.B., Alzahrani, A.K., Jomah, S., 2022. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules, 27(9): 1-15.
  • Izquierdo, L., Oliveira, C., Fournier, C., Descamps, V., Morel, V., Dubuisson, J., Brochot, E., Francois, C., Castelain, S., Duverlie, G., Helle, F., 2016. Hepatitis C virus resistance to carbohydrate-binding agents. PLoS One, 11(2): 1-17.
  • Jassim, S.A.A., Naji, M.A., 2003. Novel antiviral agents: a medicinal plant perspective. Journal of Applied Microbiology, 95(3): 412-427.
  • Kachko, A., Loesgen, S., Shahzad-ul-hussan, S., Tan, W., Zubkova, I., Takeda, K., Wells, F., Rubin, S., Bewley, C.A., Major, E., 2014. Inhibition of hepatitis C virus by the cyanobacterial protein MVL: Mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Molecular Pharmaceutics, 10(12): 4590-4602.
  • Kaur, R., Sharma, P., Gupta, G.K., Ntie-kang, F., Kumar, D., 2020. Structure-activity-relationship and mechanistic insights for anti-HIV. Natural Products. Molecules, 25(9): 1-48.
  • Keyaerts, E., Vijgen, L., Pannecouque, C., Damme, E.V., Peumans, W., Egberink, H., Balzarini, J., Ranst, M.V., 2007. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Research, 75(3): 179-187.
  • Kılıç, O., Aydın Eryılmaz, G., 2022. Agricultural and food product preferences of consumers during the COVID-19 period: The case of Samsun province, Turkey. Turkish Journal of Agricultural Research, 9(1): 72-78. (In Turkish). Kim, H, Chung, M.S., 2018. Antiviral activities of mulberry (Morus alba) juice and seed against influenza viruses. Evidence-Based Complementary and Alternative Medicine, Article ID: 2606583.
  • Konozy, E., Osman, M., Dirar, A., 2022. Plant lectins as potent anti-coronaviruses, anti-inflammatory, antinociceptive and antiulcer agents. Saudi Journal of Biological Sciences, 29(6): 1-11.
  • Koshak, A.E., Koshak, E.A., 2020. Nigella sativa as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Current Therapeutic Research, 93: 1-3.
  • Koshak, A.E., Koshak, E.A., Mobeireek, A.F., Badawi, M.A., Wali, S.O., Malibary, H.M., Atwah, A.F., Alhamdan, M.M., Almalki, R.A., Madani, T.A., 2021. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complementary Therapies in Medicine, 61: 102769.
  • Kumaki, Y., Wandersee, M.K., Smith, A.J., Zhou, Y., Simmons, G., Nelson, N.M., Bailey, K.W., Vest, Z.G., Li, J.K., Chan, P.K., Smee, D.F., Barnard, D.L., 2011. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB / c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Research, 90(1): 22-32.
  • Kumar, R.V., Chauhan, S., 2008. Mulberry: Life enhancer. Journal of Medicinal Plants Research, 2(10): 271-278.
  • Lau, K., Lee, K., Koon, C., Cheung, C.S., Lau, C., Ho, H., Lee, M.Y., Au, S.W., Cheng, C.H., Lau, C.B., Tsui, S.K., Wan, D.C., Waye, M.M., Wong, K., Wong, C., Lam, C.W., Leung, P., Fung, K., 2008. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 118(1): 79-85.
  • Li, S., Chen, C., Zhang, H., Guo, H., Wang, H., Wang, L., Zhang, X., Hua, S., Yu, J., Xiao, P., Li, R., Tan, X., 2005. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research, 67(1): 18-23.
  • Luo, C.H., Ma, L.L., Liu, H.M., Liao, W., Xu, R.C., Ci, Z.M., Lin, J.Z., Han, L., Zhang, D.K., 2020. Research progress on main symptoms of novel coronavirus pneumonia improved by traditional Chinese medicine. Frontiers in Pharmacology, 11: 556885.
  • Maiti, S., Banerjee, A., Nazmeen, A., Kanwar, M., Das, S., 2022. Active-site molecular docking of nigellidine with nucleocapsid- NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats. Journal of Drug Targeting, 30(5): 511-521.
  • Manganelli, R.E.U., Zaccaro, L., Tomei, P.E., 2005. Antiviral activity in vitro of Urtica dioica L. Parietaria diffusa M. et K. and Sambucus nigra L. Journal of Ethnopharmacology, 98(3): 323-327.
  • Mani, J.S., Johnson, J.B., Steel, J.C., Broszczak, A.D., Neilsen, P.M., Walsh, K.B., Naiker, M., 2020. Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Research, 284: 197989.
  • Mani, R.J., Sehgal, N., Dogra, N., Saxena, S., Katare, D.P., 2022. Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: In-silico study. Journal of Biomolecular Structure and Dynamics, 40(6): 2417-2429.
  • Marchetti, M., Mastromarino, P., Rieti, S., Seganti, L., Orsi, N., 1995. Inhibition of herpes simplex, rabies and rubella viruses by lectins with different specificities. Research in Virology, 146(3): 211-215.
  • Martini, R., Esposito, F., Corona, A., Ferrarese, R., Ceresola, E.R., Visconti, L., Tintori, C., Barbieri, A., Calcaterra, A., Iovine, V., Canducci, F., Tramontano, E., Botta, M., 2017. Natural product kuwanon-L inhibits HIV-1 replication through multiple target binding. ChemBioChem, 18(4): 374-377.
  • Maryam, M., Te, K.K., Wong, F.C., Chai, T.T., Low, G.K.K., Chiew, S., Chee, H.Y., 2020. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. Journal of Integrative Agriculture, 19(4): 1085-1096.
  • Mathai, R.V., Jindal, M.K., Mitra, J.C., Sar, S.K., 2022. COVID-19 and medicinal plants: A critical perspective. Forensic Science International: Animals and Environments, 2: 1-3.
  • Mir, S.A., Firoz, A., Alaidarous, M., Alshehri, B., Bin Dukhyil, A.A., Banawas, S., Alsagaby, S.A., Alturaiki, W., Bhat, G.A., Kashoo, F., Abdel-Hadi, A.M., 2022. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi Journal of Biological Sciences, 29(1): 394-401.
  • Mohiuddin, E., Usmanghani, K., Akram, M., Asif, M., Akhtar, N., Naveed, A., Shah, P.A., Uzair, M., 2011. Morus nigra L. Journal of Medicinal Plant Research, 5: 5197-5199.
  • Onifade, A.A., Jewell, A.P., Adedeji, W.A., 2013a. Nigella sativa concoction induced sustained seroreversion in HIV patient. African Journal of Traditional, Complementary and Alternative Medicines, 10(5): 332-335.
  • Onifade, A.A., Jewell, A.P., Ajadi, T.A., Rahamon, S.K., Ogunrin, O.O., 2013b. Effectiveness of a herbal remedy in six HIV patients in Nigeria. Journal of Herbal Medicine, 3(3): 99-103.
  • Oyero, O.G., Toyama, M., Mitsuhiro, N., Onifade, A.A., Hidaka, A., Okamoto, M., Baba, M., 2016. Selective inhibition of hepatitis c virus replication by Alpha-zam, a Nigella sativa seed formulation. African Journal of Traditional, Complementary and Alternative Medicines, 13(6): 144-148.
  • Öztoprak, F., Özyazıcı, G., 2022. Medicinal and aromatic plants in the COVID-19 process. International Conference on Global Practice of Multidisciplinary Scientific Studies, March 6-8, Cyprus, pp. 1529-1543. (In Turkish).
  • Pandey, P., Khan, F., Mazumder, A., Rana, A.K., Srivastava, Y., 2021. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of novel coronavirus (COVID-19). Indian Journal of Pharmaceutical Education and Research, 55(1): 190-197.
  • Pereira, P.R., Winter, H.C., Verícimo, M.A., Meagher, J.L., Stuckey, J.A., Goldstein, I.J., Silva, J.T., 2015. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochimica et Biophysica Acta Proteins and Proteomics, 1854(1): 20-30.
  • Rahmani, A.H., Khan, A.A., Aldebasi, Y.H., 2017. Saffron (Crocus sativus) and its active ingredients: Role in the prevention and treatment of disease. Pharmacognosy Journal, 9(6): 873-879.
  • Rawat, A., Mali, R.R., 2013. Phytochemical properties and pharmcological activities of Nicotiana tabacum: A Review. Indian Journal of Pharmaceutical and Biological Research, 1(1): 74-82.
  • Reyad-ul-Ferdous, M., Arman, M.S.I., Tanvir, M.M.I., Sumi, S., Siddique, K.M.M.R., Billah, M.M., Islam, M.S., 2015. Biologically potential for pharmacologicals and phytochemicals of medicinal plants of Colocasia esculenta: A comprehensive review. American Journal of Clinical and Experimental Medicine, 3(5-1): 7-11.
  • Rizvi, S.M.D., Hussain, T., Moin, A., Dixit, S.R., Mandal, S.P., Adnan, M., Jamal, Q.M.S., Sharma, D.C., Alanazi, A.S., Unissa, R., 2021. Identifying the most potent dual-targeting compound(s) against 3CLprotease and NSP15exonuclease of SARS-CoV-2 from Nigella sativa: Virtual screening via physicochemical properties, docking and dynamic simulation analysis. Processes, 9(10): 1-15.
  • Romano, J.D., Tatonetti, N.P., 2019. Informatics and computational methods in natural product drug discovery: A review and perspectives. Frontiers in Genetics, 10: 1-16.
  • Saha, B., Varette, O., Stanford, W.L., Diallo, J., Parks, R.J., 2019. Development of a novel screening platform for the identification of small molecule inhibitors of human adenovirus. Virology, 538: 24-34.
  • Sampangi-Ramaiah, M.H., Vishwakarma, R., Shaanker, R.U., 2020. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7): 1087-1092.
  • Saxena, A., 2020. Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of Biosciences, 45(1): 1-24.
  • Shang, S.Z., Xu, W., Li, L., Tang, J., Zhao, W., Lei, P., Miao, M.M., Sun, H.D., Pu, J.X., Chen, Y.-K., Yang, G.-Y., 2015. Antiviral isocoumarins from the roots and stems of Nicotiana tabacum. Phytochemistry Letters, 11: 53-56.
  • Singh, B., Namrata, Kumar, L., Dwiedii, S.C., 2011. Antibacterial and antifungal activity of Colocasia esculenta aqueous extract: An edible plant. Journal of Pharmacy Research, 4(5): 1459-1460.
  • Singh, S., Shenoy, S., Nehete, P.N., Yang, P., Nehete, B., Fontenot, D., Yang, G., Newman, R. A., Sastry, K.J., 2013. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia, 84: 32-39.
  • Song, Y.H., Kim, W.D., Curtis-Long, M.J., Yuk, J.H., Wang, Y., Zhuang, N., Lee, H.K., Jeon, S.K., Park, K.H., 2014. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biological and Pharmaceutical Bulletin, 37(6): 1021-1028.
  • Thuy, P.T.B., My, A.T.T., Hai, T.T.N., Hieu, L.T., Hoa, T., Loan, P.T.H., Triet, N.T., Anh, T.T. Van, Quy, P.T., Tat, P. Van, Hue, N. Van, Quang, D.T., Trung, N.T., Tung, V.T., Huynh, L.K., Nhung, A.T.N., 2020. Investigation into SARS-CoV‑2 resistance of compounds in garlic essential oil. ACS Omega, 5(14): 8312-8320.
  • Tripathi, M.K., Singh, P., Sharma, S., Singh, T.P., Ethayathulla, A.S., Kaur, P., 2021. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. Journal of Biomolecular Structure and Dynamics, 39(15): 5668-5681.
  • Tsang, N.Y., Zhao, L.H., Tsang, S.W., Zhang, H.J., 2017. Antiviral activity and molecular targets of plant natural products against avian influenza virus. Current Organic Chemistry, 21(18): 1777-1804.
  • Ulasli, M., Gurses, S.A., Bayraktar, R., Yumrutas, O., Oztuzcu, S., Igci, M., Igci, Y.Z., Cakmak, E.A., Arslan, A., 2014. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Molecular Biology Reports, 41(3): 1703-1711.
  • Van der Meer, F.J.U.M., De Haan, C.A.M., Schuurman, N.M.P., Haijema, B.J., Peumans, W.J., Van Damme, E.J.M., Delputte, P.L., Balzarini, J., Egberink, H.F., 2007. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Research, 76(1): 21-29.
  • Virgilio, D.N., Papazoglou, E.G., Jankauskiene, Z., Lonardo, S. Di, Praczyk, M., Wielgusz, K., 2015. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Industrial Crops and Products, 68: 42-49.
  • Wang, L., Yang, R., Yuan, B., Liu, Y., Liu, C., 2015. The antiviral and antimicrobial activities of licorice , a widely-used Chinese herb. Acta Pharmaceutica Sinica B, 5(4): 310-315.
  • Xu, H., Liu, B., Xiao, Z., Zhou, M., Ge, L., Jia, F., Liu, Y., Jin, H., Zhu, X., Gao, J., Akhtar, J., Xiang, B., Tan, K., Wang, G., 2021. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infectious Diseases and Therapy, 10(1): 483-494.

Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines

Year 2022, , 245 - 254, 15.08.2022
https://doi.org/10.19159/tutad.1071658

Abstract

In Wuhan, China, a severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) has emerged, causing serious symptoms in patients such as fever, dry cough, and exhaustion. This fatal pandemic spreads over the globe, causing significant infections in humans, mainly in the respiratory tract. To date, researchers have paid close attention to new therapeutic methods, particularly promising antiviral medicines and vaccines. Especially, existing synthetic antivirals have been used against viruses that prevent replication, entry into the cell, and transmission of the virus. These antiviral agents have been the subject of the basis of drug discovery studies that directly affect COVID 19. Since the COVID-19 outbreak, a variety of conventional herbal remedies have been employed either alone or in combination with current medications to treat infected people with encouraging results. Flavonoids, lectins, polysaccharides, alkaloids, terpenes, lectins and essential oils are some natural ingredients with demonstrated antiviral activity. These secondary metabolites have been shown to be effective against a wide range of viruses in the studies on this subject. In this review, we investigated the potential herbal medicines against various RNA, and DNA viruses, including SARS-CoV-2. We also investigated the bioactive substances from medicinal plants and their potential antiviral efficacy.

References

  • Aanouz, I., Belhassan, A., El-Khatabi, K., Lakhlifi, T., El-ldrissi, M., Bouachrine, M., 2020. Moroccan medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. Journal of Biomolecular Structure and Dynamics, 39(8): 2971-2979.
  • Abdelli, I., Hassani, F., Bekkel Brikci, S., Ghalem, S., 2020. In silico study the inhibition of angiotensin converting enzyme 2 receptor of COVID-19 by Ammoides verticillata components harvested from western Algeria. Journal of Biomolecular Structure and Dynamic, 39(9): 1-14.
  • Açıkgöz, Ö., Günay, A., 2020. The early impact of the Covid-19 pandemic on the global and Turkish economy. Turkish Journal of Medical Sciences, 50(9): 520-526.
  • Ahmad, S., Abbasi, H.W., Shahid, S., Gul, S., Abbasi, S.W., 2021. Molecular docking, simulation and MM-PBSA studies of Nigella sativa compounds: a computational quest to identify potential natural antiviral for COVID-19 treatment. Journal of Biomolecular Structure and Dynamics, 39(12): 4225-4233.
  • Akbudak, N., Şen, Ö., 2021. GLOBALGAP in the COVID-19 epidemic process. Turkish Journal of Agricultural Research, 8(2): 248-255. (In Turkish).
  • Akindele, A.J., Sowemimo, A., Agunbiade, F.O., Sofidiya, M.O., Awodele, O., Ade-Ademilua, O., 2022. Bioprospecting for anti-COVID-19 interventions from African medicinal plants: A review. Natural Product Communications, 17(5): 1-42.
  • Anand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., Dhama, K., 2021. Medicinal plants, phytochemicals, and herbs to combat viral pathogens including SARS-CoV-2. Molecules, 26(6): 1775.
  • Anbazhagan, G.K., Palaniyandi, S., Joseph, B., 2019. Antiviral plant extracts. In: A. Dekebo (Ed.), Plant Extracts, IntechOpen, London, UK, pp. 1-10.
  • Baig, A., Srinivasan, H., 2022. SARS-CoV-2 Inhibitors from Nigella sativa. Applied Biochemistry and Biotechnology, 194(3): 1051-1092.
  • Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Damme, E. Van, Peumans, W., Clercq, E., 1992. The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication. Antiviral Research, 18(2): 191-207.
  • Banerjee, A., Kanwar, M., Mohapatra, P.K.D., Saso, L., Nicoletti, M., Maiti, S., 2021. Nigellidine (Nigella sativa, black-cumin seed) docking to SARS CoV-2 nsp3 and host inflammatory proteins may inhibit viral replication/transcription and FAS-TNF death signal via TNFR 1/2 blocking. Natural Product Research, 1-6.
  • Barakat, A.B., Shoman, S.A., Dina, N., Alfarouk, O.R., 2010. Antiviral activity and mode of action of Dianthus caryophyllus L. and Lupinus termes L. seed extracts against in vitro herpes simplex and hepatitis A viruses infection. Journal of Microbiology and Antimicrobials, 2(3): 23-29.
  • Barakat, E.M.F., El Wakeel, L.M., Hagag, R.S., 2013. Effects of Nigella sativa on outcome of hepatitis C in Egypt. World Journal of Gastroenterology, 19(16): 2529-2536.
  • Bastida Armengol, J., Berkov, S., Torras Claveria, L., Pigni, N.B., De Andrade, J.P., Martínez, V., Codina Mahrer, C., Viladomat Meya, F., 2011. Chemical and biological aspects of Amaryllidaceae alkaloids. In: D. Muñoz-Torrero (Ed.), Recent Advances in Pharmaceutical Sciences, Transworld Research Network, Kerala, India, pp. 65-100.
  • Benarba, B., Pandiella, A., 2020. Medicinal plants as sources of active molecules against COVID-19. Frontiers in Pharmacology, 11: 1-16.
  • Bouchentouf, S., Missoum, N., 2020. Identification of compounds from Nigella sativa as new potential inhibitors of 2019 novel coronasvirus (Covid-19): Molecular docking study. ChemRxiv, 1-12.
  • Chen, C., Chou, T., Cheng, L., Ho, C., 2011. In vitro anti-adenoviral activity of five Allium plants. Journal of the Taiwan Institute of Chemical Engineers, 42(2): 228-232.
  • Chen, Y., Li, X., Yang, G., Chen, Z., Hu, Q., Miao, M., 2012. Phenolic compounds from Nicotiana tabacum and their biological activities. Journal of Asian Natural Products Research, 14(5): 450-456.
  • Chowdhury, P., 2021. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, 39(17): 6792-6809.
  • De Andrade, J.P., Pigni, N.B., Torras-Claveria, L., Guo, Y., Berkov, S., Reyes-Chilpa, R., El Amrani, A., Zuanazzi, J.A.S., Codina, C., Viladomat, F., Bastida, J., 2012. Alkaloids from the Hippeastrum genus: Chemistry and biological activity. Revista Latinoamericana De Química, 40(2): 83-98.
  • Dhouibi, R., Affes, H., Salem, M. Ben, Hammami, S., Sahnoun, Z., Zeghal, K.M., Ksouda, K., 2020. Screening of pharmacological uses of Urtica dioica and others benefits. Progress in Biophysics and Molecular Biology, 150: 67-77.
  • Dorra, N., El-Berrawy, M., Sallam, S., Mahmoud, R., 2019. Evaluation of antiviral and antioxidant activity of selected herbal extracts. The Journal of High Institute of Public Health, 49(1): 36-40.
  • Du, J., He, Z., Jiang, R., Ye, W., Xu, H., But, P.P.H., 2003. Antiviral flavonoids from the root bark of Morus alba L. Phytochemistry, 62(8): 1235-1238.
  • Duru, C.E., Duru, I.A., Adegboyega, A.E., 2021. In silico identification of compounds from Nigella sativa seed oil as potential inhibitors of SARS-CoV-2 targets. Bulletin of the National Research Centre, 45(1): 1-13.
  • El Sayed, K.A., 2000. Natural products as antiviral agents. In: A. Ur-Rahman (Ed.), Studies in Natural Products Chemistry Bioactive Natural Products (Part E), Elsevier (North Holland Publishing Co.), Netherlands, pp. 473-571.
  • Esharkawy, E.R., Almalki, F., Hadda, T.B., 2022. In vitro potential antiviral SARS-CoV-19- activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorganic Chemistry, 120: 1-9.
  • Esposito, F., Tintori, C., Martini, R., Christ, F., Debyser, Z., Ferrarese, R., Cabiddu, G., Corona, A., Ceresola, E.R., Calcaterra, A., Iovine, V., Botta, B., Clementi, M., Canducci, F., Botta, M., Tramontano, E., 2015. Kuwanon-L as a new allosteric HIV-1 integrase inhibitor: Molecular modeling and biological evaluation. ChemBioChem, 16(17): 2507-2512.
  • Flores-Ocelotl, M.R., Rosas-murrieta, N.H., Moreno, D.A., Vallejo-Ruiz, V., Reyes-Leyva, J., Domínguez, F., Santos-López, G., 2018. Taraxacum officinale and Urtica dioica extracts inhibit dengue virus serotype 2 replication in vitro. BMC Complementary and Alternative Medicine, 18(95): 1-10.
  • Gangal, N., Nagle, V., Pawar, Y., Dasgupta, S., 2020. Reconsidering traditional medicinal plants to combat COVID-19. AIJR Preprints, 34: 1-6.
  • Geng, C., Ma, Y., Zhang, X., Yao, S., Xue, D., Zhang, R., Chen, J.J., 2012. Mulberrofuran G and isomulberrofuran G from Morus alba L.: Anti- hepatitis B virus activity and mass spectrometric fragmentation. Journal of Agricultural and Food Chemistry, 60(33): 8197-8202.
  • Ghosh, R., Chakraborty, A., Biswas, A., Chowdhuri, S., 2020. Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure and Dynamics, 39(12): 4362-4374.
  • Hom, K., Gochin, M., Peumans, W.J., Shine, N., 1995. Ligand-induced perturbations in Urtica dioica agglutinin. Federation of European Biochemical Societies Letters, 361(2-3): 157-161.
  • Hsieh, L., Lin, C., Su, B., Jan, T., Chen, C., Wang, C., Lin, D., Lin, C., Chueh, L., 2010. Synergistic antiviral effect of Galanthus nivalis agglutinin and nelfinavir against feline coronavirus. Antiviral Research, 88(1): 25-30.
  • Huan, W., Yue-Hu, W., Fu-Wei, Z., Qiao-Qin, H., Jin-Jin, X.U., Li-Juan, M.A., Chun-Lin, L., 2011. Benzylphenethylamine alkaloids from the bulbs and flowers of Lycoris radiata. Chinese Herbal Medicines, 3(1): 60-63.
  • Imran, M., Khan, S.A., Alshammari, M.K., Alkhaldi, S.M., Alshammari, F.N., Kamal, M., Alam, O., Asdaq, S.M.B., Alzahrani, A.K., Jomah, S., 2022. Nigella sativa L. and COVID-19: A glance at the anti-COVID-19 chemical constituents, clinical trials, inventions, and patent literature. Molecules, 27(9): 1-15.
  • Izquierdo, L., Oliveira, C., Fournier, C., Descamps, V., Morel, V., Dubuisson, J., Brochot, E., Francois, C., Castelain, S., Duverlie, G., Helle, F., 2016. Hepatitis C virus resistance to carbohydrate-binding agents. PLoS One, 11(2): 1-17.
  • Jassim, S.A.A., Naji, M.A., 2003. Novel antiviral agents: a medicinal plant perspective. Journal of Applied Microbiology, 95(3): 412-427.
  • Kachko, A., Loesgen, S., Shahzad-ul-hussan, S., Tan, W., Zubkova, I., Takeda, K., Wells, F., Rubin, S., Bewley, C.A., Major, E., 2014. Inhibition of hepatitis C virus by the cyanobacterial protein MVL: Mechanistic differences between the high-mannose specific lectins MVL, CV-N, and GNA. Molecular Pharmaceutics, 10(12): 4590-4602.
  • Kaur, R., Sharma, P., Gupta, G.K., Ntie-kang, F., Kumar, D., 2020. Structure-activity-relationship and mechanistic insights for anti-HIV. Natural Products. Molecules, 25(9): 1-48.
  • Keyaerts, E., Vijgen, L., Pannecouque, C., Damme, E.V., Peumans, W., Egberink, H., Balzarini, J., Ranst, M.V., 2007. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Research, 75(3): 179-187.
  • Kılıç, O., Aydın Eryılmaz, G., 2022. Agricultural and food product preferences of consumers during the COVID-19 period: The case of Samsun province, Turkey. Turkish Journal of Agricultural Research, 9(1): 72-78. (In Turkish). Kim, H, Chung, M.S., 2018. Antiviral activities of mulberry (Morus alba) juice and seed against influenza viruses. Evidence-Based Complementary and Alternative Medicine, Article ID: 2606583.
  • Konozy, E., Osman, M., Dirar, A., 2022. Plant lectins as potent anti-coronaviruses, anti-inflammatory, antinociceptive and antiulcer agents. Saudi Journal of Biological Sciences, 29(6): 1-11.
  • Koshak, A.E., Koshak, E.A., 2020. Nigella sativa as a potential phytotherapy for coronavirus disease 2019: A mini review of in silico studies. Current Therapeutic Research, 93: 1-3.
  • Koshak, A.E., Koshak, E.A., Mobeireek, A.F., Badawi, M.A., Wali, S.O., Malibary, H.M., Atwah, A.F., Alhamdan, M.M., Almalki, R.A., Madani, T.A., 2021. Nigella sativa for the treatment of COVID-19: An open-label randomized controlled clinical trial. Complementary Therapies in Medicine, 61: 102769.
  • Kumaki, Y., Wandersee, M.K., Smith, A.J., Zhou, Y., Simmons, G., Nelson, N.M., Bailey, K.W., Vest, Z.G., Li, J.K., Chan, P.K., Smee, D.F., Barnard, D.L., 2011. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB / c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Research, 90(1): 22-32.
  • Kumar, R.V., Chauhan, S., 2008. Mulberry: Life enhancer. Journal of Medicinal Plants Research, 2(10): 271-278.
  • Lau, K., Lee, K., Koon, C., Cheung, C.S., Lau, C., Ho, H., Lee, M.Y., Au, S.W., Cheng, C.H., Lau, C.B., Tsui, S.K., Wan, D.C., Waye, M.M., Wong, K., Wong, C., Lam, C.W., Leung, P., Fung, K., 2008. Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 118(1): 79-85.
  • Li, S., Chen, C., Zhang, H., Guo, H., Wang, H., Wang, L., Zhang, X., Hua, S., Yu, J., Xiao, P., Li, R., Tan, X., 2005. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Research, 67(1): 18-23.
  • Luo, C.H., Ma, L.L., Liu, H.M., Liao, W., Xu, R.C., Ci, Z.M., Lin, J.Z., Han, L., Zhang, D.K., 2020. Research progress on main symptoms of novel coronavirus pneumonia improved by traditional Chinese medicine. Frontiers in Pharmacology, 11: 556885.
  • Maiti, S., Banerjee, A., Nazmeen, A., Kanwar, M., Das, S., 2022. Active-site molecular docking of nigellidine with nucleocapsid- NSP2-MPro of COVID-19 and to human IL1R-IL6R and strong antioxidant role of Nigella-sativa in experimental rats. Journal of Drug Targeting, 30(5): 511-521.
  • Manganelli, R.E.U., Zaccaro, L., Tomei, P.E., 2005. Antiviral activity in vitro of Urtica dioica L. Parietaria diffusa M. et K. and Sambucus nigra L. Journal of Ethnopharmacology, 98(3): 323-327.
  • Mani, J.S., Johnson, J.B., Steel, J.C., Broszczak, A.D., Neilsen, P.M., Walsh, K.B., Naiker, M., 2020. Natural product-derived phytochemicals as potential agents against coronaviruses: a review. Virus Research, 284: 197989.
  • Mani, R.J., Sehgal, N., Dogra, N., Saxena, S., Katare, D.P., 2022. Deciphering underlying mechanism of Sars-CoV-2 infection in humans and revealing the therapeutic potential of bioactive constituents from Nigella sativa to combat COVID19: In-silico study. Journal of Biomolecular Structure and Dynamics, 40(6): 2417-2429.
  • Marchetti, M., Mastromarino, P., Rieti, S., Seganti, L., Orsi, N., 1995. Inhibition of herpes simplex, rabies and rubella viruses by lectins with different specificities. Research in Virology, 146(3): 211-215.
  • Martini, R., Esposito, F., Corona, A., Ferrarese, R., Ceresola, E.R., Visconti, L., Tintori, C., Barbieri, A., Calcaterra, A., Iovine, V., Canducci, F., Tramontano, E., Botta, M., 2017. Natural product kuwanon-L inhibits HIV-1 replication through multiple target binding. ChemBioChem, 18(4): 374-377.
  • Maryam, M., Te, K.K., Wong, F.C., Chai, T.T., Low, G.K.K., Chiew, S., Chee, H.Y., 2020. Antiviral activity of traditional Chinese medicinal plants Dryopteris crassirhizoma and Morus alba against dengue virus. Journal of Integrative Agriculture, 19(4): 1085-1096.
  • Mathai, R.V., Jindal, M.K., Mitra, J.C., Sar, S.K., 2022. COVID-19 and medicinal plants: A critical perspective. Forensic Science International: Animals and Environments, 2: 1-3.
  • Mir, S.A., Firoz, A., Alaidarous, M., Alshehri, B., Bin Dukhyil, A.A., Banawas, S., Alsagaby, S.A., Alturaiki, W., Bhat, G.A., Kashoo, F., Abdel-Hadi, A.M., 2022. Identification of SARS-CoV-2 RNA-dependent RNA polymerase inhibitors from the major phytochemicals of Nigella sativa: An in silico approach. Saudi Journal of Biological Sciences, 29(1): 394-401.
  • Mohiuddin, E., Usmanghani, K., Akram, M., Asif, M., Akhtar, N., Naveed, A., Shah, P.A., Uzair, M., 2011. Morus nigra L. Journal of Medicinal Plant Research, 5: 5197-5199.
  • Onifade, A.A., Jewell, A.P., Adedeji, W.A., 2013a. Nigella sativa concoction induced sustained seroreversion in HIV patient. African Journal of Traditional, Complementary and Alternative Medicines, 10(5): 332-335.
  • Onifade, A.A., Jewell, A.P., Ajadi, T.A., Rahamon, S.K., Ogunrin, O.O., 2013b. Effectiveness of a herbal remedy in six HIV patients in Nigeria. Journal of Herbal Medicine, 3(3): 99-103.
  • Oyero, O.G., Toyama, M., Mitsuhiro, N., Onifade, A.A., Hidaka, A., Okamoto, M., Baba, M., 2016. Selective inhibition of hepatitis c virus replication by Alpha-zam, a Nigella sativa seed formulation. African Journal of Traditional, Complementary and Alternative Medicines, 13(6): 144-148.
  • Öztoprak, F., Özyazıcı, G., 2022. Medicinal and aromatic plants in the COVID-19 process. International Conference on Global Practice of Multidisciplinary Scientific Studies, March 6-8, Cyprus, pp. 1529-1543. (In Turkish).
  • Pandey, P., Khan, F., Mazumder, A., Rana, A.K., Srivastava, Y., 2021. Inhibitory potential of dietary phytocompounds of Nigella sativa against key targets of novel coronavirus (COVID-19). Indian Journal of Pharmaceutical Education and Research, 55(1): 190-197.
  • Pereira, P.R., Winter, H.C., Verícimo, M.A., Meagher, J.L., Stuckey, J.A., Goldstein, I.J., Silva, J.T., 2015. Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochimica et Biophysica Acta Proteins and Proteomics, 1854(1): 20-30.
  • Rahmani, A.H., Khan, A.A., Aldebasi, Y.H., 2017. Saffron (Crocus sativus) and its active ingredients: Role in the prevention and treatment of disease. Pharmacognosy Journal, 9(6): 873-879.
  • Rawat, A., Mali, R.R., 2013. Phytochemical properties and pharmcological activities of Nicotiana tabacum: A Review. Indian Journal of Pharmaceutical and Biological Research, 1(1): 74-82.
  • Reyad-ul-Ferdous, M., Arman, M.S.I., Tanvir, M.M.I., Sumi, S., Siddique, K.M.M.R., Billah, M.M., Islam, M.S., 2015. Biologically potential for pharmacologicals and phytochemicals of medicinal plants of Colocasia esculenta: A comprehensive review. American Journal of Clinical and Experimental Medicine, 3(5-1): 7-11.
  • Rizvi, S.M.D., Hussain, T., Moin, A., Dixit, S.R., Mandal, S.P., Adnan, M., Jamal, Q.M.S., Sharma, D.C., Alanazi, A.S., Unissa, R., 2021. Identifying the most potent dual-targeting compound(s) against 3CLprotease and NSP15exonuclease of SARS-CoV-2 from Nigella sativa: Virtual screening via physicochemical properties, docking and dynamic simulation analysis. Processes, 9(10): 1-15.
  • Romano, J.D., Tatonetti, N.P., 2019. Informatics and computational methods in natural product drug discovery: A review and perspectives. Frontiers in Genetics, 10: 1-16.
  • Saha, B., Varette, O., Stanford, W.L., Diallo, J., Parks, R.J., 2019. Development of a novel screening platform for the identification of small molecule inhibitors of human adenovirus. Virology, 538: 24-34.
  • Sampangi-Ramaiah, M.H., Vishwakarma, R., Shaanker, R.U., 2020. Molecular docking analysis of selected natural products from plants for inhibition of SARS-CoV-2 main protease. Current Science, 118(7): 1087-1092.
  • Saxena, A., 2020. Drug targets for COVID-19 therapeutics: Ongoing global efforts. Journal of Biosciences, 45(1): 1-24.
  • Shang, S.Z., Xu, W., Li, L., Tang, J., Zhao, W., Lei, P., Miao, M.M., Sun, H.D., Pu, J.X., Chen, Y.-K., Yang, G.-Y., 2015. Antiviral isocoumarins from the roots and stems of Nicotiana tabacum. Phytochemistry Letters, 11: 53-56.
  • Singh, B., Namrata, Kumar, L., Dwiedii, S.C., 2011. Antibacterial and antifungal activity of Colocasia esculenta aqueous extract: An edible plant. Journal of Pharmacy Research, 4(5): 1459-1460.
  • Singh, S., Shenoy, S., Nehete, P.N., Yang, P., Nehete, B., Fontenot, D., Yang, G., Newman, R. A., Sastry, K.J., 2013. Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity. Fitoterapia, 84: 32-39.
  • Song, Y.H., Kim, W.D., Curtis-Long, M.J., Yuk, J.H., Wang, Y., Zhuang, N., Lee, H.K., Jeon, S.K., Park, K.H., 2014. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biological and Pharmaceutical Bulletin, 37(6): 1021-1028.
  • Thuy, P.T.B., My, A.T.T., Hai, T.T.N., Hieu, L.T., Hoa, T., Loan, P.T.H., Triet, N.T., Anh, T.T. Van, Quy, P.T., Tat, P. Van, Hue, N. Van, Quang, D.T., Trung, N.T., Tung, V.T., Huynh, L.K., Nhung, A.T.N., 2020. Investigation into SARS-CoV‑2 resistance of compounds in garlic essential oil. ACS Omega, 5(14): 8312-8320.
  • Tripathi, M.K., Singh, P., Sharma, S., Singh, T.P., Ethayathulla, A.S., Kaur, P., 2021. Identification of bioactive molecule from Withania somnifera (Ashwagandha) as SARS-CoV-2 main protease inhibitor. Journal of Biomolecular Structure and Dynamics, 39(15): 5668-5681.
  • Tsang, N.Y., Zhao, L.H., Tsang, S.W., Zhang, H.J., 2017. Antiviral activity and molecular targets of plant natural products against avian influenza virus. Current Organic Chemistry, 21(18): 1777-1804.
  • Ulasli, M., Gurses, S.A., Bayraktar, R., Yumrutas, O., Oztuzcu, S., Igci, M., Igci, Y.Z., Cakmak, E.A., Arslan, A., 2014. The effects of Nigella sativa (Ns), Anthemis hyalina (Ah) and Citrus sinensis (Cs) extracts on the replication of coronavirus and the expression of TRP genes family. Molecular Biology Reports, 41(3): 1703-1711.
  • Van der Meer, F.J.U.M., De Haan, C.A.M., Schuurman, N.M.P., Haijema, B.J., Peumans, W.J., Van Damme, E.J.M., Delputte, P.L., Balzarini, J., Egberink, H.F., 2007. Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture. Antiviral Research, 76(1): 21-29.
  • Virgilio, D.N., Papazoglou, E.G., Jankauskiene, Z., Lonardo, S. Di, Praczyk, M., Wielgusz, K., 2015. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Industrial Crops and Products, 68: 42-49.
  • Wang, L., Yang, R., Yuan, B., Liu, Y., Liu, C., 2015. The antiviral and antimicrobial activities of licorice , a widely-used Chinese herb. Acta Pharmaceutica Sinica B, 5(4): 310-315.
  • Xu, H., Liu, B., Xiao, Z., Zhou, M., Ge, L., Jia, F., Liu, Y., Jin, H., Zhu, X., Gao, J., Akhtar, J., Xiang, B., Tan, K., Wang, G., 2021. Computational and experimental studies reveal that thymoquinone blocks the entry of coronaviruses into in vitro cells. Infectious Diseases and Therapy, 10(1): 483-494.
There are 85 citations in total.

Details

Primary Language English
Journal Section Review
Authors

Tuğsen Doğru 0000-0003-0101-9742

Fatma Ayaz 0000-0003-3994-6576

Nuraniye Eruygur 0000-0002-4674-7009

Publication Date August 15, 2022
Published in Issue Year 2022

Cite

APA Doğru, T., Ayaz, F., & Eruygur, N. (2022). Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines. Türkiye Tarımsal Araştırmalar Dergisi, 9(2), 245-254. https://doi.org/10.19159/tutad.1071658
AMA Doğru T, Ayaz F, Eruygur N. Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines. TÜTAD. August 2022;9(2):245-254. doi:10.19159/tutad.1071658
Chicago Doğru, Tuğsen, Fatma Ayaz, and Nuraniye Eruygur. “Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines”. Türkiye Tarımsal Araştırmalar Dergisi 9, no. 2 (August 2022): 245-54. https://doi.org/10.19159/tutad.1071658.
EndNote Doğru T, Ayaz F, Eruygur N (August 1, 2022) Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines. Türkiye Tarımsal Araştırmalar Dergisi 9 2 245–254.
IEEE T. Doğru, F. Ayaz, and N. Eruygur, “Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines”, TÜTAD, vol. 9, no. 2, pp. 245–254, 2022, doi: 10.19159/tutad.1071658.
ISNAD Doğru, Tuğsen et al. “Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines”. Türkiye Tarımsal Araştırmalar Dergisi 9/2 (August 2022), 245-254. https://doi.org/10.19159/tutad.1071658.
JAMA Doğru T, Ayaz F, Eruygur N. Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines. TÜTAD. 2022;9:245–254.
MLA Doğru, Tuğsen et al. “Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 9, no. 2, 2022, pp. 245-54, doi:10.19159/tutad.1071658.
Vancouver Doğru T, Ayaz F, Eruygur N. Coronavirus Disease (COVID-19): A Review of Antiviral Potential Herbal Medicines. TÜTAD. 2022;9(2):245-54.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667